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Magnetic levitation of metamaterial bodies enhanced with magnetostatic surface resonances
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We propose that macroscopic objects built from negative-permeability metamaterials may experience
resonantly enhanced magnetic force in low-frequency magnetic fields. Resonant enhancement of the time-
averaged force originates from magnetostatic surface resonances (MSRs), which are analogous to the electrostatic
resonances of negative-permittivity particles, well known as surface plasmon resonances in optics. We generalize
the classical problem of the MSR of a homogeneous object to include anisotropic metamaterials and consider
the most extreme case of anisotropy, where the permeability is negative in one direction but positive in the
others. It is shown that deeply subwavelength objects made of such indefinite (hyperbolic) media exhibit a
pronounced magnetic dipole resonance that couples strongly to uniform or weakly inhomogeneous magnetic
field and provides strong enhancement of the magnetic force, enabling applications such as enhanced magnetic
levitation.
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I. INTRODUCTION AND MOTIVATION

Electromagnetic (EM) forces are used in a variety of
technologies, ranging from motors, EM guns,1 and magnetic
levitation trains2 to micro- and nanoactuators3 and optical
tweezers.4,5 The spatial scales where EM forces are important
to mankind range from atomic to cosmic,6 and the relevant
EM frequencies cover the entire spectrum from statics to γ -ray
frequencies.

For applications dealing with human scales (∼1 m), the
high-intensity EM fields necessary for the generation of
strong EM forces interfere with other devices and may be
harmful to biological tissues. The severity of this problem is
substantially reduced if the fields are predominantly magnetic,
since virtually all biological substances and the majority of
conventional materials are almost purely dielectric and thus
transparent to magnetic fields. While at a finite frequency
it is impossible to completely eliminate the electric fields
from the picture, the ratio E/H can be strongly suppressed
in the near-field zone of a magnetic dipole oscillator, such as
a conductor loop carrying alternating current (AC). For that
reason, a large variety of EM force applications, including EM
motors, magnetic levitation trains, and magnetic brakes, has a
strong preference for magnetic rather than electric forces.

Natural media with a strong magnetic response, although
readily available, provide only a limited range of magnetic
permeability (μ) values; negative permeability is particularly
hard to find. Negative μ can be found in magnetized ferrites in
narrow frequency bands associated with ferromagnetic7 and
gyromagnetic8 resonances. However, magnetic permeability
typically has a large loss tangent in those bands, leading to
high specific absorption rates. As we show in this article, a
negative μ with a low enough loss tangent enables resonant
enhancement of the magnetic polarizability; therefore, it is
important to find or construct low-density media with this
property.

Artificial media such as metamaterials have been demon-
strated to provide negative μ values with relatively low loss
tangents.9–11 Magnetic metamaterials consisting of metal-
lic lines on thin dielectric substrates can be readily and

inexpensively fabricated using the existing printed circuit
board (PCB) technologies. PCB metamaterials consisting of
thin metal lines on low-density dielectric substrates have a
substantial volume fraction of air and thus typically have a
much lower density (of order 0.1 g/cm3) than ferrites and
other naturally magnetic media. Their loss tangents can be
reduced by using low-loss dielectric substrates and high-
conductivity metals. Additionally, the highly porous structure
of PCB metamaterials allows for convection cooling, enabling
higher peak intensities that do not cause material damage,
which is impossible with homogeneous natural magnetics.
The operational band of negative-μ PCB metamaterials can be
easily adjusted to any frequency between roughly 1 MHz and
about 100 GHz, even without conceptual changes in the PCB
fabrication process, by adjustments to the unit cell size, as well
as inductance and capacitance of the resonating metamaterial
elements.

Resonant enhancement of electric dipole polarizability by
virtue of the so-called surface plasmon resonance (SPR)
is well-known in optics.12–14 Its closely related analog,
surface phonon polariton resonance, can be found in the
midinfrared.15–17 SPRs are electrostatic in nature and can be
understood as eigenmodes, that is, source-free solutions, of the
electrostatic Laplace equation,12,18,19

∇ε∇φ = 0. (1)

When all materials involved have positive permittivity ε > 0,
a uniqueness theorem can be proven that precludes the pos-
sibility of nontrivial solutions to this equation.20,21 However,
when two or more homogeneous media with both negative
and positive ε are included, source-free solutions exist at
certain, negative values of the permittivity.20–22 In binary
(two-medium) composites, these values depend exclusively on
the shape of the positive-negative ε boundary,20–22 and not on
the absolute size of the structure, since electrostatic problems
do not have a spatial scale associated with the wavelength.

For simple geometric shapes, resonant values of −ε are not
very large, of order unity: for a sphere, the dipole resonance
occurs at εres = −2; for a cylinder, it occurs at εres = −1. The
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value of −εres can be increased by 1 or 2 orders of magnitude
by introducing high aspect ratios and/or small gaps between
the negative-ε particles. Still, a relative permittivity in the
range −100 to −1 is readily found in natural media only
at optical (UV through mid-IR) frequencies, which explains
why SPRs have so far been the subject of mostly optical
studies and have attracted little attention from the point of
view of radio-frequency and microwave applications. On the
other hand, metamaterials can easily deliver those moderately
negative values of ε at any frequency of interest, including the
microwave and lower frequency regions.

Magnetostatic fields in the absence of electric currents
can be described by the magnetostatic potential φ(m), which
satisfies the equation ∇μ∇φ(m) = 0, mathematically identical
to the Laplace equation of electrostatics, (1). This analogy is
a particular case of EM duality, which can be stated as the
exact equivalence of electric- and magnetic-field equations
in the absence of free electric (and magnetic) charges. We
can thus duplicate the electrostatic resonance phenomena
using negative-permeability media. This conclusion would
also apply in the quasistatic, finite-frequency case, as long as
the retardation parameter D/λ, where D is the characteristic
spatial scale of the problem, is negligibly small.

Existence of electric charges and their currents, however,
creates a distinction between electrostatic and magnetostatic
resonances. While the negative-ε bands found in natural and
artificial media can extend to arbitrarily low frequencies
(recall the Drude dispersion of electron fluid), one cannot
achieve negative μ(ω) at zero frequency,23 as the latter
would imply a negative energy density, which violates the
conditions of thermodynamic stability. Negative permeability
always occurs in finite-bandwidth portions of the spectrum
surrounded by positive-μ bands; in that regard, magnetostatic
surface resonances (MSRs) studied in this paper resemble
quasielectrostatic surface resonances in plasmon-polaritonic
structures.15–17 Within the already narrow negative-μ band,
we predict a series of even narrower resonances associated
with magnetic surface eigenmodes of the macroscopic mag-
netizable body.

In this article, we consider metamaterial bodies that are
much smaller than the free-space wavelength λ of EM
radiation at the operational frequency: D � λ. At the same
time, we require that the unit cells of the metamaterial are
much smaller than the whole body, a � D. This allows us
to treat it as a homogeneous permeability object and use
metamaterial properties calculated from standard frequency-
domain homogenization theories, both quasistatic19 and full-
wave.24 The only currently known method for achieving a
negative μ in metamaterials is the embedding of self-resonant
metamaterial resonators, which thus need to be much smaller
than D. The hierarchy a � D � λ suggests that resonators
must be at least 2 orders of magnitude smaller than λ, which
itself poses a challenging design issue. Fortunately, recent
progress in microwave and radio-frequency metamaterials
provides evidence that extremely subwavelength (λ/a > 100)
negative-μ metamaterials can be manufactured.25–29

In studying magnetic surface resonances of metamaterial
bodies, we cannot avoid dealing with the anisotropy of
magnetic permeability. Magnetic response in metamaterials
is created by resonant elements, which are more likely

than not to respond only to one field polarization. Thus,
from the design perspective, anisotropic metamaterials30 are
much easier to achieve than their isotropic counterparts.31,32

Additionally, magnetic resonators can be very thin, planar
elements providing strong magnetic response only in the
direction normal to their plane. A well-known example of
such metamaterial elements are split-ring resonators.30

Thin resonators can be stacked with a high number
density, providing stronger magnetic response for the select
orientation of the magnetic field. The figure of merit for
many applications including superlens-based imaging26,28,33

and wireless power32,34 is the inverse magnetic loss tangent at
the frequency where Reμ(ω) = −1. Assuming the magnetic
dispersion model,9

μ(ω) = 1 − Fω2

ω(ω + iγ ) − ω2
res

, (2)

the aforementioned figure of merit is approximately
∣∣∣∣Reμ

Imμ

∣∣∣∣ ≈ 1

2
FQ, (3)

where Q = ωres/(2γ ) � 1 and F � 1. The magnetic oscil-
lator strength F < 1 is proportional to the oscillator number
density; thus, densely stacked thin resonators can reduce the
loss tangent in metamaterials.

By considering metamaterials with single-polarization re-
sponse, we are naturally led to the consideration of magneto-
static (and, by duality, electrostatic) resonances in indefinite35

media. EM waves in indefinite media have a hyperbolic
dispersion relation,35 leading to a variety of interesting
phenomena, including photonic van Hove singularities36 and
extremely high photonic densities of states.37 Since indefinite
media have an unusually high density of states, applying
the known eigenmode methods to them may be difficult, as
discussed in the subsequent section. Already in driven EM
problems, indefinite media can present numerical challenges,
such as ill-conditioned stiffness matrices arising in the finite
element method (FEM). It is therefore both surprising and
practically useful that indefinite-metamaterial bodies support
isolated dipole resonances that couple strongly to uniform
magnetic fields. In the final section of this paper, we show
how these resonances can be utilized in magnetic levitation
applications.

II. MAGNETOSTATIC SURFACE RESONANCES IN
BODIES WITH NEGATIVE OR INDEFINITE

MAGNETIC PERMEABILITY

In exact analogy with electrostatic resonances, MSRs can
be obtained as source-free solutions of the equation

�∇μ �∇φ(m) = 0, (4)

where φ(m)(�r) is the magnetostatic potential. In what follows,
the superscript (m) is omitted. For the particular case of
a homogeneous, possibly anisotropic, magnetic object with
permeability μ(m)(ω) occupying a finite domain �m embedded
in a homogeneous host medium with a permeability tensor
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μ(h)(ω), permeability can be expressed through the θ -function
of the domain �m:

μ(�x,ω) = μ(h)(ω) + (μ(m)(ω) − μ(h)(ω)) θ (�x), (5)

where, by definition, θ (�x) equals 1 if �x ∈ �m and 0 otherwise.
For simplicity, we assume here that μ(h) ≡ μh is isotropic,

and μ(m) = diag(μx,μy,μz). In metamaterials, one can control
all three principal values of μ(m)(ω) individually; thus, a Sturm-
Liouville (eigenvalue) problem can be postulated,

μh∇(1 − θ )∇φ + (μx∂xθ∂x + μy∂yθ∂y)φ = −λ∂zθ∂zφ,

(6)

where λ ≡ μz is the unknown eigenvalue and μx,y are
constants. From now on, we assume that the magnetic object
is uniaxially anisotropic (μx = μy), in which case Eq. (6)
simplifies to

μh
�∇(1 − θ ) �∇φ + μx

�∇xyθ �∇xyφ = −λ∂zθ∂zφ, (7)

where �∇xy ≡ x̂∂x + ŷ∂y . Alternatively, one may postulate an
eigenvalue problem,

μh
�∇(1 − θ ) �∇φ + μz∂zθ∂zφ = −λ �∇xyθ �∇xyφ, (8)

in which μx ≡ μy = λ is treated as the eigenvalue. Finally,
if the medium is isotropic, postulating μx ≡ μy ≡ μz = λ

results in the following eigenvalue problem:

μh
�∇(θ − 1) �∇φ = λ �∇θ �∇φ. (9)

Equations (6)–(9) belong to the class of generalized eigenvalue
problems (GEPs), that is, they can be written as Aφ = λBφ,
where A and B are linear operators; the particular case
with B = 1 is known as the standard eigenvalue problem.
Analytical properties of GEP can be improved by a ratio-
nal transformation of the eigenvalue, λ = (aλ′ + b)/(λ′ + c),
which leads to a new GEP A′φ = λ′B ′φ, with the new linear
operators A′ = Ac − Bb and B ′ = aB − A. With a proper
choice of a,b,c, one can sometimes make the new operators
A′ and B ′ positive definite and, also, confine all eigenvalues
to a finite interval such as (0,1). For instance, transformation
λ′ = 1/(1 − μz/μh) converts Eq. (9) to the canonical form
postulated by Bergman et al.:20

�∇θ �∇φ = λ′ �∇2φ. (10)

The eigenvalues of problem (10) are known20 to be real
and confined on the interval (0,1), that is, in the region(s) with
Re[μz(ω)/μh(ω)] < 0. In what follows, we assume μh = 1.
The eigenvalues can be found analytically only for several
geometries that possess a high degree of symmetry, such as
circular and elliptic cylinders,21 spheres,38and hemispheres.39

For most other shapes, problem (10) must be solved numer-
ically. However, once the eigenmodes of Eq. (10) are found,
analytically or numerically, the response of the structure with
a complex permeability μz ≡ μ′

z + iμ′′
z to a uniform magnetic

field H0 can always be written in the following form, no matter
how complicated the shape of the structure:

φ(�r) = φ0(�r) +
∑

n

λ′
n

λ′ − λ′
n

(φn,φ0)

(φn,φn)
φn(�r), (11)

where the complex permeability enters as λ′ = 1/(1 −
μz/μh), the functions φn(�r) are the eigenmodes corresponding
to the eigenvalues λ′

n (each labeled with an integer subscript
n), and φ0 = −H0z is the magnetostatic potential of the
uniform magnetic field polarized in the z direction. The scalar
product in Eq. (11) is defined40 as (φ,ψ) = ∫

�
θ �∇φ∗ · �∇ψ .

Additionally, as shown in Ref. 40, the total (magnetic) dipole
moment of the inclusion �m is always given by the expression

mz = H0V
∑

n

fn

λ′
n − λ′ , (12)

no matter how complicated the shape of �m is; general ex-
pressions for fn in terms of the eigenmodes of each resonance
are given in Ref. 40. Thus, complete characterization of
the magnetostatic response of a given body can be reduced
to the calculation (analytical or numerical) of the set of
numbers λ′

n and fn that depend only on the shape of �m.
The numbers λ′

n, different for each unique shape, determine the
values of the magnetic permeability μz at which magnetostatic
resonances occur, and fn determines the strength of that
resonance.

A general observation regarding the shape of the magnetic
response as a function of permeability of the body can be
made from Eq. (12). As a function of the complex parameter
λ′ = 1/(1 − μz) = λ′

r + iλ′
i , magnetic moment mz is a sum

of simple-pole terms. For any passive medium, Imμz and,
consequently, Imλ′ = λ′

i are positive; as we pointed out, the
eigenvalues λ′

n are always real.20 If we assume a constant value
of λ′

i > 0 and plot the real and imaginary parts of one resonant
term from Eq. (12), 1

λ′
n−λ′ , as a function of the real parameter

λ′
r , we trivially obtain

Re
1

λ′
n − λ′ = λ′

n − λ′
r

(λ′
n − λ′

r )2 + (λ′
i)

2
, (13)

Im
1

λ′
n − λ′ = λ′

i

(λ′
n − λ′

r )2 + (λ′
i)

2
. (14)

Comparing these expressions with the well-known shape of
resonant response functions in the frequency domain, i.e.,

Re
1

ω2
n − ω2 − iγ ω

= ω2
n − ω2

(
ω2

n − ω
)2 + (γω)2

, (15)

Im
1

ω2
n − ω2 − iγ ω

= γω(
ω2

n − ω
)2 + (γω)2

, (16)

we must conclude that mz as a function of λ′
r looks like

the familiar Lorentz-shaped resonance. As a function of μ′
z,

however, the magnetic polarizability deviates from a perfect
Lorentzian shape, because λ′

r ≡ (1 − μ′
z)/[(1 − μ′

z)
2 + (μ′′

z )2]
is not a linear function of μ′

z.
For an arbitrary-shaped particle �m, the aforementioned

eigenvalue problem must be solved numerically. GEP (10),
describing the isotropic medium case, was solved in Refs. 17–
19 using FEM. We have generalized the method of Ref. 18
to include the anisotropic medium equations, (6)–(8). Numer-
ically, the obtained eigenvalue problem produces reasonable
results whenever the tensor μ(m)(ω) is negative-definite, i.e.,
when μx ≡ μy < 0 and μz < 0; in that regime, both Eq. (7)
and Eq. (8) returned a sequence of well-separated eigenmodes.
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However, in the most interesting, indefinite medium regimes,
including μx ≡ μy < 0, μz > 0 and μx ≡ μy > 0, μz < 0,
both Eq. (7) and Eq. (8) produce an extremely dense set of
eigenmodes, all of which have a very small dipole moment and,
correspondingly, negligible coupling to a uniform magnetic
field. Decreasing the mesh size in the FEM discretization re-
sults in even denser sets of eigenmodes; thus, no h convergence
can be observed.

This numerical problem stems from the well-known fact
that indefinite media support waves with a hyperbolic dis-
persion relation.35 A lossless indefinite medium thus allows
wave propagation with arbitrarily large wave numbers;35 in
practice, there is still a maximum (cutoff) wave number kmax,
which is related to metamaterial granularity and loss but is
typically much larger than the free-space wave number k0.
In numerical FEM solutions, kmax is set by the mesh size
h; shrinking the latter leads to an even larger number of
eigenmodes corresponding to high-k waves propagating in the
indefinite medium. Since no h convergence can be obtained,
there is no straightforward generalization of the method from
Refs. 17–19 to the indefinite medium case.

On the other hand, it is known that at least simple-shaped
objects filled with indefinite medium support well-defined
dipole resonances, which couple strongly to the uniform field.
For example, the magnetic polarizability of a homogeneous
sphere with relative permeability μ = diag(μx,μyμz) can be
found by applying EM duality to the electric polarizability
derived by Sihvola:38

α(m) = 3μ0V
(μx − 1)(μy − 1)(μz − 1)

(μx + 2)(μy + 2)(μz + 2)
, (17)

where V is the volume of the sphere. Therefore, even with
μx = μy > 0, there exists a strong, distinct, and isolated
dipole resonance at μz = −2, situated deeply in the indefinite
medium regime. Analytical solutions of the surface resonance
problem are known only for a handful of simple shapes,
including circular and elliptic cylinders and spheres.

In order to find the eigenmodes of Eqs. (6)–(8) for an
arbitrary-shape indefinite metamaterial body, we resort to
solving a driven magnetostatic problem. The numerical model
includes a homogeneous (effective) medium model of a meta-
material body and a finite-size simulation domain of diameter
substantially larger than the metamaterial object but still much
smaller than the free-space wavelength. A constant, uniform
magnetic field �H0 = H0êz is applied, which corresponds to
magnetostatic potential φ0 = −H0z; here, H0 = 1 A/m is
an arbitrary intensity of the applied magnetic field. The
metamaterial permeability is then scanned through the range
of values where magnetostatic resonances are expected. For
brevity, we describe the solutions only to problem (7), in which
μz is treated as the unknown (eigenvalue) and μx = μy = 1;
the other eigenvalue problems can be treated similarly. To
simulate the response in the z direction, we choose the exterior
boundary of the simulation domain to be a circular cylinder
with its axis of revolution pointing in the z direction. Dirichlet
boundary conditions φ = 0 and φ = −H0Hdom are applied on
the bottom (z = 0) and top (z = Hdom) plates; the side walls are
modeled as Neumann boundaries (�n · �∇φ = 0), which implies
that the magnetic field is parallel to those boundaries.

FIG. 1. (Color online) Schematic of the cylindrically symmetric
structure and the simulation domain used for calculations of magne-
tostatic surface resonances. The PEC wire domain is included only
in the magnetic force calculations described in Sec. III.

For the composite structure consisting of the metamaterial
body and a homogeneous isotropic medium surrounding
the metamaterial, one can introduce the relative effective
permeability in the direction of the applied magnetic field:

μeff
z = 1

Adomμ0H0

∫
�n · �BdA, (18)

where Adom = πR2
dom is the area of the bottom boundary of

the cylindrical domain, and integration is carried over the
latter. The simulation domain for this type of calculation
is depicted in Fig. 1. This is the dual, magnetic version of
the “capacitor” definition of effective permittivity.19 In what
follows, the metamaterial is assumed to be situated in free
space (μh = 1). A finite loss characterized by Imμ(m) > 0 is
assumed in the simulations; in the indefinite medium case,
this turns out to be necessary not only for physical realism,
but also to provide numerical stabilization of the resulting
linear algebra problem. Without the loss, the stiffness matrix
of the FEM discretization can be ill conditioned, i.e., close to
a singular matrix.

In the magnetostatic limit, one can readily relate the
effective magnetic permeability, as defined by Eq. (18), to
the magnetic polarizability of the magnetizable body inside
the simulation domain. Integration of the local magnetization
density �M ≡ �B/μ0 − �H over the simulation domain � yields
the total magnetic moment of the body, since it is situated in
free space where �M = 0:∫

�

�MdV =
∫

�m

�MdV ≡ �m. (19)

One can then introduce the effective susceptibility averaged
over the domain � in accordance with the following definition:

χ eff
z ≡

∫
�

MzdV

H0V
≡ mz

H0V
≡ α(m)

zz

V
, (20)

where we have also introduced the magnetic polarizability,
α(m)

zz ≡ mz/H0, of the magnetizable body represented by the
domain �m ∈ �. In terms of dimensionless quantities—the
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FIG. 2. (Color online) Real (a) and imaginary (b) part of the volume-normalized magnetic polarizability α̃(m)
zz of a metamaterial disk versus

the value of Reμz in the disk, for various shape aspect ratios (H/R; indicated by numbers in the legend). Peaks of Imα̃(m)
zz correspond to MSRs

of a disk with nonvanishing dipolar strength. The disk is homogeneous, with permeability μ = diag(1 + 0.1i,1 + 0.1i,Reμz + 0.1i).

filling fraction fm = Vm/V and volume-normalized polariz-
ability α̃(m)

zz ≡ α(m)
zz /Vm, where Vm is the volume of domain

�m—Eq. (20) can also be stated as χ eff
z = fmα̃(m)

zz .
It was shown by Urzhumov et al. using the terminology

of electrostatics19 that, in the quasistatic limit, the quantities
defined by Eqs. (18) and (20) are related by the familiar
equation

μeff
z − 1 = χ eff

z , (21)

and consequently, μeff
z − 1 = fmα̃(m)

zz . Thus, the calculation
of μeff

z − 1 by virtue of Eq. (18) also gives the magnetic
polarizability of the body, which are directly proportional to
each other.

The resonances are identified as Lorentz resonances in
magnetic polarizability plotted as a function of Reμz (see
Fig. 2). The metamaterial permeability is assumed to be μ =
diag(1 + 0.1i,1 + 0.1i,Reμz + 0.1i), with variable Reμz. The
finite metamaterial loss lets us locate and characterize the
resonances that couple to a uniform magnetic field by plotting
Imα̃(m)

zz versus Reμz; such a curve features a series of well-
defined absorption bands. The abscissa of each absorption peak
defines the value of Reμz(ω) [and, given the metamaterial
dispersion curve μz(ω), also the frequency] at which the
resonance occurs; the ordinate measures the strength of
coupling of the resonance to the uniform magnetic field. Figure
2 shows the results for the disk-shaped metamaterial body
shown schematically in Fig. 1; its cylindrical symmetry allows
us to speed up the calculations by using the axisymmetric
formulation of the magnetostatics problem in COMSOL
Multiphysics.41

In the range −2 < Reμz < 0, we observe one or two
magnetic-dipole resonances of the disk, which occur at
different values of Reμz depending on the aspect ratio
Hdisk/Rdisk, where Hdisk and Rdisk are the height and radius
of the metamaterial disk, respectively. In the entire range
−∞ < Reμz < 0, there is an infinite series of such resonances

occurring at progressively higher values of −Reμz; however,
only the lowest two resonances are strong enough to have
practical applications. In particular, we do not find strong
resonances associated with the edge of the disk; in general,
sharp corners tend to produce resonances42 with fields confined
around the tip of the corner. In the case of a disk-shaped object,
which has only edges and no sharp corners, such eigenmodes
do not contribute significantly to the quasistatic response.

For the aspect ratio Hdisk/Rdisk = 0.5, the first and the
strongest resonance is obtained at Reμz ≈ −0.5, and the
second resonance — at Reμz ≈ −1.65. The magnetic potential
distributions corresponding to these resonances are shown in
Fig. 3. The implications of these resonances for magnetic force
enhancements are discussed in the next section.

FIG. 3. (Color online) Magnetostatic resonances of a homoge-
neous disk from Fig. 2 and aspect ratio Hdisk/Rdisk = 0.5. Cross
sections show the magnetostatic potential φsc = φ − φ0, calculated
from the Laplace equation with excitation potential φ0 = −z,
corresponding to a uniform magnetic field of unit magnitude in
the z direction. Potential distribution at (a) Reμz = −0.49 and
(b) Reμz = −1.68.
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FIG. 4. (Color online) Magnetic field (| �H |) distribution on the surface of a metamaterial disk with permeability μ = diag(1 + 0.1i,1 +
0.1i,Reμz + 0.1i). Disk aspect ratio Hdisk/Rdisk = 0.5. (a) Reμz = −0.5; (b) Reμz = −1.65.

III. MAGNETIC LEVITATION OF DEEPLY
SUBWAVELENGTH METAMATERIAL OBJECTS

The potential energy of a magnetic body possessing a
permanent magnetic dipole moment �m, a magnetic quadrupole
moment Q(m), and other multipole moments can be written as43

U (�x) = −mjHj − 1

6
Q

(m)
jk

∂Hk

∂xj

− · · · ; (22)

the magnetic field is evaluated at the geometric center of the
body. This multipolar expansion is valid whenever the body is
substantially smaller than the spatial scale of the magnetic field

inhomogeneity linh = | �H |
||∇iHj || . Using the principle of virtual

displacement, one derives the force

Fi = −∂U

∂xi

= mj

∂Hj

∂xi

+ 1

6
Q

(m)
jk

∂Hk

∂xi∂xj

+ · · · . (23)

For bodies much smaller than linh, the first, dipolar term
is typically the dominant contribution both in the potential
energy (22) and in the magnetostatic force (23), and higher
order multipoles can be neglected. Assuming the geometry
shown in Fig. 4, that is, a disk of radius Rdisk over a circular
coil or radius Rcoil, the scale linh is of the order of Rcoil. For
Rdisk ∼ Rcoil, quadrupolar contributions can be noticeable; to
simplify our analysis, we assume Hdisk � Rdisk � Rcoil, which
allows us to focus on the lowest order term in expansion (23),
which is proportional to the magnetic dipole moment.

When the magnetic body has no permanent and only an
induced magnetic moment, one introduces the magnetic dipole
polarizability tensor α

(m)
jk such that mj = α

(m)
jk Hk . For induced

moments, the potential energy expression, (22), needs to be
corrected by an additional factor of 1/2, however, the force
expression, (23), is still correct, and it reads, in terms of the
polarizability tensor,

Fi = α
(m)
jk Hk

∂Hj

∂xi

+ · · · , (24)

where the ellipsis represents higher-order terms that are
small relative to the dominant, dipole term for bodies of

diameter � linh. Although our main interest is in anisotropic
bodies, we should remind the reader that for isotropic bodies
(i.e., belonging to an isometric symmetry class and filled with
isotropic permeability), the magnetic polarizability α

(m)
jk =

α(m)δjk is a spherical tensor; in that case, Eq. (24) simplifies
to the familiar expression �F = 1

2α(m) �∇(H 2). Note that this
force vanishes in a uniform magnetic field, regardless of the
properties of the magnetizable object.

Before we consider magnetic levitation of metamaterial
bodies, let us make a crude estimate of the current in the
coil required to levitate an object of an arbitrary, unoptimized
shape, filled with isotropic, positive permeability. The mag-
netic polarizability of a sphere of volume V and isotropic
relative permeability μr is, according to Eq. (17),

α(m) = μ0V
3(μr − 1)

μr + 2
∼ μ0V, (25)

where in the latter estimate we assume μr > 1. Magnetic
induction on the axis of the coil carrying current I is Bz =
μ0R

2
coilI/(2d3), where d is the distance from the coil center.

Assuming d ∼ Rcoil, we estimate the B-field gradient to be
∼B/Rcoil, which gives the magnetic force density

Fm

V
∼ μ0

I 2

R3
coil

∼ 10−6 N

m3

(
I

1A

)2( 1 m

Rcoil

)3

(26)

in SI units. Dividing this by the gravitational force density
Fg/V = ρg, where g ≈ 10 m/s2, we obtain the figure of merit
for magnetic levitation:

Fm

Fg

∼ 10−4

(
1 g/cm3

ρ

)(
I

1A

)2(1 cm

Rcoil

)3

. (27)

Thus, levitation of an object of density 1 g/cm3 and size
�1 cm using a single-turn coil of radius 1 cm requires a current
of order 100 A, well beyond the practically achievable limits.
It is therefore important to find a way to enhance the magnetic
force by optimizing the properties of the levitating object.

From the previous section we already know that tuning
the permeability of an object to one of its magnetic surface
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resonances results in resonant enhancement of the magnetic
polarizability, and consequently, one expects a similar in-
crease in the magnetic force. In a finite-loss medium, the
enhancement is proportional to the factor 1/Imμeff , which
arises from the denominator of Eq. (25), in which Reμeff is
matched to the resonance condition. Practically, this means
that a resonantly enhanced levitation system needs a smaller
current magnitude—smaller by a large factor, |Imμeff|−1/2—to
achieve the same levitating force that would exist under off-
resonance conditions. Alternatively, with a given, attainable
current magnitude, one could levitate an object heavier
by a large factor, 1/Imμeff . Loss tangents of order 0.1
are attainable32,34 in negative-permeability metamaterials at
10 MHz; thus metamaterials could potentially increase the
magnetic levitation strength by an order of magnitude.

To quantify this phenomenon more robustly, we carry out
full-wave EM simulations based on the FEM solver COMSOL.
We solve the Helmholtz equation for the vector potential �A,
which is linked to the magnetic induction in the usual fashion,
�B = �∇ × �A. Again, we assume a disk-shaped metamaterial
object of radius Rdisk and height Hdisk levitating above a
circular coil of radius Rcoil and wire radius rwire = 0.01Rcoil.
The simulation domain is shown schematically in Fig. 1.
When the disk is situated coaxially with the coil, we can take
advantage of the cylindrical symmetry of the problem and
use the axisymmetric version of the EM solver as provided
in COMSOL Multiphysics.41 The vertical distance between
the geometric center of the coil and the center of the disk is
denoted d.

The coil is driven by a fixed AC current source, which
delivers the current I0 = 250 A at frequency 10 MHz,
corresponding to the free-space wavelength λ0 ≈ 30 m.
The metamaterial disk is modeled as a homogeneous body
with permeability μ = diag(1 + 0.1i,1 + 0.1i,Reμz + 0.1i),

where Reμz can vary. The total force acting in the vertical
direction (along the axis of revolution) is calculated by the
software using surface integration of the Maxwell stress
tensor; more details on this formalism can be found, e.g., in
Refs. 41 and 44. Neglecting the already vanishingly small ratio
Rdisk/λ0, there are three dimensionless parameters describing
this configuration, in addition to the disk permeability: the
disk aspect ratio Hdisk/Rdisk, the disk size relative to the coil
Rdisk/Rcoil, and, finally, the coil-disk distance relative to the
coil size, d/Rcoil.

When the ratio Rdisk/Rcoil is small, the effect of higher
order multipole resonances can be neglected, which simplifies
the picture and allows us to make a clear identification of
the dipolar MSRs. For that reason, we assume Rdisk/Rcoil =
0.2 here. Note that both the magnetic force associated with
dipole polarizability and the gravity force scale linearly with
the volume of levitating body; therefore, choosing to work with
smaller bodies neither improves nor decreases the levitation
figure of merit, (27).

The dependence of the accurately computed cycle-averaged
total EM force on the remaining parameters, d/Rcoil,
Hdisk/Rdisk, and μz, is reported in Fig. 5. First, we choose the
optimum disk position relative to the coil by scanning d/Rcoil.
A well-defined optimum is situated at d = 0.4Rcoil for our
choice of parameters, as shown in Fig. 5(a). The existence
of this optimum is as follows: at sufficiently large distances
from the coil, the magnetic field on the axis falls off as 1/z3;
however, the force is also proportional to the field gradient.
Due to symmetry, the B-field gradient vanishes in the plane of
the coil (at d = 0). Therefore, a location exists in the vicinity
of the coil where |∂(B2)/∂z| has a maximum.

From Fig. 5(a) we observe that, as a function of Reμz,
the force resonance always occurs at a fixed value of Reμz,
regardless of the distance d. This proves that this resonance

FIG. 5. (Color online) Cycle-averaged electromagnetic force in the z direction acting on a metamaterial disk with permeability μ =
diag(1 + 0.1i,1 + 0.1i,Reμz + 0.1i) versus the value of Reμz in the disk. The vertical force Fz is normalized to the gravitational force
Fg = Vdiskρg, where Vdisk = πR2

diskHdisk, assuming ρ = 1 g/cm3 and g = 10 m/s2. Positive force implies repulsion from the coil (lifting
force). The current in the single-turn coil is 250 A; the coil radius Rcoil = 2 cm and the disk radius Rdisk = 0.2Rcoil = 4 mm. (a) Force variation
as a function of the distance d (varied in the range 2–20 mm) between the geometric centers of the disk and the coil, for the disk aspect ratio
Hdisk/Rdisk = 0.5. (b) Force variation as a function of the disk aspect ratio Hdisk/Rdisk = 0.1 − 1, for d = 0.4Rcoil = 8 mm, which corresponds
to the maximum force enhancement in (a).
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is entirely due to the properties of the metamaterial and has
nothing to do with the magnetic-field configuration around it.
In Fig. 5(b), we fix the coil-disk distance d at its optimum value
and study the position of the force resonance as a function of
the disk shape aspect ratio, Hdisk/Rdisk.

Comparing the force resonances shown in Fig. 5(b) to the
resonances of magnetic polarizability (i.e., μeff

z − 1) of the
metamaterial disk in Fig. 2, we observe a striking similarity.
Both figures reveal a Lorentz-shaped resonance, which is
positioned at Reμz = −1 for Hdisk/Rdisk = 1, Reμz = −0.5
for Hdisk/Rdisk = 0.5, and Reμz ≈ 0 for Hdisk/Rdisk � 1. The
resonance positions are in precise agreement between Fig. 5(b)
and Fig. 2. This enables us to identify the strongest force
resonance in Fig. 5(b) with the strongest dipole MSR visible
in Fig. 2; for the aspect ratio Hdisk/Rdisk = 0.5, it is also shown
in Fig. 3(a).

IV. CONCLUSIONS

In conclusion, we have theoretically demonstrated the
possibility of resonant force enhancement in metamaterial
bodies with a negative permeability. Force enhancement is
linked to the MSRs, which are analogous to the localized

SPRs in negative-permittivity particles. Resonances of the
magnetic force are approximately Lorentz shaped as a function
of the magnetic permeability of the metamaterial object. Con-
sequently, the magnetic force induced in negative-μ objects
can be either repulsive or attractive, depending on the object’s
shape and its magnetic permeability. The enhancement factor
with respect to the positive-permeability case is given roughly
by 1/Imμeff , where μeff is evaluated at the resonance condition
Reμeff = μres. With realistic metamaterial loss tangents of 0.1,
this phenomenon could allow magnetic levitation systems to
increase the mass of levitating objects by 1 order of magnitude
while using the same current magnitude.
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