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Spin waves in periodically perturbed films
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1Departamento de Fı́sica, Universidad Técnica Federico Santa Marı́a, Avenida España 1680, 2390123 Valparaı́so, Chile
2Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

(Received 27 November 2011; published 22 February 2012)

We have developed a theory that describes the spin wave response of ferromagnetic films magnetized in
plane whose magnetic properties have been modulated in a periodic manner. The theory is patterned after
Brillouin-Wigner perturbation theory in quantum mechanics. We provide expressions for the response of the film
to applied magnetic fields of frequency � and wave vector �k‖ parallel to the surface. Our response functions form
the basis for a description of the microwave response of such films, and also of Brillouin light scattering from spin
waves if desired. We present a series of calculations that explore effects that may be realized in ferromagnetic
resonance studies of such structures. The theory accounts for striking peaks observed recently in the frequency
variation of the linewidth of periodically modulated ferromagnetic films, and provides insight into their origin.
We also predict new features in the ferromagnetic resonance spectrum of periodically perturbed films.
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I. INTRODUCTION

For over two decades, there has been great interest in the
response characteristics and properties of very small magnetic
structures characterized by submicron-length scales or below.
One encounters new physics in these structures not present
in bulk magnetic matter. Aspects of the magnetic response of
such systems can be controlled or engineered in diverse ways
not possible in macroscopic samples. This may be done by
integrating different materials into a structure, by synthesizing
interacting arrays of particles or islands, and by construction
of samples with tailored geometries.

Recently there has been a focus on the magnetic response
of small-scale periodic structures of diverse sorts, which are
referred to as magnonic crystals. These range from periodically
patterned films to two-dimensional arrays of nanospheres or
disks and one-dimensional arrays of cylinders, to cite some
examples. In such structures, the propagation characteristics
of spin waves may be controlled and manipulated in a manner
familiar from the general concepts of wave propagation in
periodic structures. Gaps open up in the dispersion relation
at the appropriate points in the Brillouin zone, for instance.
An excellent review with emphasis on probing spin waves
in periodic structures by Brillouin light scattering has been
given by Gubbiotti et al.1 This paper also discusses theoretical
methodologies that have been employed in the description
of spin wave propagation in periodic structures. We call
attention to early discussions of the spin wave normal modes
in periodic arrays of ferromagnetic nanospheres2 and also
one-dimensional arrays of ferromagnetic cylinders wherein
the magnetizations of all cylinders are parallel.3 Recently very
interesting experimental and theoretical studies of cylindrical
arrays have appeared that explore lattices of cylinders where
antiparallel alignment of the magnetization is present.4 By now
we have in hand many studies of the nature of spin waves in
diverse samples of periodic character.

This paper is devoted to the theory of the magnetic response
of a thin film of infinite spatial extent whose properties
have been varied periodically, perpendicular to an in-plane
direction. We develop the theory of the response functions
which can be used to describe the ferromagnetic resonance

(FMR) response of the film, or if desired these can be
incorporated into a discussion of the Brillouin light scattering
(BLS) spectrum. While information on the dispersion relation
of spin waves in such a film is embedded in the response
functions (they appear as poles in the frequency plane in
their denominators) these entities also provide us with line
intensities and linewidths of features in the spectrum as
well. Dissipation as described by the Landau-Lifshitz-Gilbert
(LLG) equation is incorporated in the approach. Numerical
calculations are quite straightforward to perform within our
framework. The explicit expressions we obtain here for the
response functions are based on a scheme equivalent to the
Brillouin-Wigner perturbation theory of quantum mechanics.
We use our response functions to carry out a set of theoretical
studies of the FMR spectrum of an in-plane magnetized film
upon whose surface a periodic array of ridges is present.

We remark that our study is motivated by experimental
results presented recently by Barsukov and collaborators.5

These authors study the dependence of the FMR linewidth
of such a periodically modulated film on frequency, to find
sharp peaks at a set of discrete frequencies. While much of
the literature on spin waves in periodic structures has been
directed toward the very interesting “magnonic bands”, the
data in Ref. 5 show that sharp structures in the spin damping
rate may be engineered into magnetic thin films through
imposition of periodic modulations of their properties. This
may be very useful for applications in which one may wish to
introduce large changes in the spin damping rate through small
modulation in either frequency or magnetic field. Our theory
provides an account of these structures, and thus provides
an understanding of the physics responsible for the peaks.
We shall see that in such periodically modulated films, the
response falls into two categories we may describe as weak-
and strong-coupling limits. The samples explored in Ref. 5 fall
into the weak-coupling regime, by our classification.

We remark that some years ago, a theoretical description
of two-magnon damping in thin ferromagnets was developed
for in-plane magnetized films.6 This was later extended to
the case where the magnetization is tipped out of plane.7,8

While the focus in these papers is on two-magnon damping
and also two-magnon induced frequency shifts in the FMR
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response, the presentations contain a description of a general
formalism that may be used to describe the interaction of spin
waves with static defects of diverse character. The application
to two-magnon scattering by random defects is just one use of
the formalism. In the present paper, this formalism is applied to
a film with periodic perturbations rather than those of random
character.

The organization of this paper is as follows. In Sec. II,
we present the formalism we employ and in Sec. III we
present a series of numerical calculations directed toward the
ferromagnetic response of in-plane magnetized films whose
surface is modulated in a stripelike fashion. Concluding
comments are found in Sec. IV.

II. THEORY

A. Formalism

In this section we develop the theoretical structure discussed
in Sec. I. We shall consider a ferromagnetic film sufficiently
thin that we may ignore the variation of all quantities in the
direction normal to the surfaces of the film. The magnetization
will be assumed parallel to the z axis, which lies in plane, and
the y axis is normal to the surfaces.

We assume that the film is exposed to an external,
time-dependent magnetic field hβ(�r‖; t) = hβ(�k′

‖) exp[i�k′
‖ · �r‖ −

i�t]. The subscript ‖ refers to wave vectors in the plane
of the film. Of interest is the expectation value of the
time-dependent, transverse component of the magnetization
operator

〈
mα(�r‖; t)

〉
induced by such an external field. In

general this will have the form, in the linear response regime,〈
mα(�r‖; t)

〉 = (1/
√

L2d)
∑

�k‖〈mα(�k‖)〉 exp[i�k‖ · �r‖ − i�t] for a
film of nominal thickness d that covers a plane of area
A = L2. The response functions of interest to us, denoted by
Sαβ(�k‖, �k′

‖; �), link the expectation value just described to the
amplitude of the external driving field:

〈mα(�k‖)〉 =
∑

β

Sαβ(�k‖, �k′
‖; �)hβ(�k′

‖). (1)

For a film with perfectly flat surfaces and no interior defects,
we have Sαβ(�k‖, �k′

‖; �) = δ�k‖, �k′
‖
S̃0

αβ(�k‖; �), where6

S̃0
xx(�k‖; �) = γ 2MSH̃y(�k‖)

�̃2(�k‖) − �2
, (2a)

S̃0
yy(�k‖; �) = γ 2MSH̃x(�k‖)

�̃2(�k‖) − �2
, (2b)

S̃0
xy(�k‖; �) = − iγMS�

�̃2(�k‖) − �2
, (2c)

S̃0
yx(�k‖; �) = −S̃0

xy(�k‖; �). (2d)

Here γ is the gyromagnetic ratio and MS the saturation
magnetization, H̃x,y(�k‖) = Hx,y(�k‖) − iα�/γ , where Hx(�k‖)
and Hy(�k‖) are given in Eqs. (15) and (16) of Ref. 6 for films
whose thickness is small compared to the wavelength of the
spin waves of interest, and α = G/γMS where G is the Gilbert
damping constant. The quantity α is the standardly defined
dimensionless damping constant which enters the Landau-
Lifschitz-Gilbert equation. This quantity was denoted by g in

Ref. 6. Finally �̃(�k‖) = γ [H̃x(�k‖)H̃y(�k‖)]1/2. The expressions
above incorporate the dynamic dipolar fields generated by spin
motions of wave vector �k‖ in the film, as well as the influence
of exchange as described macroscopically by introducing the
exchange stiffness D = 2A/MS .

The discussion above describes the response of the film to
an external magnetic field that varies in time and space. It is
the case that a description of BLS may be expressed in terms
of response functions such as those just introduced. In the
initial theoretical discussions of BLS from magnetic surfaces9

and from Damon-Eshbach modes and standing spin waves
in films,10 such a treatment was introduced and employed to
obtain quantitative accounts of early spectra. A virtue of this
approach is that, as one sees from these papers, the intensity,
frequency, and linewidths of the features in the spectra are
provided by the theory. While these early papers were directed
toward samples with smooth surfaces, if desired the method
used in Refs. 9 and 10 is readily adapted to samples with
magnetic properties that are modulated in various ways. The
response functions described in this paper may be used for
this purpose, though as discussed in Sec. I our attention in the
present paper is devoted to the FMR response of periodically
perturbed films. Because of the possible interest in other
applications of the formalism, we present a general discussion
and then specialize to the case of FMR absorption.

If defects are present, either in the bulk or on the surfaces,
then the response functions Sαβ(�k‖, �k′

‖; �) will be nonzero

when �k‖ �= �k′
‖. If the perturbation is one-dimensionally periodic

in real space, say in the form of stripes of some sort with
period a0, then the elements of the response function that are
nonzero have �k′

‖ = �k‖ + �gm, where �gm = mg0n̂ with n̂ a unit
vector directed perpendicular to the stripes, g0 = 2π/a0 is the
reciprocal lattice vector, and m = 0,±1,±2, . . ..

The presence of static defects may be described, quite
generally, by introducing a perturbation into the Hamiltonian
of the form6

V =
∑
�k‖, �k′

‖

{
1

2
m†

x(�k′
‖)Vxx(�k′

‖,
�k‖)mx(�k‖)+m†

x(�k′
‖)Vxy(�k′

‖,
�k‖)my(�k‖)

+ 1

2
m†

y(�k′
‖)Vyy(�k′

‖,
�k‖)my(�k‖)

}
. (3)

A discussion of the structure of the matrix elements in
Eq. (3) for perturbations on the surface or interface of various
sorts can be found in Ref. 6. In the present paper, we shall
consider a film upon which stripes are present on the surface.
The nature of the matrix elements for this case will be discussed
below, with a low-anisotropy material such as Permalloy in
mind. For any periodic structure such as that just described, the
nonzero matrix elements of Vαβ(�k′

‖,
�k‖) are those for which �k′

‖ =
�k‖ + �gm, very much as in the response functions themselves.

We shall proceed for the moment through use of the
general form of the perturbation as given in Eq. (3). The
response functions Sαβ(�k‖, �k′

‖; �) may be described as the
Fourier transform with respect to time of a Kubo response
function formed from the operators {mx(�k‖)}. These operators
are time dependent, in the Heisenberg representation. The
explicit form of the Kubo formulas are given in Eq. (27) of
Ref. 6. One proceeds by generating the equations of motion
for these objects, as discussed earlier.6 For this one needs
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to supplement Eq. (3) by the Hamiltonian of the perfect,
unperturbed film:

E0 = 1

2MS

∑
�k‖

{Hx(�k‖)m
†
x(�k‖)mx(�k‖)

+Hy(�k‖)m
†
y(�k‖)my(�k‖)}. (4)

After the equations of motion are generated, damping is added
in a phenomenological manner, using the LLG equation as
a guide. After some algebra, which uses constraints on the
matrix elements in Eq. (3) from the requirement that this form
must be Hermitian, one may arrange the equations of motion
to become integral equations in wave vector space. These read

Sxx(�k‖, �k′
‖; �) = S̃0

xx(�k‖; �)δ�k‖, �k′
‖

−
∑

α=x,y

∑
�k′′
‖

S̃0
xα(�k‖; �)V ∗

xα(�k′′
‖ ,

�k‖)Sxx(�k′′
‖ ,

�k′
‖; �)

−
∑

α=x,y

∑
�k′′
‖

S̃0
xα(�k‖; �)Vαy(�k‖, �k′′

‖ )Syx(�k′′
‖ ,

�k′
‖; �),

(5a)

Syx(�k‖, �k′
‖; �) = S̃0

yx(�k‖; �)δ�k‖, �k′
‖

−
∑

α=x,y

∑
�k′′
‖

S̃0
yα(�k‖; �)V ∗

xα(�k′′
‖ ,

�k‖)Sxx(�k′′
‖ ,

�k′
‖; �)

−
∑

α=x,y

∑
�k′′
‖

S̃0
yα(�k‖; �)Vαy(�k‖, �k′′

‖ )Syx(�k′′
‖ ,

�k′
‖; �).

(5b)

A similar set of equations has been derived for the response
functions Sxy and Syy , and can be found in the Appendix. The
four equations that describe our four sets of response functions
break down into a set of two equations in which Sxx and Syx

are coupled, and into a set of two in which Sxy and Syy are
coupled. In what follows, we focus on the first set.

For reasons that will be clear shortly, we wish to iterate
Eq. (5a) and Eq. (5b) so that the terms on the right-hand
side are second order in the perturbation matrix elements
Vαβ (�k‖, �k′

‖). We assume as we do this that the diagonal elements

in the wave vector, Vαβ(�k‖, �k‖), are zero. If, for some choice
of a defect structure one wishes to analyze the diagonal
matrix elements are nonzero, they can be adsorbed into the
unperturbed Hamiltonian E0 and the discussion is then phrased
in terms of spin waves renormalized by the diagonal terms.
Notice that the diagonal elements of Vxx and Vyy can be
absorbed by simply incorporating them into the fields Hx,y(�k‖).
A nonzero value for Vxy(�k‖, �k‖) will, after inclusion into E0,
alter the ellipticity of the zero-order modes slightly. One may
diagonalize the Hamiltonian if this term is present and rewrite
the theory in terms of the new amplitudes. For the example
explored here, Vxy(�k‖, �k′

‖) vanishes identically so this issue
does not arise.

When Eq. (5a) and Eq. (5b) are iterated as just discussed,
one finds

Sxx(�k‖, �k′
‖; �) = S̃0

xx(�k‖; �)δ�k‖, �k′
‖
+

∑
α,β=x,y

∑
�k′′
‖

S̃0
xα(�k‖; �)

×�αβ(�k‖, �k′′
‖ ; �)Sβx(�k′′

‖ ,
�k′
‖; �), (6a)

Syx(�k‖, �k′
‖; �) = S̃0

yx(�k‖; �)δ�k‖, �k′
‖
+

∑
α,β=x,y

∑
�k′′
‖

S̃0
yα(�k‖; �)

×�αβ(�k‖, �k′′
‖ ; �)Sβx(�k′′

‖ ,
�k′
‖; �), (6b)

where

�αx(�k‖, �k′
‖; �) =

∑
β=x,y

∑
�k′′
‖

[
V ∗

xα(�k′′
‖ ,

�k‖)S̃
0
xβ(�k′′

‖ ; �)

+Vαy(�k‖, �k′′
‖ )S̃0

yβ (�k′′
‖ ; �)

]
V ∗

xβ (�k′
‖,

�k′′
‖ ), (7a)

�αy(�k‖, �k′
‖; �) =

∑
β=x,y

∑
�k′′
‖

[
V ∗

xα(�k′′
‖ ,

�k‖)S̃
0
xβ(�k′′

‖ ; �)

+Vαy(�k‖, �k′′
‖ )S̃0

yβ (�k′′
‖ ; �)

]
Vβy(�k′′

‖ ,
�k′
‖). (7b)

We comment on the structure of Eqs. (6) and Eqs. (7).
First, in the language of many-body theory, the set of objects
S̃0

αβ are the Green’s functions for spin waves in the perfect,
unperturbed film. These have matrix form, by virtue of the
elliptical character of spin wave precession in the thin film.
Then the four functions Sαβ are the Green’s functions for
the spin waves of the disordered film. They are nondiagonal
in wave vector �k‖ because in the presence of disorder, the
wave vector is no longer a “good quantum number”; the
normal modes no longer are simple plane waves. Equations (6)
and (7) are, for the general class of problems described by
our formalism, the spin wave equivalent of the well-known
Dyson equation of many-body physics. The matrix �αβ is the
proper self-energy of the spin waves, and this matrix contains
information on both disorder-induced frequency shifts of the
modes and their lifetimes. As noted above, this formalism was
employed earlier to describe the two-magnon contribution to
the FMR linewidth and also the frequency shift of the FMR
mode from two-magnon coupling.6,7 For these discussions,
the disorder responsible for the two-magnon interactions had
a random character.

In the present paper, we are interested in applying the
formalism to describe the interaction of spin waves with a
periodic defect structure of one-dimensional character. Then
for a given choice of �k‖, the only nonzero matrix elements of
Sαβ(�k‖, �k′

‖; �) are those with �k′
‖ = �k‖ + �gm where, if a0 is the

length of the unit cell of the structure (see Fig. 1), g0 = 2π/a0

and n̂ is a unit vector in the direction of the periodicity.
For the one-dimensional periodic structure just described,

for a given choice of �k′
‖, Eqs. (6) reduce to two coupled equa-

tions for the set of propagators S
(m)
αβ (�k‖, �k′

‖; �) = Sαβ(�k‖, �k‖ +
�gm; �). For any desired picture of the perturbation, one can
develop a description of the nonzero matrix elements in Eq. (3)
and proceed to solve Eqs. (6) numerically by an appropriate
truncation of the set of equations and then using a matrix
inversion.

If the periodic perturbation is modest in strength, then from
Eqs. (6) one may develop a spin wave analog of the Brillouin-
Wigner perturbation theory of quantum mechanics. We shall
proceed in this manner. We will then be able to obtain simple
analytical expressions for the response functions that provide
insight into the influence of the periodic perturbation. These
forms are easily employed to do explicit calculations.
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Consider Eq. (6a) for the diagonal component of the
propagator Sxx(�k‖, �k‖; �) and write this in the form

Sxx(�k‖, �k‖; �)

= S̃0
xx(�k‖; �) +

∑
α,β=x,y

S̃0
xα(�k‖; �)�αβ(�k‖, �k‖; �)Sβx(�k‖, �k‖; �)

+
∑

α,β=x,y

∑
m�=0

S̃0
xα(�k‖; �)�αβ(�k‖, �k‖ + �gm; �)

× Sβx(�k‖ + �gm, �k‖; �). (8)

The off-diagonal element in wave vector of Sβx in the third
term on the right side of Eq. (8) is nonzero only by virtue of
the perturbation. In a perturbation theoretic expansion, each
contribution in each order of iteration is always one order
higher than the contribution from the second term on the right-
hand side of Eq. (8). We thus set the third term on the right-hand
side of Eq. (8) aside, and we proceed in a similar manner in our
treatment of Eq. (6b). This procedure is equivalent to summing
“dominant diagrams” in various other forms of self-consistent
perturbation theory. When we do this, we then have a set of two
simple algebraic equations for Sxx(�k‖, �k‖; �) and Syx(�k‖, �k‖; �).
These have the form

Sxx(�k‖, �k‖; �) = S̃0
xx(�k‖; �) +

∑
α,β=x,y

S̃0
xα(�k‖; �)

×�αβ(�k‖, �k‖; �)Sβx(�k‖, �k‖; �), (9a)

Syx(�k‖, �k‖; �) = S̃0
yx(�k‖; �) +

∑
α,β=x,y

S̃0
yα(�k‖; �)

×�αβ(�k‖, �k‖; �)Sβx(�k‖, �k‖; �). (9b)

If the off-diagonal matrix elements in the wave vector of
the response functions are desired, then one can proceed by
inserting the solution of Eqs. (9) into the right-hand side of
Eqs. (5). We then have

Sxx(�k‖ + �gm, �k‖; �)

= −
∑

α=x,y

S̃0
xα(�k‖ + �gm; �)V ∗

xα(�k‖, �k‖ + �gm)Sxx(�k‖, �k‖; �)

−
∑

α=x,y

S̃0
xα(�k‖ + �gm; �)Vαy(�k‖ + �gm, �k‖)Syx(�k‖, �k‖; �),

(10a)

Syx(�k‖ + �gm, �k‖; �)

= −
∑

α=x,y

S̃0
yα(�k‖ + �gm; �)Vxα(�k‖ + �gm, �k‖)Sxx(�k‖, �k‖; �)

−
∑

α=x,y

S̃0
yα(�k‖ + �gm; �)Vαy(�k‖ + �gm, �k‖)Syx(�k‖, �k‖; �).

(10b)

On the right-hand side of Eqs. (10), one is to insert the
expressions for Sαx(�k‖, �k‖; �) that emerge from the solution of
the two algebraic equations stated in Eqs. (5).

If the film is exposed to radiation polarized parallel to the x

axis, which lies in the plane perpendicular to the magnetization
(see Fig. 1), then the energy absorption rate is proportional to
�Im{Sxx}. In what follows, we shall focus our attention on

Sxx(�k‖, �k‖; �). The solutions of Eqs. (9) have the form, with
reference to wave vector and frequency suppressed,

Sxx =
{

S̃0
xx

(
1 −

∑
α

S̃0
yα�αy

)
+ S̃0

yx

(∑
α

S̃0
xα�αy

)}/

×
{ (

1 −
∑

α

S̃0
xα�αx

) (
1 −

∑
α

S̃0
yα�αy

)

−
(∑

α

S̃0
xα�αy

)(∑
α

S̃0
yα�αx

)}
. (11)

In the limit of weak perturbations, one may ignore the
corrections to the numerator with origin in the perturbation
matrix elements, and in the denominator one may retain only
terms that are quadratic in the matrix elements. This leaves us
with the simple form

Sxx ≈ S̃0
xx

1 − ∑
α,β S̃0

αβ�βα

. (12)

This concludes our discussion of the formalism. The numerical
calculations we present below will be based on the use of
Eq. (12). To proceed further, one needs a specific picture of
the periodic defect structure along with the interactions that
dominate the matrix elements that enter Eq. (3).

B. Matrix elements for a model film

We wish to present a series of numerical studies we have
carried out based on Eq. (12). To proceed, we require a par-
ticular model of the nature of the periodic defects. Of interest
to us are recent experiments by Barsukov and colleagues,5

who have explored the FMR response of Permalloy films in
which the magnetization in a thin layer on the outer surface
is modulated periodically. The samples were fabricated by
a lithographic procedure in which Cr was injected into the
Permalloy film in such a way as to modulate the magnetization
of the film in a stripelike manner near one surface. It is difficult
to model such samples in a fully quantitative way, since the
magnetization within the Cr-doped regions and its profile in
both the direction normal to the surface and that parallel to
it are not well known. Also there are other issues, such as
the influence on the Permalloy of the residual Cr layer that
remains after the sample preparation process is complete.
Thus, we shall proceed to explore the structure illustrated in
Fig. 1, wherein stripes are present on the surface of a film. The
material in the stripes is the same as that in the main body of the
film, in our picture. It is possible to find explicit expressions for
the matrix elements in Eq. (3) from this model, as we shall see
below. The principal features in the FMR spectrum produced
by such a model system can be expected to be quite appropriate
to the samples utilized in Ref. 5, though a fully quantitative
account of the data would require more information on the
magnetization profile in the perturbed regions of the actual
samples.

We note that in an earlier theoretical study, detailed
calculations were presented of the spatial variation of the
magnetization in a film whose surfaces were modulated in
a stepwise fashion.11 We use the results of this paper to
describe the stray dipole fields generated from the array of
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x 

FIG. 1. (Color online) The model film explored in the present
paper. The z′ axis is perpendicular to the steps on the surface, and
the magnetization is parallel to the z axis and makes an angle 	

with respect to the steps. The dimensions of the various structures are
illustrated, and for reasons discussed in the text the magnetization is
assumed spatially uniform everywhere.

stripes illustrated in Fig. 1. In a low-anisotropy material such
as Permalloy, such stray fields will be responsible for the
perturbation term in Eq. (3). The presence of the steps will also
induce anisotropy which will want to orient the magnetization
parallel to the stripes, as also discussed in Ref. 11. However,
in the experiments of interest to us, the applied Zeeman field
is large compared to this anisotropy field and we ignore its
influence in the interests of simplicity. It is our understanding
that the step-induced anisotropy field is not evident in its effect
in the experiments.5

The interaction between the magnetization and the stray
dipolar fields has the form

V = −1

2

∫
d3rH step

z (�r)Mz(�r)

−1

2

∫
d3r

{
H step

x (�r)mx(�r) + H step
y (�r)my(�r)

}
, (13)

where �H step(�r) is the static field generated by the magnetic
poles on the step faces and also by modulation of the
magnetization in the film by the steps. We shall see that the
latter effect is very important. The last two terms in Eq. (13)
are linear in the transverse magnetization. It is these terms
that lead to canting of the magnetization away from the
spatially uniform magnetization characteristic of the perfect
film, as discussed in Ref. 11. These terms are incorporated
into the description of the modulation of the magnetization
direction in the ground state and do not play a role here.
The term of interest presently is the first term, and with
Mz(�r) 
 MS − (1/2MS){m2

x(�r) + m2
y(�r)} we have

V = 1

4MS

∫
d3rH step

z (�r)
{
m2

x(�r) + m2
y(�r)

}
. (14)

From Eq. (14), it is evident that in Eq. (3), Vxy = 0 and Vxx =
Vyy for this picture. The stray field �H step(�r) may be written as
−�∇


step
M (�r), where 


step
M (�r) is a magnetic potential.

Here we will confine our attention to the case where the
magnetization is perpendicular to the stripes, so that the
angle 	 in Fig. 1 vanishes. In the limit the film is thick
compared to the exchange length, the magnetic potential is
well approximated by the form appropriate to a semi-infinite
medium with stripes such as those illustrated in Fig. 1 on its
surface. The magnetic potential can, in this limit, be described
by the elementary form in Eq. (45) of Ref. 11. For this purpose,
we need to describe ξ>(z), the height of the actual surface

above the nominal film surface in a Fourier series. For the
geometry in Fig. 1 we have

ξ>(z) = πh

∞∑
m=−∞

sin[mπw/a0]

m
eimg0z. (15)

It is assumed that the origin of the coordinate system lies at
the center of a stripe. Then for the z component of the stray
field, one finds within the film where y < d12

H step
z (y,z) = −4MSg0h

∞∑
m=1

sin

[
mπw

a0

]
cos[mg0z]λ(mg0)

×{b0(mg0)e−α0(mg0)|d−y|

−bx(mg0)e−αx (mg0)|d−y|}. (16)

On the right-hand side of Eq. (16), λ(Q) =
2α0(Q)αx(Q)/{[αx(Q) − α0(Q)][αx(Q) + α0(Q) − |Q|]},
b0,x(Q) = [αx,0(Q) − |Q|][α0,x(Q) + |Q|], and finally, in the
notation used in the present paper,

α 0
x

(Q) =
√√√√Q2 + B0

2D

[
1 ∓

√
1 + 16πMS

B2
0

DQ2

]
. (17)

An interesting limit to consider is the limit in which the
exchange stiffness D → ∞. One finds that α0(Q) → Q −
(πMS/D)1/2 + · · · and αx(Q) → Q + (πMS/D)1/2 + · · · in
this limit. Thus b0(Q)e−α0(Q)|d−y| − bx(Q)e−αx (Q)|d−y| →
{[αx(Q) − α0(0)]/2Q}e−mg0|d−y| so that as D → ∞ one finds

H step
z (y,z) → H∞

z (y,z) = −4MSg0h

×
∞∑

m=1

sin

[
mπw

a0

]
cos[mg0z]e−mg0|d−y| . (18)

The expression in Eq. (18) is the stray field one would calculate
on the basis of a picture in which the magnetization in
the sample is spatially uniform everywhere, with direction
unaffected by the presence of the steps. The field is then
produced by an effective magnetic charge per unit area of
magnitude MS on the faces of the steps which alternates in
sign as one moves down the line perpendicular to the steps.

We are in a very different limit than that of large D, for
samples such as those studied in Ref. 5. To illustrate this,
we consider a special limit of Eq. (16). The length scale in a
material with zero anisotropy is set by the width of a Neel wall,
which is LN = (D/8πMS)1/2. In wave vector space, the scale
is thus set by QN = 2π/LN = 4π (2πMS/D)1/2 ∼ 107 cm−1.
The domain wall thickness is roughly 100 Å, or 10 nm in
Permalloy. Suppose we are interested in length scales long
compared to LN and consequently wave vectors Q = mg0

that are small compared to QN . For parameters of interest
to us, one finds αx ≈ 50α0, so the second term on the right-
hand side of Eq. (16) can be neglected. Also in this limit,
α0(Q) ≈ Q(H0/B0)1/2 is sufficiently small that the stray field
is spatially uniform across the film, as is its high-field form in
Eq. (18). When limiting forms of the various quantities that
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enter Eq. (16) are introduced, we find that for the spatial Fourier
components of interest to us, to very good approximation we
may write

H step
z (y, z) ≈ rH∞

z (y, z), (19)

where r = 2H
1/2
0 [B1/2

0 + H
1/2
0 ].

We see from Eq. (19) that for low applied magnetic
fields the Fourier components of the stray fields are reduced
greatly in strength, for small wave vectors by step-induced
modulations of the ground-state magnetization. The “rigid
magnetization” picture very substantially overestimates the
Fourier components of the stray fields of interest to the present
discussion. As the applied field increases, when H0 becomes
much larger than 4πMS the Fourier components of the stray
field evolve into the rigid magnetization result. The behavior
of the Fourier components of the stray field with Q � QN is
controlled only by dipolar interactions and exchange does not
enter their description.

From Eq. (16) it is straightforward to calculate the matrix
element Vxx . One finds

Vxx(�k′
‖,

�k‖) = −g0h

∞∑
m=1

sin

[
mπw

a0

]
λ(mg0)η(mg0)

× {
δ�k′

‖,
�k‖+�gm

+ δ�k′
‖,

�k‖−�gm

}
, (20)

where λ(Q) is defined below Eq. (16) and η(Q) is given by

η(Q) = b0(Q)
1 − e−α0(Q)d

α0(Q)d
− bx(Q)

1 − e−αx (Q)d

αx(Q)d
. (21)

Recall that Vxx = Vyy and Vxy = 0.

C. Film response in ferromagnetic resonance

In what follows, our interest will center on the function
Sxx(�k′

‖,
�k‖; �) evaluated for the case where �k‖ = �k′

‖ = 0. This
describes the component of the total dynamic moment parallel
to the surface induced by a spatially uniform microwave field
polarized parallel to the surface. The imaginary part of this
function describes the FMR absorption spectrum of the film.
In what follows, we shall refer to this function as S̄xx(�).
Equation (12) in combination with the matrix element given
in Eq. (20) leads to

S̄xx(�) = γ 2MSH̃y(0)

�̃2
FMR − �2 − �(�)

, (22)

where �̃2
FMR = γ 2H̃x(0)H̃y(0) and

�(�) = 2g2
0h

2(γMS)2
[
γ 2

{
H̃ 2

x (0) + H̃ 2
y (0)

} + 2�2
]

×
∞∑

m=1

{sin[mπw/a0]λ(mg0)η(mg0)}2

�̃(mg0ẑ)2 − �2
. (23)

The intrinsic damping, as described by the factor iα� in
the quantities H̃x,y(�k‖) = Hx,y(�k‖) − iα�/γ , is small, so we
can simplify the form in Eq. (23) by retaining the influence
of this term to lowest order. If we then introduce �(�k‖) =
α�γ [Hx(�k‖) + Hy(�k‖)] we have for the real part S̄R

xx(�) and

the imaginary part S̄I
xx(�) of the response functions forms that

may be written

S̄R
xx = γ 2MSHy(0)

{
�2

FMR − �2 − �R
}

{
�2

FMR − �2 − �R
}2 + {�(0) + �I }2

, (24a)

S̄I
xx = γMS

γHy(0){�(0) + �I } − α�
{
�2

FMR − �2 − �R
}

{
�2

FMR − �2 − �R
}2 + {�(0) + �I }2

.

(24b)

The function �I = �I (�), which corresponds to the imaginary
part of Eq. (23), contains information on the frequency-
dependent contribution to the FMR linewidth from the pres-
ence of the surface steps. In Sec. III we shall see that this
function introduces dramatic structure into the linewidth when
the steps are present, when for a range of frequencies, the field
is swept in an experiment. The explicit form of this function
is

�I = 2g2
0h

2(γMS)2
∞∑

m=1

{sin[mπw/a0]λ(mg0)η(mg0)}2

{�(mg0ẑ)2 − �2}2 + �(mg0ẑ)2

×{[γ 2(Hx(0)2 + Hy(0)2) + 2�2]�(mg0ẑ)

− 2[�(mg0ẑ)2 − �2]�(0)}, (25)

while the real part of Eq. (23), �R = �R(�) which contain
information about the step-induced frequency shift of the
resonance, is given by

�R = 2g2
0h

2(γMS)2
∞∑

m=1

{sin[mπw/a0]λ(mg0)η(mg0)}2

{�(mg0ẑ)2 − �2}2 + �(mg0ẑ)2

×{[γ 2(Hx(0)2 + Hy(0)2) + 2�2][�(mg0ẑ)2 − �2]

+ 2�(0)�(mg0ẑ)}. (26)

It can be shown that for the samples of interest to us,5 the
frequency shift is negligible. Finally, the FMR linewidth in
an experiment where field is swept at fixed frequency, in the
presence of the surface steps with magnetization in plane, is
given by

�BFMR = �(0) + �I (�FMR)

γ 2[Hx(0) + Hy(0)]
. (27)

We now turn out attention to numerical calculations based on
the expressions displayed in this section.

III. STUDIES OF THE INFLUENCE OF STRIPES ON
THE FMR RESPONSE OF THIN FILMS

In this section, we present a series of numerical studies
that elucidate the influence of the stripes illustrated in Fig. 1
on the FMR response of a thin Permalloy film. We choose
parameters with the samples explored in Ref. 5 in mind.
For 4πMS , appropriate to Permalloy, we use 10 000 G, the
gyromagnetic ratio is 2.95 GHz/kG, the exchange stiffness
D = 1.85 × 105 G×nm2, and the film thickness d is taken
to be 30 nm.5 From the linewidth data, a value for the
LLG damping parameter α = 0.01 seems appropriate. The
periodicity length a0 is 250 nm, and the width w in Fig. 1
will be discussed below. For simplicity, in all the numerical
calculations the angle between the magnetization and the
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FIG. 2. (Color online) In (a) we show the dispersion relation of
spin waves in the perfect film, for a range of applied magnetic fields.
The direction of propagation is parallel to the magnetization, and
perpendicular to the stripes on the surface of the perturbed film. The
vertical dashed lines are Brillouin zone boundaries for the film with
stripes. (b) For selected values of the applied magnetic field we have
modes with wave vector mg0, with m an integer, that are degenerate
with the zero wave vector FMR mode. For three choices of applied
field, we illustrate the dispersion relation when such a degeneracy
occurs.

perpendicular to the stripes is set to 	 = 0, since our main
findings [see Eqs. (23), (25), and (26)] will be proportional
to [cos(	)]4, which means that the features we observe in the
linewidth vanish if the magnetization is parallel to the stripes
(	 = π/2), and the effect has its maximum strength in the
case 	 = 0, as we consider here and as was observed in the
experiment of Barsukov and colleagues.5

In Fig. 2(a), we show the spin wave dispersion relation in the
extended Brillouin zone, for the perfect, unperturbed film for
several applied fields. The direction of propagation is parallel
to the magnetization, where the dipolar interaction between
the spins leads initially to a negative slope in the dispersion
relation save for very small applied fields. With increasing
wave vector, exchange dominates the dipolar contribution to
produce the well-known minimum in the dispersion relation.
In the figure we show the position of the Brillouin zone
boundaries of interest to our discussion. For special choices of
the applied magnetic field, we have spin waves at wave vectors
mg0 that are degenerate with the FMR mode. We illustrate the
dispersion curve for three such choices of field in Fig. 2(b).
The periodic perturbation couples the FMR mode to these
finite wave vector modes in a resonant manner at these special
values of the applied magnetic field. This coupling will be
responsible for effects in the FMR spectrum discussed below.

In Fig. 3, we show calculations of the frequency dependence
of the field linewidth, from Eq. (27). The dotted and full
curves are both calculations with the choice h = 2 nm. We see
prominent structures near 5 GHz and a bit below 12 GHz in
both the dotted and full curves. Two features in the linewidth
data discussed in Ref. 5 for the sample with a0 = 250 nm
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FIG. 3. (Color online) The frequency dependence of the FMR
linewidth, as described by Eq. (27). The dot-dashed line is the
linewidth for the perfect film. The dotted and full curves are calculated
for h = 2 nm, while the dashed curve is calculated for h = 1 nm. For
the full and dashed curves, we have w = 125 nm, while w = 137 nm
for the dotted curve.

are quite close to these frequencies. The dashed curve is a
calculation with h = 1 nm. We again see two structures at
these frequencies, but now the height of the attenuation peaks
is much smaller than realized when h = 2 nm. It is clear that
the origin of these two prominent peaks lies in the degeneracies
illustrated in Fig. 2(b). The periodic potential couples the zero
wave vector FMR mode to the degenerate spin waves at the
wave vectors g0 and 3g0, respectively. Thus, when the FMR
mode is excited, energy is transferred to these two modes, and
there is highly efficient resonant transfer when the degeneracy
condition is satisfied. This provides a new relaxation channel;
the energy transferred to the degenerate mode is dissipated by
virtue of the damping present in the LLG equation. The full
and dashed curves show no feature near 8 GHz, where one
realizes degeneracy with the spin wave mode with the wave
vector 2g0. The reason for this is that the ratio w/a0 = 1/2 in
this calculation, so the argument of the factor of sin[mπw/a0]
in Eq. (23) vanishes. Thus the matrix element that couples the
FMR mode to the 2g0 spin wave vanishes for this choice of
w and there is thus no linewidth peak near 8 GHz. The ratio
w/a0 is very close to 1/2 in the sample,13 so this attenuation
peak is not seen in the data. The dotted curve is calculated for
w = 137 nm, and we see a modest peak near 8 GHz.

It is difficult for our theory to make quantitative connection
with the data in Ref. 5, since the character of the samples used
is complex. While the Cr ions penetrate as deeply as 7 nm, a
depth far larger than the step heights used in Fig. 3, it is the case
as well that the average magnetization in the Cr-doped regions
is estimated to be lower than that of the undoped regions by
only about 20%,13 whereas in our model the contrast between
the magnetization in the steps and the open areas between
the steps is 100%. We also suggest that the variation of the
Cr concentration along the x direction in our Fig. 1 is not a
simple sharp step in the samples as assumed in our model. In
the data on the sample with a0 = 250 nm, the height of the
peak near 12 GHz relative to the background is quite similar
to that displayed in the dotted and full curves in our Fig. 3, but
the experimental peak near 5 GHz is more modest in height
than that in theory. The ratio of these two peak heights is
clearly controlled by the ratio R = [Vxx(g0,0)/Vxx(3g0,0)]2,
and our model with its sharp discontinuity in magnetization,
independent of z, overestimates this ratio by perhaps a factor
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of two to judge from the size of the low-frequency peak in the
blue curve. Without a great deal of information on the spatial
distribution of the implanted Cr ions in the samples used in
Ref. 5, it is difficult to make a fully quantitative comparison
with the data.

As remarked above, the absorption rate is proportional to
Im{Sxx(�)}. A plot of this function gives information on the
line shape, whereas the expression in Eq. (27) is a measure
only of the full width at half maximum. In Fig. 4(a), we show
a plot of the profile of the absorption peak for the feature just
below 12 GHz, for four choices of h and with w = 137 nm.
What we see is that the “skirts” of the absorption line removed
in frequency from the peak are not affected greatly by the
resonant coupling to the 3g0 mode, but the maximum is
depressed. The dependence of the full width at half maximum
(FWHM) on h is close to the same as that given in Fig. 3 for the
resonant magnetic field, but the line shape has changed. The
factor of �I (�) in Eq. (24b) is strongly frequency dependent
as one sweeps through the resonance line, as one sees from
Eq. (25). The line shape is thus distorted, with the absorption
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FIG. 4. (Color online) We show plots of the function Im{Sxx(�)},
which is the absorption line profile, for three cases. In all figures we
have w = 137 nm, and four values of the step height h are employed:
h = 0 (solid curve), h = 1 nm (dotted curve), h = 1.5 nm (dashed
curve), and h = 2 nm (dot-dashed curve). In (a) we show a frequency
sweep of the resonance line in the vicinity of the high-frequency
resonance just below 12 GHz, at a fixed field of 1330 G. In (b) we
show a field sweep of the same line at fixed frequency (11.5 GHz),
and in (c) we show a field sweep of the line near 5 GHz at fixed field
(303 G).

in the near vicinity of the peak depressed more strongly than
in the wings of the absorption line. In Fig. 4(b), we show
Im{Sxx(�)} for the case where one does a field rather than a
frequency sweep through the resonance. The behavior is rather
similar to what one finds for the frequency sweep displayed in
Fig. 4(a).

What Fig. 4(a) illustrated is most interesting in our minds.
The resonant coupling of the FMR mode to the 3g0 spin
wave provides an additional channel for energy dissipation, as
discussed above. However, it is clear the integrated absorption
for the perturbed film is actually less than that of the perfectly
flat film wherein the additional dissipation channel is not
present. What has happened is, near the peak of the absorption
line, the additional damping has decreased the amplitude of
the spin motion and thus decreased the absorption rate in
this spectral regime, in a manner familiar from elementary
discussions of damped harmonic oscillators. But as discussed
above, the strong frequency variation of �I (�) renders this
effect absent in the wings, thus returning the absorption rate
to its higher value appropriate to the flat film in the wings.
The net effect of adding the additional dissipation channel
is to decrease the integrated absorption. If the added energy
dissipation rate were independent of frequency as one sweeps
through the resonance, then the wings would be broadened,
and the total integrated absorption would increase as expected
naively when a new damping channel is added. This effect
could be obscured somewhat if the periodic structure were
not perfectly periodic, which would have the consequence
that the frequency dependence of �I (�) would not be as
dramatic as described by the theory of the perfect structure.
What one would realize in that case is something one might
call two-magnon damping, spread out over a certain frequency
range whose width would be controlled by the spatial Fourier
spectrum of the deviations from perfect periodicity.

In Fig. 4(c), we show a frequency sweep through
Im{Sxx(�)} for the low-frequency resonance near 5 GHz. Now,
for our particular model, we see behavior quite different than
that illustrated in Fig. 4(a). For the smallest nonzero value of
h employed, we see the depression of the absorption rate near
the peak very much as in Fig. 4(a), but then as h increases
a splitting of the absorption peak develops. The splitting of
the peak has its mathematical origin in the factor of �R(�)
in Eq. (24b). The periodic perturbation couples the k‖ = 0
mode to the k‖ = g0 mode, and just as in the case of two
coupled oscillators there is a frequency splitting. To resolve this
splitting in an experiment, the splitting has to be sufficiently
large that it can be resolved in the presence of damping. In
Fig. 4(a), the role of damping is the primary effect through
increasing the FWHM by depressing the absorption at the
peak, and in Fig. 4(c) we are in the limit where the coupling is
small enough that save for rather small values of h the splitting
manifests itself in the spectrum. Evidently such a splitting of
the resonance line is not observed in Ref. 5. As we noted
above, our model appears to overestimate the strength of the
intermode coupling in the 5 GHz region, possibly for reasons
such as discussed above.

We thus have a weak-coupling regime and a strong-coupling
regime. In the weak-coupling regime, damping is sufficiently
strong that the splitting induced by the resonant coupling
between the two modes linked by the periodic structure is not
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resolved, and the FWHM of the absorption line is increased
by the mechanism discussed above. In the strong-coupling
regime, the periodic perturbation is sufficiently strong that the
splitting is fully resolved as in Fig. 4(c). It is the case that the
data reported in Ref. 5 is an example of the weak-coupling
limit.

IV. CONCLUDING REMARKS

We have developed a theory of the interaction of spin
waves with static, periodic defects in thin ferromagnetic
films. The structure of the theory is patterned after Brillouin-
Wigner perturbation theory in quantum mechanics, wherein
the frequencies or energies of new states emerge from a
self-consistent perturbation theoretic structure. Our theory
provides the full response functions that describe the response
of the film to externally applied microwave fields, and the
phenomenological damping as contained in the LLG equation
is included fully. The discussion in Sec. III shows that the
description of the film response simply in terms of a full width
of the resonance line at half maximum does not give a complete
picture of the underlying physics.

It is the case, as we have seen, that the FWHM does show
a resonant-like response at those special applied fields and
frequencies where resonant coupling manifests itself, but the
description of the line profile is not fully characterized by such
a single measure.

Our discussion suggests further experiments. First, in the
weak-coupling regime, of great interest would be detailed
studies of the absorption line profiles. It would be very
interesting to first measure the absorption line profile for a
perfect film, either by a frequency scan via a spectrum analyzer
or via a magnetic field sweep. Then this could be repeated for
a perturbed film that shows a peak in the apparent linewidth
such as that seen in our Fig. 3 and the figures in Ref. 5,
and the two spectra superimposed to see whether indeed the
“skirts” are similar but the peak absorption decreased, as in our
calculations. Then, of course, it would be very interesting to see
films prepared with a periodic perturbation strong enough to
enter the strong-coupling regime. We note that by lithographic
methods, it should be possible to prepare films of the nature
illustrated in Fig. 1. Such a structure should be able to be placed
in contact with the model calculations discussed here. Indeed,
the model set forth here was motivated by conversations about
such samples.14

Finally we remind the reader that while we have focused our
attention on a particular model of a periodic defect structure,
that illustrated in Fig. 1, it is the case that the general formalism
will apply to a wide class of periodic defect structures. Also,
as noted in Sec. I, if desired the general formalism can be
applied to the description of Brillouin light scattering from

periodically perturbed films. We remark that in computer
simulation studies of eigenvectors and eigenfrequencies in
periodically perturbed films, damping is usually not included
and we see from our examples that it can enter critically in
controlling the film response. Also in numerical simulations,
no scheme for normalizing the eigenvectors appropriately are
included in any of the standard packages, so relative intensities
of various lines in Brillouin spectra cannot be addressed in
these schemes. Our formalism fully incorporates, implicitly,
the appropriate normalization as one sees from well-known
general discussions of Green’s functions. For instance, as
demonstrated many years ago, a response function approach
such as described here does an excellent job of describing
relative intensities of lines in BLS spectra for ideal films and
surfaces.9,10 New physical information can be extracted from
such studies, such as the role of spin pinning both at surfaces
and buried interfaces.
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APPENDIX

The remaining expressions for the response functions in
Eqs. (5) can be cast in the form

Sxy(�k‖, �k′
‖; �) = S̃0

xy(�k‖; �)δ�k‖, �k′
‖

−
∑

α=x,y

∑
�k′′
‖

S̃0
xα(�k‖; �)V ∗

xα(�k′′
‖ ,

�k‖)Sxy(�k′′
‖ ,

�k′
‖; �)

−
∑

α=x,y

∑
�k′′
‖

S̃0
xα(�k‖; �)Vαy(�k‖, �k′′

‖ )Syy(�k′′
‖ ,

�k′
‖; �)

(A1)

and

Syy(�k‖, �k′
‖; �) = S̃0

yy(�k‖; �)δ�k‖, �k′
‖

−
∑

α=x,y

∑
�k′′
‖

S̃0
yα(�k‖; �)V ∗

xα(�k′′
‖ ,

�k‖)Sxy(�k′′
‖ ,

�k′
‖; �)

−
∑

α=x,y

∑
�k′′
‖

S̃0
yα(�k‖; �)Vαy(�k‖, �k′′

‖ )Syy(�k′′
‖ ,

�k′
‖; �).

(A2)
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