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Time-dependent spin-wave theory
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We generalize the spin-wave expansion in powers of the inverse spin to time-dependent quantum spin models
describing rotating magnets or magnets in time-dependent external fields. We show that in these cases, the spin
operators should be projected onto properly defined rotating reference frames before the spin components are
bosonized using the Holstein-Primakoff transformation. As a first application of our approach, we calculate the
reorganization of the magnetic state due to Bose-Einstein condensation of magnons in the magnetic insulator
yttrium-iron garnet; we predict a characteristic dip in the magnetization, which should be measurable in
experiments.
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I. INTRODUCTION

At low temperatures, the static and dynamic properties of
magnets are often determined by spin-wave excitations, which
are bosonic quasiparticles in a magnetically ordered state. The
theory of spin waves1 has been extremely successful to explain
experimental data for a great variety of magnets. The basic
assumption is that the thermal and quantum fluctuations are
sufficiently small, so that one can expand in fluctuations around
the classical ground-state configuration. The first step in the
spin-wave expansion is therefore the determination of the spin
configuration in the classical limit, where the spin operators
are treated as classical vectors. Deviations from the classical
limit can then be obtained by projecting the spin operators
onto a basis that matches the direction defined by the classical
spin configuration, and then bosonizing the spin components
using the Holstein-Primakoff transformation.1 Assuming that
the spin quantum number S is large, one can then calculate
fluctuation corrections perturbatively in powers of 1/S.

It is not obvious how to generalize this strategy to explicitly
time-dependent spin Hamiltonians, because in this case,
energy is not conserved and the proper basis for setting up the
spin-wave expansion may not be determined by minimizing
the classical ground-state energy. At the first sight, one can
avoid this problem by simply projecting the spin operators onto
a fixed (laboratory) coordinate system and then introducing
Holstein-Primakoff bosons as usual. However, as will be
demonstrated below, this strategy is not suitable to describe
a possible dynamic reorganization of the magnetic state.
Moreover, in the laboratory basis, it is often very cumbersome
(and, in practice, impossible) to take into account the dominant
fluctuation effects. In this work, we shall develop the general
framework to set up a proper 1/S expansion out of equilibrium
and then use our method to calculate the magnetization
dynamics of a simplified spin model for the pumped magnon
gas in the magnetic insulator yttrium-iron garnet (YIG),2,3

where parametric resonance and Bose-Einstein condensation
(BEC) of magnons has recently been observed.4

II. SPIN-WAVE APPROACH

A. Spin-wave expansion in equilibrium

To explain the basic principles of the time-dependent spin-
wave expansion, we first consider a Heisenberg ferromagnet

in a time-dependent magnetic field,

H(t) = −1

2

∑
ij

Jij Si · Sj −
∑

i

hi(t) · Si , (1)

where the sums are over the N sites of a cubic lattice
and Si are quantum mechanical spin operators localized
at the lattice sites Ri . The spins interact via exchange
couplings Jij and are exposed to an external space- and
time-dependent magnetic field hi(t), which we measure in
units of energy. Assuming that hi(t) is sufficiently large, the
nonequilibrium expectation values 〈Si(t)〉 are finite so that
the time-dependent unit vectors m̂i(t) = 〈Si(t)〉/|〈Si(t)〉| in
the direction of the local magnetic moments are well defined.
If the time- dependence of the external field is sufficiently
slow, we may use the adiabatic approximation to determine
m̂i(t). In this case, we may set up the spin-wave expansion
as in equilibrium5 by projecting the spin operators onto a
time-dependent basis {e(1)

i (t),e(2)
i (t),m̂i(t)}, where e(1)

i (t) and
e(2)
i (t) are time-dependent unit vectors orthogonal to m̂i(t).

The directions m̂i(t) are determined by a time-dependent
extension of the static minimization condition of the classical
ground-state energy,5

m̂i(t) ×
[

hi(t) + S
∑

j

Jij m̂j (t)

]
= 0. (2)

We then expand the spin operators as Si = S
‖
i m̂i + 1

2 [S+
i e−

i +
S−

i e+
i ], where e±

i = e(1)
i ± ie(2)

i . Finally, we express the spin
components in terms of canonical boson operators ai using
the Holstein-Primakoff transformation,1 S

‖
i = S − a

†
i ai , S

+
i =

(S−
i )† = [2S − a

†
i ai]1/2ai . For large S, the square roots can be

expanded and the interactions between spin waves can be taken
into account by means of a systematic expansion in powers
1/S.

B. Spin waves in the adiabatic basis

It turns out, however, that this approach is only useful in
the adiabatic limit where the rate of change of the external
field is small compared with |hi(t)|. To see this, consider the
special case of a homogeneous field hi(t) = h(t), which rotates
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FIG. 1. (Color online) Rotating magnet in a constant magnetic
field h forming an angle θ0 with the rotation axis ẑ that is described
by the time-dependent Hamiltonian (1). The system is represented by
a cylinder that is actively rotated with the constant angular velocity
ω around an axis, which is not parallel to the external magnetic
field. The cylindrical shape and the orientation of the sample reflects
the symmetry of the system at time t = 0 where the system is
rotationally invariant around the direction of the fixed magnetic
field.

clockwise with frequency ω around the z axis,

h(t) = h⊥[cos(ωt)x̂ − sin(ωt) ŷ] + hz ẑ, (3)

where x̂, ŷ, and ẑ are unit vectors in the directions of
three orthogonal axes of the laboratory. By writing6 h(t) ·
Si = h(0) · eωt ẑ×Si , we see that Eq. (1) can alternatively
be interpreted as the Hamiltonian of a magnet that rotates
counterclockwise with angular velocity ω around an axis ẑ,
which is not parallel to the field, as shown in Fig. 1. In adiabatic
approximation, the magnetization points into the direction of
the magnetic field, as can be easily seen from Eq. (2). Within
linear spin-wave theory, we obtain the Hamiltonian

H ≈
∑

k

Ead
k a

†
kak, (4)

where the ground-state energy has been dropped. Note that
the dispersion Ead

k = εk + h is the sum of the zero-field
magnon dispersion εk = S(J0 − Jk) (where Jk is the Fourier
transform of the exchange couplings Jij ) and the absolute
value h = (h2

⊥ + h2
z)1/2 of the magnetic field. Assuming that

at time t = 0, the system is in thermal equilibrium at inverse
temperature β = 1/T , we find that in adiabatic approximation
the time-dependent magnetization M(t) = 1

N

∑
i〈Si(t)〉 is to

linear order in spin-wave theory given by

Mad(t) = Mhm̂(t), (5)

with the magnitude of the magnetization

Mh = S − 1

N

∑
k

1

eβEad
k − 1

, (6)

and its direction m̂(t) = sin θ0[cos(ωt)x̂ − sin(ωt) ŷ] +
cos θ0 ẑ. Here, θ0 is the angle between the magnetic field and
the rotation axis, i.e.,

cos θ0 = hz

h
, (7)

as shown in Fig. 1.

C. Perturbation theory in the laboratory basis

To see that Eq. (5) is only valid for |ω| � h, let us repeat the
calculation of the magnetization in a perturbative approach.
To set up the spin-wave expansion, we write our Hamiltonian

H(t) = Hz + V(t) (8)

as a sum of the time-independent part

Hz = −1

2

∑
ij

Jij Si · Sj − hz

∑
i

Sz
i (9)

and the time-dependent perturbation

V(t) = −h⊥
∑

i

[
cos(ωt)Sx

i − sin(ωt)Sy

i

]
. (10)

We now project the spin operators onto the fixed laboratory
basis. This strategy is usually adopted to discuss parametric
resonance of magnons7–9 and has recently been used in Ref. 10
to calculate the nonequilibrium dynamics of magnons in a
related spin model. After expressing the Hamiltonian (8) in
terms of laboratory-frame Holstein-Primakoff bosons bi and
transforming to momentum space, bi = N−1/2 ∑

k eik·Ri bk,
the Hamiltonian reads in linear spin-wave theory,

Hz ≈
∑

k

Elab
k b

†
kbk. (11)

The dispersion Elab
k = εk + hz now contains the static part of

the magnetic field. The time-dependent perturbation, Eq. (10),
can be written as

V(t) = −h⊥
2

√
2S

√
N

(
eiωtbk=0 + e−iωtb

†
k=0

)
. (12)

Since the boson Hamiltonian contains linear terms, the labora-
tory boson operators b

†
k=0 and bk=0 have finite expectation

values, thus condense. The dynamics of these expectation
values as well as the time dependence of the magnon
distribution function 〈b†k(t)bk(t)〉 can be easily obtained within
linear spin-wave theory by solving the Heisenberg equations
of motion. With appropriate initial conditions, we obtain for
the time evolution of the magnetization,

M lab(t) = h⊥S

hz − ω
[cos(ωt)x̂ − sin(ωt) ŷ] + Mhz

ẑ. (13)

Formally, the perturbation has been carried out as an expansion
in powers of h⊥/hz, but we will see later that it is essentially an
expansion in powers of h⊥/(hz − ω). An important difference
to the adiabatic result (5) is the singularity for ω → hz, which is
of course unphysical and one would need a resummation to all
orders in 1/S to resolve this. Using a similar approach, such a
singularity has also been found in Ref. 10 for a slightly different
model. Although for |ω − hz| � h⊥, perturbation theory in the
laboratory frame breaks down, Eq. (13) indicates that both
the adiabatic approximation and the perturbative approach
in the laboratory frame have serious limitations: while the
adiabatic basis is restricted to slowly varying external field and
misses possible dynamic instabilities, in the laboratory basis,
one generates unphysical singularities in linear spin-wave
theory, indicating that important fluctuation effects have been
neglected.
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III. SPIN WAVES IN THE PROPER ROTATING
REFERENCE FRAME

We now develop a time-dependent generalization of the
spin-wave expansion that neither suffers from the limitations
of the adiabatic approximation nor exhibits the pathologies of
the perturbative approach in the laboratory frame. Our theory
is guided by the following two insights: (i) the spin operators
should be bosonized in a proper rotating basis whose third
axis m̂i(t) matches the direction of the true nonequilibrium
expectation value 〈Si(t)〉 and (ii) the proper rotating basis
in general does not agree with the adiabatic basis defined in
Eq. (2).

To construct the proper rotating basis, consider the unitary
time-evolution operatorU(t) of some arbitrary time-dependent
spin Hamiltonian H(t), which satisfies the operator equation

i∂tU(t) = H(t)U(t). (14)

Making the factorization ansatz

U(t) = U0(t)Ũ(t) (15)

with some suitable U0(t), we find that Ũ(t) satisfies i∂t Ũ(t) =
H̃(t)Ũ(t), with the effective Hamiltonian

H̃(t) = H̃A(t) + H̃B(t), (16)

where

H̃A(t) = U†
0 (t)H(t)U0(t) (17)

corresponds to the adiabatic approximation, while

H̃B(t) = −iU†
0 (t)∂tU0(t) (18)

contains all corrections to the adiabatic approximation, includ-
ing possible Berry-phases.11,12 We now choose U0(t) such that
for each lattice site it rotates the z axis of the laboratory to an
axis in the direction m̂i(t) of the true local magnetization. This
is achieved by setting

U0(t) = e−i
∑

i αi (t)·Si , (19)

with suitable rotation vectors αi(t) = αi(t)α̂i(t), where αi(t)
is the rotation angle and α̂i(t) is a unit vector in the direction
of the rotation axis. The rotated spin operators can then be
written as6

S̃i(t) = eiαi (t)·Si Sie
−iαi (t)·Si = eαi (t)×Si . (20)

To calculate the corresponding Berry-phase contribution
H̃B(t) to the effective Hamiltonian in the rotating reference
frame, we use Feynman’s14 representation

d

dt
eA =

∫ 1

0
dλeλA dA

dt
e(1−λ)A (21)

of the time derivative of the exponential of an operator A,
which does not necessarily commute with its time derivative
dA/dt . It is convenient to decompose a general rotation into
three successive rotations parametrized by the usual Euler
angles ϕ, θ , and ψ as follows:

eαi (t)× = eψ i (t)×eθ i (t)×eϕi (t)×, (22)

where the rotation vectors are ϕi(t) = ϕi(t) ẑ, θ i(t) =
θi(t)θ̂ i(t), and ψ i(t) = ψi(t)m̂i(t).15 Explicitly, the direction

of the nutation vector θ i is θ̂ i(t) = ẑ×m̂i (t)
| ẑ×m̂i (t)| . To define the

spin waves in the proper rotating basis, we expand the rotated
spin operators S̃i defined in Eq. (20) in the time-dependent
right-handed basis formed by the following three unit vectors:

ẽ(1)
i (t) = cos ψi(t)θ̂ i(t) + sin ψi(t)m̂i(t) × θ̂ i(t), (23a)

ẽ(2)
i (t) = − sin ψi(t)θ̂ i(t) + cos ψi(t)m̂i(t) × θ̂ i(t), (23b)

and m̂i(t). The corresponding spin components are defined
by

S̃i(t) = S̃
(1)
i ẽ(1)

i (t) + S̃
(2)
i ẽ(2)

i (t) + S̃
‖
i m̂i(t). (24)

Evaluating the time derivative in Eq. (18) with the help of the
formula (21) and inserting the expansion (24) for the rotated
spin operators, we can rewrite the Berry-phase contribution to
the effective Hamiltonian as

H̃B(t) = −
∑

i

[
ω

(1)
i (t)S̃(1)

i + ω
(2)
i (t)S̃(2)

i + ω
‖
i (t)S̃‖

i

]
, (25)

where the three time-dependent energies ω
(1)
i (t), ω

(2)
i (t), and

ω
‖
i (t) can be identified with the well-known Euler angle

parametrization of the components of the angular velocity
vector in the rotating reference frame:15

ω
(1)
i (t) = ϕ̇i sin θi sin ψi + θ̇i cos ψi, (26a)

ω
(2)
i (t) = ϕ̇i sin θi cos ψi − θ̇i sin ψi, (26b)

ω
‖
i (t) = ϕ̇i cos θi + ψ̇i . (26c)

In the models discussed in this work, the proper rotation
of the comoving basis is irrelevant, so that we may focus on
the special case ψ i(t) = 0. The Berry-phase Hamiltonian (25)
then reduces to

H̃B(t) = −
∑

i

[
θ̇i S̃

(1)
i + ϕ̇i sin θi S̃

(2)
i + ϕ̇i cos θi S̃

‖
i

]
. (27)

For the rotating ferromagnet shown in Fig. 1, symmetry
suggests that the proper rotating coordinate system is charac-
terized by a time-dependent precession angle ϕi(t) = −ωt and
a constant nutation angle θ . The Berry-phase contribution (27)
to the Hamiltonian in the rotating basis is then

H̃B = ω
∑

i

[
sin θS̃

(2)
i + cos θS̃

‖
i

]
, (28)

which is independent of time. Next, we express the spin
components in the rotating reference frame in terms of a
third type of Holstein-Primakoff boson ci , which should not
be confused with the Holstein-Primakoff boson ai introduced
in the adiabatic basis, and also not with the laboratory basis
Holstein-Primakoff boson bi . The true tilt angle θ is deter-
mined from the requirement that the effective Hamiltonian
contains no terms linear in the bosons, which yields the
frequency-dependent result

cos θ = hz − ω

h̃ω

, (29)

where

h̃ω = [h2
⊥ + (hz − ω)2]1/2. (30)

Note that for finite ω the true tilt angle θ is larger than the angle
θ0 between rotation axis and magnetic field. In fact, our result
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FIG. 2. (Color online) Comparison of the results for the perpen-
dicular magnetization M̃⊥

ω as a function of the rotation frequency ω in
the three different approaches for our model system given in Eq. (1)
with the parameters J = hz, h⊥ = 0.4hz, S = 1/2 at the temperature
T = 0.5hz: blue (dashed)line presents the results of the adiabatic
approximation, Eq. (5), green (dash-dotted)line is perturbation theory
in the laboratory frame, Eq. (13), and red (solid) is the proper rotating
frame. The shaded area indicates the unphysical region. The inset
shows a sketch of the spin-wave gap Ek=0/hz as a function of rotation
frequency for the same parameters .

for θ agrees with the result for a single isolated spin in a rotating
magnetic field given in the book by Bohm et al.12 For the
specific geometry shown in Fig. 1, the proper rotating reference
frame has also been discussed previously in Ref. 13, but our
Eq. (27) is more general. In fact, our many-body approach
allows us to set up a systematic 1/S expansion and calculate
the thermodynamics and the correlation functions of any time-
dependent spin model with finite local moments. Following the
steps of the spin-wave expansion, we obtain the Hamiltonian

H ≈
∑

k

Ekc
†
kck (31)

to quadratic order in the bosonic operators c
†
k and ck describing

bosons in the proper rotating reference frame. The dispersion
Ek = εk + h̃ω is modified by the finite oscillation frequency,
see inset in Fig. 2. Imposing suitable initial conditions for
our model, we obtain for the time-dependent magnetization in
linear spin-wave theory,

M(t) = M̃‖
ω ẑ + M̃⊥

ω [cos(ωt)x̂ − sin(ωt) ŷ]

= m̂ω(t)M̃ω, (32)

where M̃‖
ω = cos θM̃ω and M̃⊥

ω = sin θM̃ω with

M̃ω = S − 1

N

∑
k

1

eβEk − 1
(33)

and m̂ω(t) = sin θ [cos(ωt)x̂ − sin(ωt) ŷ] + cos θ ẑ. In the limit
ω → 0, Eq. (32) reduces to the result (5) of the adiabatic
approximation, which is only accurate as long as |ω| � h.
In fact, for the two special cases ω = 0 and ω = 2hz where
the effective field is equal to the external field h = h̃ω, the
adiabatic approximation Eq. (32) matches the correct result of
Eq. (5). While the result (13) for the magnetization obtained
from perturbation theory in the laboratory basis approaches the

more accurate rotating reference frame result (32) for ω → 0
and for large frequencies ω � 2hz, perturbation theory in the
laboratory basis gives unphysical results in the vicinity of the
resonance |hz − ω| � h⊥ and is thus meaningless, whereas
Eq. (32) predicts that the magnetization simply rotates in the
xy plane (θ ≈ π/2). Note that the magnetization shown in
Fig. 2 does not approach M̃⊥

ω = S because thermal fluctuations
suppress the total magnetic moment.

IV. PARAMETRIC RESONANCE AND BEC OF MAGNONS
IN YIG

Next, let us study another time-dependent spin model that
gives us some insight into the relation between parametric
resonance, BEC of magnons, and the reorganization of the
magnetic state. Previously, this problem has been addressed
in Refs. 16 and 17 using a Heisenberg ferromagnet with static
single-ion anisotropy in a time-dependent magnetic field. For
our purpose, it is more convenient to consider a modified
version of this model, involving a static magnetic field in z

direction and a rotating single-ion anisotropy of magnitude A,

H(t) = −1

2

∑
ij

Jij Si · Sj − h
∑

i

Sz
i

− A

2

∑
i

{
[Si · n(t)]2 − [Si · (ẑ × n(t))]2

}
, (34)

where the anisotropy axis n(t) = cos(ωt)x̂ − sin(ωt) ŷ rotates
clockwise in the xy plane. An illustration of the model (34)
is shown in Fig. 3. After bosonization of the spins using the
Holstein-Primakoff transformation in the laboratory basis, we
obtain in linear spin-wave theory,

H(t) ≈
∑

k

[
(εk + h)b†kbk + hc

2
(e2iωtb−kbk + H.c.)

]
, (35)

with hc = AS. Time-dependent boson models of this form
have been studied as model systems for parametric resonance
in magnon gases.1,8,9 In fact, with appropriate replacements,18

the magnon Hamiltonian for YIG in an external microwave
field parallel to the external field has the same form as
Eq. (35). It is well known9 that the Hamiltonian (35) predicts
a parametric instability of the magnons with wave vectors in
the regime hc > |εk + h − ω|. If this condition is satisfied,
then the magnon occupation grows exponentially during some

FIG. 3. (Color online) Graph of the time-dependent spin model
defined in Eq. (34). The model can be interpreted as a Heisenberg
magnet with a single-ion anisotropy axis n̂ that is fixed in the
laboratory frame. The magnet is exposed to a static external field
perpendicular to the anisotropy axis and rotates counterclockwise
around an axis parallel to the field.
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FIG. 4. Plot of the spin-wave gap Ek=0 of the time-dependent
spin model defined in Eq. (34) as a function of |h − ω|/hc.

intermediate time interval, until it saturates and the system
approaches a new equilibrium state, which, in principle, can
be calculated by taking the interactions between the magnons
into account. Here, we show that the dynamics of the local
magnetization 〈Si(t)〉 as well as the magnon spectrum can
be obtained using our time-dependent spin-wave formalism
without considering interactions between magnons. Because
the Hamiltonian (35) has the same spin symmetries as the
rotating ferromagnet discussed above, the proper rotating
reference frame is again given by a time-dependent precession
angle ϕi(t) = −ωt and a constant nutation angle θ . The
Berry-phase Hamiltonian H̃B = ω

∑
i[sin θS̃

(2)
i + cos θS̃

‖
i ] is

therefore identical with the rotating ferromagnet discussed
above, see Eq. (28). It is then easy to show that for |h − ω| > hc

all spins point in the direction of the field so that the tilt angle
θ vanishes and the magnon spectrum is

Ek =
√

(εk + h − ω)2 − h2
c, (36)

where again εk = S(J0 − Jk). On the other hand, for |h − ω| <

hc, the angle between magnetic field and magnetization does
not vanish,

cos θ = h − ω

hc

, (37)

and the magnon spectrum is

E2
k =

√[
εk + 3hc

2
− (h − ω)2

2hc

]2

−
[
hc

2
+ (h − ω)2

2hc

]2

.

(38)

A graph of the spin-wave gap Ek=0 is presented in Fig. 4.
In the tilted phase, the time-dependent magnetization is in
linear spin-wave theory M(t) = M̃ωm̂ω(t), where m̂ω(t) =
sin θ [cos(ωt)x̂ − sin(ωt) ŷ] + cos θ ẑ and

M̃ω = S + 1

2
− 1

N

∑
k

1

Ek

[
εk + 3hc

2
− (h − ω)2

2hc

]

×
[

1

eβEk − 1
+ 1

2

]
. (39)

Note that the gap Ek=0 of the magnon energy vanishes at
the critical fields h±

c = ±hc + ω, signaling a quantum phase

FIG. 5. (Color online) Length M̃ω of the magnetization vector
defined in Eq. (38) at different temperatures T for typical parameters
describing the pumped magnon gas in bulk YIG18 (J = 1.29 K,
hc = 0.55 K, S = 14.2). The Curie temperature of YIG is Tc =
560 K.2,3 Note that for T < Tc the magnetization in three dimensions
is finite for all values of the reduced magnetic field h − ω. The
deviation of the T = 0 K result from unity is enhanced by a factor
of 500.

transition. Because the magnetic state in the tilted phase
spontaneously breaks the Z2 symmetry Si · n → −Si · n of
the spin Hamiltonian (34), this phase transition belongs
to the Ising universality class. If we bosonize the spin
operators in the laboratory frame, then at the critical point,
the corresponding bosons acquire a macroscopic expectation
value, which corresponds to BEC of magnons.19,20 How-
ever, as pointed out by Kohn and Sherrington,21 such a
transition is neither accompanied by magnon superfluidity
nor by off-diagonal long-range order, which distinguishes
the magnon condensate from the BEC of trapped atoms or
molecules. In fact, the macroscopic occupation of magnon
modes is an artifact of working in the laboratory frame; the
magnons defined in the proper rotating reference frame never
condense.

Given the fact that our model Hamiltonian (34) has the
same symmetries as the effective spin Hamiltonian for YIG,2

with appropriate substitutions,18 our model can be used to
understand the nonequilibrium dynamics of the magnetization
in YIG in the vicinity of the condensation transition. In Fig. 5,
we show a numerical evaluation of the frequency-dependent
magnetization M̃ω given in Eq. (39) using effective parameters
for YIG.18 We predict that close to the threshold of BEC the
magnetization shows a characteristic dip of the order of 1% at
relevant temperatures.

V. CONCLUSIONS

In summary, we have developed a general method to set
up the spin-wave expansion for time-dependent spin models.
Our method is very general and should also be useful to study
nonequilibrium phenomena in all kinds of ordered magnets,
including quantum antiferromagnets and frustrated magnets
with finite local moments. We have used our method to
study a simplified spin model for the magnon gas in YIG,
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and have shown that magnon BEC in this system can be
interpreted as a magnetic quantum phase transition belonging
to the Ising universality class. Our prediction of a dip in the
magnetization close to the threshold for BEC can be tested
experimentally.
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