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Ground-state properties of antiferromagnetic anisotropic S = 1 Heisenberg spin chains
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Using (infinite) density-matrix renormalization-group techniques, ground-state properties of antiferromagnetic
S = 1 Heisenberg spin chains with exchange and single-site anisotropies in an external field are studied. The phase
diagram is known to display a plenitude of interesting phases. We elucidate quantum phase transitions between the
supersolid and spin-liquid phases as well as the spin-liquid and ferromagnetic phases. Analyzing spin-correlation
functions in the spin-liquid phase, commensurate and (two distinct) incommensurate regions are identified.
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I. INTRODUCTION

In recent years, ground-state properties of the antifer-
romagnetic Heisenberg spin-1 chain with single-site and
uniaxial exchange anisotropies in an external field have been
investigated rather extensively.1–5 The model is described by
the Hamiltonian
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∑
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where i denotes the lattice sites, � denotes the exchange, and
D denotes the single-site anisotropy. The external field B acts
along the z direction.

The magnet displays various intriguing phases at zero
temperature (and, thence, corresponding quantum phase tran-
sitions): the antiferromagnetic (AF), ferromagnetic (F), half-
magnetization plateau (HMP), spin-liquid (SL), supersolid
(SS), and “large-D” phases. Some of these phases, the AF,
F, SL, and SS phases, show up in the corresponding classical
Heisenberg model,3,4,6 while the HMP and large-D phases
reflect the discretization of the spin orientations in the quantum
case. The theoretical efforts have been motivated and inspired,
partly, by related experiments.7,8

Perhaps most attention, in the context of this, Eq. (1),
and similar9–14 models, has been paid to the supersolid
phase,15 being the analog of the “mixed” or “biconical”16

phase in the classical limit.17,18 Note that a mapping from
quantum lattice gases to magnetic systems, explaining the
term “supersolid” for magnets, has been introduced some
decades ago.19 Typically, quantum fluctuations tend to reduce
substantially the range of stability of the supersolid phase,4,9

as compared to the classical variant.
The spin correlations in the supersolid phase of the

anisotropic Heisenberg spin chain, Eq. (1), have been argued
to behave like in a Luttinger liquid, with algebraic spatial
decay.2 Magnetization profiles have revealed the close analogy
of the supersolid to the corresponding classical biconical
structures.3,4 The critical exponent of the spin stiffness,

describing the transition to the bordering AF and HMP phases,
has been found2,5 to be 1/2.

In this contribution, we shall consider interesting aspects
of the model (1) which have not been studied in detail so far.
We shall deal with the transition between the supersolid and
the spin-liquid phases as well as with the SL-F quantum phase
transition. Both transitions have not been analyzed before for
this model. In addition, spin correlations in the SL phase will
be analyzed, to clarify, especially, previous suggestions on
distinguishing commensurate (C) and incommensurate (IC)
regions in that phase.1,3,4

In the present study, mainly infinite density-matrix
renormalization-group (iDMRG) techniques20–22 have been
used, with systematic enlargening on the number of matrices in
the matrix product states. In general, the chosen size of the ma-
trices is an important parameter determining the reliability of
the calculation. Here, the dimension M of the largest matrices
ranges, typically, from 50 to 500. The truncation error varies in
between 10−6 and 10−10. In a few cases, results are compared
to ones we obtain from DMRG calculations for finite chains,
with open boundary conditions, of length L, with L � 128.

II. TRANSITION BETWEEN SUPERSOLID AND
SPIN-LIQUID PHASES

Following previous analyses1–5 of the model (1), we focus
on two cases: at a fixed ratio between the two types of
anisotropies, D/J = �/2, and at a given, quite large exchange
anisotropy, � = 5, with varying single-site anisotropy D/J .
The corresponding ground-state phase diagrams (or parts
thereof) have been obtained before,1–5 using DMRG and
quantum Monte Carlo techniques. In both cases, the phase
diagrams include the AF, F, HMP, SL, and SS phases. The
supersolid phase results from competing uniaxial, along the
z axis, exchange, � > 1, and planar single-site, D > 0,
anisotropies.

The supersolid phase may be bordered by massive, AF
or HMP, or by critical, SL, phases.2–5 The transitions to the
massive phases have been investigated in detail before.2,5
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FIG. 1. Staggered magnetization mst vs external field B/J at
D/J = �/2 = 2.5 near the supersolid to spin-liquid transition. For
comparison, a power-law fit to the iDMRG data with the critical
exponent β = 1/8 is shown (see text).

Here we discuss the transition from the supersolid to the
spin-liquid phase, the SS-SL transition. As illustrated in
Fig. 1 for � = 2D/J = 5, the transition seems to belong
to the two-dimensional classical Ising universality class. The
critical exponent β, describing the vanishing of the staggered
magnetization mst at the transition, is, indeed, consistent with
the famous Onsager value β = 1/8. Actually, we did a χ2 fit of
our iDMRG data in the range 7.22 < B/J < 7.262 to the form
mst = a(Bc/J − B/J )1/8. We obtain Bc ≈ 7.262, as shown in
Fig. 1. The critical field has been also determined by analyzing
the entanglement entropy, leading to a consistent estimate.
Note the (small) deviation extremely close to Bc, which
one may attribute to discretization error in determining the
magnetic field or to insufficient size of the matrix dimension
M , M � 500, in this regime near the transition.

In addition, we also identify an Ising-like sector near the
SS-SL transition, with exponentially decaying longitudinal
spin correlations up to rather large distances, as will
be discussed below. Note that our suggestion on the
universality class of the SS-SL transition is in line with a
corresponding finding on a related two-dimensional quantum
anisotropic Heisenberg antiferromagnet, where the supersolid
to spin-liquid transition has been concluded to be in the
universality class of the three-dimensional Ising case.11 It
is worth mentioning that both suggestions, for quantum
magnets in dimensions d = 1 and 2 at zero temperature,
agree with the well-known dimensional argument23 relating
critical exponents in d-dimensional quantum systems to those
in corresponding (d + 1)-dimensional classical systems.
Indeed, here the classical transitions between the biconical
and spin-flop phases are of the Ising type.6,16

III. CORRELATION FUNCTIONS IN THE
SPIN-LIQUID PHASE

Before turning to the discussion of the SL-F quantum
phase transition, let us first consider characteristics of the SL
phase. As has been noted before,1,3,4 the Hamiltonian (1) may

describe both commensurate (C) and incommensurate (IC)
spin-liquid structures, as has been inferred from the behavior
of energy gaps1 and magnetization profiles.3,4

In this study, we shall present direct evidence for both
types of structures in the spin-liquid phase by analyzing, es-
pecially, longitudinal �z(r) = 〈Sz

i S
z
i+r〉 spin-correlation func-

tions. Asymptotically, r −→ ∞, �z acquires the value m2,
where m is the total magnetization per site. For sufficiently
large distances r , the dominant algebraically decaying terms
of the correlations are expected24 to be either of, due to
magnetization fluctuations, commensurate form, ∝1/r2, or of
incommensurate form, ∝(1/rη) cos(qr), with η < 2, as usual
for Luttinger liquids. Such a behavior is confirmed by our
iDMRG calculations. In the IC case, we find the wave number
q to be related to the total magnetization per site, m, in two
distinct ways: We obtain either q1 = π (1 − m) [(IC)1] or q2 =
2π (1 − m) [(IC)2], setting the lattice constant equal to one.

Examples of longitudinal correlation functions of type C,
(IC)1, and (IC)2 are depicted in Fig. 2, for selected values of
D/J and m, fixing the exchange anisotropy, � = 5. Note that,
in the example for the C case, �z shows roughly an exponential
decay with oscillations at small distances r , approaching the
monotonic algebraic decay, ∝1/r2, only at larger separations.

Varying systematically the single-site anisotropy D and
the magnetization m, at � = 5 (compare to Ref. 1), one may
then identify three different regions, C, (IC)1, and (IC)2, in
the (D/J,m) plane, as shown in Fig. 3. Note that the IC
structures tend to occur close to the F phase. Obviously,
there the longitudinal spin correlations are expected to decay
rather slowly. Accordingly, the exponent η is small, and the
oscillatory part of the long-range correlations may dominate
the monotonic part being proportional to 1/r2. At sufficiently
small negative values of D, one observes the (IC)1 region.
This region may be subdivided into two parts: At larger
magnetizations, we observe ferroquadrupolar ordering,25–27

where the algebraic decay of the four-point transverse cor-
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FIG. 2. Longitudinal spin-correlation function |�z − m2| vs sepa-
ration distance r , at � = 5, with (a) D/J = 2.5, m = 23/40 (circles),
(IC)1 type, (b) D/J = −1.5, m = 1/5 (squares), (IC)1 type, and
(c) D/J = 1, m = 4/10 (diamonds), C type. Interpolating lines are
guides to the eye.
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FIG. 3. Solid boundary lines separating C and IC regions in the
(D/J,m) plane at � = 5. The dashed line sketches, as a guide to the
eye, the border of the forbidden region (FR) (see Ref. 1). The dashed-
dotted line in the (IC)1 phase divides ferroquadrupolar ordering, at
high m, from spin-density-wave ordering.

relation function 〈(S+
i )2(S−

i+r )2〉 is slower than that of �z(r),
due to a smaller exponent η. At lower magnetizations, one
encounters a spin-density-wave ordering, with the longitudinal
spin correlations being dominant. This behavior is exemplified
in Fig. 4. The (IC)2 region occurs at larger values of D/J . In
between the two IC regions, the commensurate region inter-
venes. There, the exponent η characterizing the algebraic decay
of �z with spatially modulated behavior is larger than two.
Asymptotically, for large distances r , the dominant algebraic
term is then proportional to 1/r2, decaying monotonically.
Indeed, the changeover between the C and IC regions may be
conveniently monitored by determining the exponent η from
fits of the iDMRG data for the longitudinal spin correlations.27
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FIG. 4. Comparing the exponents for the decay of two-spin
longitudinal, ηz, and four-spin transverse, η′

xy , correlations to identify
the extent of the regions with ferroquadrupolar and spin-density-wave
orderings, at D/J = −2 and � = 5.
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FIG. 5. Exponent ηz for the oscillatory part of the algebraically
decaying longitudinal spin correlations �z vs magnetization m at
� = 5 and various values of D/J .

A few examples, at several fixed values of D/J and changing
m, are displayed in Fig. 5 (compare to Fig. 3).

The “forbidden region” (FR) in the (D/J,m) plane, which
has been sketched in Fig. 3, gives rise to first-order transitions.

Our calculations on the spin correlations in the (D/J,m)
plane confirm and refine substantially previous findings,1

where the (IC)2 region seems to have been overlooked.
Similarly, there has been no mentioning of the two distinct
parts of the (IC)1 phase and of the supersolid phase which
shows up at fairly low magnetizations and sufficiently large
values of D/J , as we have discussed before.4 We omitted the
supersolid phase in Fig. 3, for reasons of simplicity.

Close to the supersolid to spin-liquid transition, the longitu-
dinal spin correlations are governed, up to quite large distances,
by an exponential decay with π oscillations, signaling,
presumably, the above-mentioned Ising sector. Further details
are presented elsewhere.27
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FIG. 6. Magnetization m vs field B close to the SL-F transition
at � = 5 and D = 0. Data from iDMRG and finite-size DMRG, for
L = 128 sites, calculations are shown, together with a square-root
power-law fit (solid line) [see Eq. (2)].
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IV. TRANSITION BETWEEN SPIN-LIQUID AND
FERROMAGNETIC PHASES

We now turn to the discussion of the SL-F transition. The
phase transition may be characterized by the behavior of the
total magnetization per site m, as illustrated in Fig. 6 for D = 0,
with the SL phase being of the (IC)2 type. Obviously, the
iDMRG data may well be fitted to the form

1 − m ∝ (Bc/J − B/J )1/2, (2)

where Bc is the critical field of the SL-F transition. Indeed,
we did a χ2 fit of the (i)DMRG data in the range between
11.7 � B/J � 12.0 to Eq. (2), determining the proportionality
factor and the critical field Bc ≈ 12.0. Further away from the
transition, pronounced deviations from the simple power law
are observed (see Fig. 6). Note that, in the (IC)2 region of the
SL phase, one has 1 − m ∝ q. Hence, Eq. (2) corresponds
to the well-known Pokrovsky-Talapov28 square-root power
law for the wave number q, describing the C-IC transition
in two-dimensional classical systems with uniaxial spatial
anisotropy. Indeed, it seems tempting and reasonable23,29,30

to associate the SL-F transition for the quantum spin chain
with that universality class.

V. SUMMARY

In summary, studying ground-state properties of the S = 1
anisotropic Heisenberg antiferromagnetic chain, using mainly
the iDMRG approach, we present evidence for the spin-liquid
to supersolid transition being in the two-dimensional Ising
and for the SL-F transition being in the Pokrovsky-Talapov
universality classes. The findings are in accordance with
general considerations relating quantum phase transitions in
d dimensions to those in related classical systems in (d + 1)
dimensions.

Analyzing longitudinal two-spin and transverse two- and
four-spin-correlation functions, the spin-liquid phase has been
characterized in detail. Especially, the phase is found to
consist of commensurate and two distinct incommensurate
regions, with different dependencies of the wave number
on the magnetization. Moreover, one of the incommensurate
phases can be subdivided into regions of ferroquadrupolar and
spin-density-wave ordering.
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21U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
22I. P. McCulloch, J. Stat. Mech.: Theory and Experiment (2007)

P10014; e-print arXiv:0804.2509 (2008).
23M. Suzuki, Prog. Theoret. Phys. 56, 1454 (1976).
24T. Giamarchi and A. M. Tsvelik, Phys. Rev. B 59, 11398 (1999).
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