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Phase transitions in spin-orbital models with spin-space anisotropies for iron pnictides:
Monte Carlo simulations
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The common phase diagrams of superconducting iron pnictides show interesting material specificities in the
structural and magnetic phase transitions. In some cases the two transitions are separate and second order, while in
others they appear to happen concomitantly as a single first-order transition. We explore these differences using
Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital
degrees of freedom. In this spin-orbital model, the finite-temperature orbital-ordering transition results in a
tetragonal-to-orthorhombic symmetry reduction and is associated with the structural transition in the iron-pnictide
materials. With a zero or very small spin-space anisotropy, the magnetic transition separates from the orbital one
in temperature, and the orbital transition is found to be in the Ising universality class. With increasing anisotropy,
the two transitions rapidly merge together and tend to become weakly first order. We also study the case of a
single-ion anisotropy and propose that the preferred spin orientation along the antiferromagnetic direction in
these materials is driven by orbital order.

DOI: 10.1103/PhysRevB.85.054411 PACS number(s): 75.25.Dk, 74.70.Xa, 75.40.Cx, 75.40.Mg

I. INTRODUCTION

Several parent phases of the superconducting iron-pnictide
materials show an interesting interplay of structural, mag-
netic, and orbital degrees of freedom.1–3 These quasi-two-
dimensional (2D) materials share a similar phase diagram,
where a tetragonal paramagnetic phase at high temperatures
transitions into an orthorhombic, antiferromagnetic phase at
low temperatures.4–9 The square lattice of iron atoms develop
magnetic order at wave vector (π,0), which corresponds to
antiferromagnetic (AFM) alignment of spins along one of
the nearest-neighbor directions (x) and ferromagnetic (FM)
alignment along the other (y).10–19 The orientation of the
ordered spin moments is tied to antiferromagnetism and points
along the AFM direction.13–19

While lattice distortions are typically quite small in iron
pnictides, the observed spin-wave spectra from neutron scatter-
ing suggest a robust, possibly sign-changing anisotropy in the
exchange constants along the x and y directions.20–22 Various
transport, optical, and spectroscopic measurements also show
substantial emergent anisotropies in the 2D x-y plane.23–32 In
particular, an orbital polarization associated with the occu-
pation of dxz and dyz orbitals has been observed.33–36 These
anisotropies in some cases can persist up to high temperatures
and have been identified with long- and sometimes short-range
Ising-nematic order.37,38

Despite the above similarities, there are also substantial
material-specific differences. The parent compounds of the
1111 family (RFeAsO, with R a rare-earth element) of iron
pnictides undergo two separate second-order phase transitions,
where the structural transition is followed by a magnetic
transition at a lower temperature.6 On the other hand, in the
122 family (AFe2As2, with A an alkaline-earth element) the
two transitions appear to occur at the same temperature.7–9

More recent measurements revealed that in the undoped
BaFe2As2, the structural and magnetic transitions are slightly
separated by less than one kelvin.39–41 In that case, the
structural transition starts as second order, and at a slightly
lower temperature there is a first-order jump in the lattice
distortion with a concomitant first-order magnetic transition.
This feature is not generic to all the 122 family of iron pnic-
tides. In particular, there is strong evidence showing a largely
first-order phase transition in CaFe2As2 and SrFe2As2, where
the structural and magnetic phase transitions coincide.42–44

There have been many proposals for the mechanism driving
these transitions. These include (i) emergent Ising-nematic
orders in frustrated spin systems,37,38,45–53 (ii) orbital order54–63

(iii) coupling to lattice degrees of freedom,64–66 and (iv)
symmetry breaking associated with Fermi-surface effects in
an itinerant system.67–71 On symmetry grounds one cannot
distinguish between different pictures, since the different
degrees of freedom lead to the same broken symmetries and
they are all present to some extent and coupled to each other.
Thus, detailed quantitative studies are important to establish
the role played by different mechanisms.

In this paper, we wish to study the scenario where
orbital order is the primary driving mechanism for the finite-
temperature transitions. We investigate the properties of a
spin-orbital model, where the spin and orbital degrees of
freedom are coupled by a Kugel-Khomskii-like mechanism.72

In the model, the local orbital occupation modulates the spin
exchange constants. Once the orbitals are ordered, collinear
antiferromagnetism can develop and anisotropic exchange
constants in the x and y directions J1x �= J1y result. However,
we note that a model containing only effective Heisenberg
spin interactions (

∑
ij Jij

�Si · �Sj ) is still isotropic in spin space,
since the energy of the system does not depend on the direction
of magnetization with respect to the crystal axes.
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A simple mean-field treatment of our spin-orbital model
suggests that the spin and orbital orderings occur simulta-
neously as a single phase transition, which can be first or
second order depending on the exchange couplings. However,
such a treatment neglects long-wavelength fluctuations which
can drive the spin-ordering temperature to zero. To study
the effects of fluctuations, we employ large-scale Monte
Carlo simulations by treating the spin and orbital variables
classically, which should be sufficient for finite-temperature
phase transitions. The Monte Carlo results indicate that if spin
rotational invariance is preserved, at finite temperatures there
is only one orbital-ordering transition which belongs to the
2D Ising universality class. In this case, long-range spin order
only occurs at T = 0, in accord with the Mermin-Wagner
theorem. However, a small spin-space anisotropy (5%) will
bring the magnetic transition temperature up to the orbital one.
With increasing anisotropy the coupled spin-orbital transition
tends to become first order. These results are reminiscent
of the observed behaviors of different families of iron
pnictides.

Our study neglects three-dimensional (3D) couplings,
studied for example in Refs. 38, 51, and 53. 3D couplings
have an effect similar to spin-space anisotropies in that they
both can result in a finite-temperature magnetic transition.
However, in general they will lead to different universality
classes for the transitions. While 3D couplings could be
more important in some materials (for example within the
122 family), spin-space anisotropy may be more important in
others. In some materials the magnetization has been reported
to obey 2D Ising universality behavior.77 Even if the ultimate
transition is weakly first order in these materials, the reported
fluctuations appear more 2D. This provides a motivation for
our choice of anisotropy over 3D couplings.

Studying spin-space anisotropy also allows us to ad-
dress the orientation of the ordered moments. In a quasi-
two-dimensional material, one would expect the uniaxial
anisotropy to point out of the plane and the spins should be
equally likely to point along any direction in the plane. How-
ever, this can change with orbital polarization. In transition-
metal compounds, ligand crystal-field splitting can lift the
degeneracy of the transition-metal 3d orbitals. In this case,
the orbital moments are usually quenched and there may be
no preferred spin directions. However, relativistic spin-orbit
coupling can induce a nonzero orbital angular momentum,
which accompanied by an orbital polarization (such as a
preferential occupation of dxz over dyz orbitals) can lead to
a single-ion anisotropy term and an anisotropic g factor in the
x-y plane. In this case, excess population of dxz orbitals can
favor spins pointing along the x axis, while excess population
of dyz orbitals will favor spins pointing along the y direction.
We propose that in iron pnictides the single-ion anisotropy
term in the x-y plane is related to orbital order and since it
is also tied to AFM it leads to spins pointing along the AFM
direction.

The outline of the paper is as follows. In Sec. II we introduce
our model and develop a simple mean-field theory. In Sec. III
the Monte Carlo results are discussed. In Sec. IV we discuss
the implication of our study for the iron-pnictide materials and
in Sec. V we summarize our work. Details of the Monte Carlo
method are presented in the Appendix.

II. SPIN-ORBITAL MODEL

The spin-orbital model is given by the Hamiltonian

H =
∑

i

(J1nini+x̂ − JF ) �Si · �Si+x̂

+
∑

i

[J1(1 − ni)(1 − ni+ŷ) − JF ] �Si · �Si+ŷ

+
∑
〈〈i,j〉〉

J2 �Si · �Sj . (1)

Here �Si are classical Heisenberg spins on a square lattice,
ni are classical Ising variables that take values 0 or 1, and
〈〈i,j 〉〉 signifies summing on next-nearest-neighbor pairs of
the square lattice. In a classical system the spin magnitude S is
not important in determining the phase transitions, and for our
discussion we set S = 1. Physically, the variables ni represent
the preferential occupation of dxz (ni = 1) or dyz (ni = 0)
orbitals. The model has tetragonal symmetry. However, ni = 1
(occupation of dxz orbitals) favors AFM order along the x

axis, whereas ni = 0 (occupation of dyz orbitals) favors AFM
order along the y axis. We have added an orbital-independent
FM nearest-neighbor interaction JF and used J2 = 0.4J1 and
JF = 1/6J1. This set of parameters corresponds to the neutron
scattering observation that the spin-wave spectra is better fitted
with an AFM exchange along one direction and a weak FM
exchange along the other.74 The latter could arise from double
exchange57 or from the orbital geometries.55 But, its sign or
magnitude is not crucial for the phase transitions we report
here. Spin-space anisotropies will be introduced later when
we discuss the Monte Carlo simulations.

The ground state of this model breaks tetragonal symmetry.
It has a ferro-orbital order, all ni = 1 or ni = 0, corresponding
to nearest-neighbor exchanges which are AFM along one axis
and FM along the other. The ground state has (π,0) spin order
when ni = 1 and (0,π ) spin order when ni = 0.

We note here that in iron pnictides, the low-temperature
orbital polarization is found to be incomplete, where the
occupation number is not strictly one or zero.33–36 A partial
orbital polarization can result from the itinerant electron
degrees of freedom, or from quantum fluctuations in the
orbital variables. The role of orbital order in driving the
structural and magnetic transitions of iron pnictides indeed
has been discussed based on an itinerant electron perspective
using multiorbital Hubbard Hamiltonians.59–62 Our approach
of studying a Kugel-Khomskii-type spin-orbital model can
be viewed as the strong coupling limit of such Hamiltonians.
While we leave out the charge degrees of freedom which are
important in describing for example transport properties, our
model should still capture the key physics of magnetism and
finite-temperature phase transitions.

Below we first develop a mean-field theory for the phase
transitions of the spin-orbital model under consideration. We
set ni = (1 + σi)/2 and assume a mean-field Hamiltonian of
the form

HMF = −
∑
i1

Bi1
1 Si1 −

∑
i2

Bi2
2 Si2 − h

∑
i

σi, (2)

where the first sum runs over the first sublattice, the second
over the second sublattice, and the third over all the spins in the
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lattice. B1 and B2 are the staggered fields on the two sublattices
and h is a field that couples to orbital order. Focusing on the
(π,0) order, we let m = 〈Si〉 and n = 〈σi〉 > 0. We find for
i = 1,2

Bi = 2m(J1n + 2J2), h = J1m
2, (3)

leading to the mean-field equations

m = L(2βm(J1n + 2J2)) (4)

and

n = tanh (βJ1m
2). (5)

Here, L(x) is the Langevin function coth x − 1/x. These
equations lead to a simultaneous transition and an orbital-
ordered AFM phase. It is a second-order phase transition, with
a transition temperature of 4J2/3, provided J2 > 0.79J1. The
transition becomes first order when J1 exceeds J2 (the case of
interest in the pnictides).

While mean-field theory cannot be quantitatively valid
because of the divergent infrared fluctuations in the spin
variable, which push the spin-ordering transition temperature
to zero, we will see that the mean-field results correctly capture
the following physics:

(1) Nonzero magnetic order produces an ordering field
for the orbital degrees of freedom. Hence, whenever there
is magnetic order present, orbitals symmetry will also be
broken. Thus, orbital transition cannot happen below the
magnetic-ordering transition.

(2) Without some order of the magnetic degrees of freedom,
the orbitals do not interact. Actually, orbital couplings depend
on short-range magnetic order not long-range magnetic order.
This is not allowed for in the mean-field theory but will
become clear from our later discussion of the Monte Carlo
simulations. Thus, the two transitions are always going to be
close in temperature, unless the magnetic transition is pushed
significantly below the mean-field transition temperature due
to additional fluctuations.

(3) The orbital-ordering temperature is not significantly
depressed by the fluctuations of the spins and our mean-field
theory provides a fairly good prediction of the transition
temperature.

(4) We will see in the Monte Carlo simulations that the main
role of the long-wavelength spin fluctuations is to decouple the
spin and orbital transitions. The spin transition temperature is
pushed to zero in the absence of spin-space anisotropy. In this
case, the orbital transition becomes Ising like and second order.

(5) With significant anisotropy, both the spin and orbital
transition temperatures rapidly approach the mean-field val-
ues, and the transition has a tendency to become first order for
J1 > J2.

III. RESULTS OF MONTE CARLO SIMULATIONS

In this section, we present the results of Monte Carlo
simulations with and without spin-space anisotropies. The
details of the Monte Carlo methods as well as the quantities
measured and the expected scaling behavior are discussed in
the Appendix.
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FIG. 1. Squares of spin and orbital order parameters as a
function of temperature for the isotropic spin-orbital model on a
20 × 20 lattice. The vertical line shows the transition temperature Tc

(measured in units of J1), where the orbitals develop long-range order.

A. Isotropic Heisenberg spins

First, we consider the case of isotropic Heisenberg spins.
The squares of spin and orbital order parameters obtained
from the simulation are shown in Fig. 1. We know on general
grounds that in a 2D system spin rotational symmetry cannot
be spontaneously broken at any finite temperature. However,
this is not evident from the plot. The exponential growth of
the spin-spin correlation length rapidly exceeds the size of the
system and this creates the impression of long-range order
at a finite temperature. One needs to carefully study the size
dependence. The Binder ratios, defined in the Appendix, prove
useful for this purpose.

Figure 2 gives the spin Binder ratios, gS , which show
no crossings with system size down to the lowest measured
temperature, signifying absence of long-range order at finite
temperatures, in agreement with the Mermin-Wagner theorem.
In contrast the orbital Binder ratios gn, shown in Fig. 3,
have clear crossings at finite temperatures and we can extract
Tc by comparing different system sizes. We obtain Tc/J1 =
0.450 ± 0.001 for the isotropic spin-orbital model.

In Fig. 4 we show the scaling plot for the orbital
susceptibility. The data collapse leads to estimates of critical
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FIG. 2. Spin Binder ratio as a function of temperature (measured
in units of J1) for different L × L lattices. For the isotropic spin-
orbital model there are no crossings in gS at any temperatures of our
simulation. This is consistent with the theory that in a 2D system
there is no long-range spin order at finite temperatures.
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FIG. 3. Orbital Binder ratio as a function of temperature (mea-
sured in units of J1) for different L × L lattices. In contrast to the spin
variables, the discrete orbital variables undergo a phase transition,
developing long-range order at finite temperatures.

exponents ν = 1.01 ± 0.01 and γ = 1.75 ± 0.02. These
exponents are consistent with the 2D Ising universality class.
Figure 5 shows a plot of the specific heat, which grows rapidly
near Tc. It is consistent with a logarithmic divergence but with
an amplitude significantly larger than that in the pure 2D Ising
model. The amplitude of the specific heat is not universal but
is comparable for the Ising models on different 2D lattices.76

It is considerably larger in our model, presumably as the
Ising-nematic variables associated with the spins couple
directly to the orbitals and enhance the amplitude. We last
note that the sharp peak in our specific heat clearly indicates
a phase transition and its transition temperature Tc. Therefore,
the Monte Carlo simulations of our spin-orbital model are
less affected by finite-size effects compared to that in the
frustrated square lattice J1-J2 model.75

B. Exchange and single-ion anisotropy

We next consider models with spin-space anisotropy by
generalizing the scalar product

�Si · �Sj = Sz
i S

z
j + λ

[
Sx

i Sx
j + S

y

i S
y

j

]
. (6)
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FIG. 4. The scaling of the universal χ̃ versus reduced temperature
|t | = |(T − Tc)/Tc| shows that critical exponents are consistent with
the 2D Ising model.
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FIG. 5. Specific heat for the isotropic spin-orbital model under
study. The sharp peak is consistent with a logarithmic divergence at Tc .

We study the system for several values of the Ising
anisotropy parameter λ. As long as λ < 1, there is only
Ising symmetry for the spins, and both spins and orbitals can
order at finite temperatures. The effect of the anisotropy on
the orbital order is small, and the transition temperature is
raised gradually as λ is reduced. In contrast, one can see a
dramatic difference in the Binder ratios for the spin variables.
Comparing to isotropic spins, viz. λ = 1, in Fig. 2, there are
clear crossings in Fig. 6. We can extract Tc for both order
parameters using the Binder ratio.

We summarize the extraction of Tc over a range of λ

in Fig. 7. When λ is near (but not equal to) 1, we are in
a regime where the spin transition temperature is nonzero
but still separated from the orbital transition. However, even
when the anisotropy is small (in our case, |1 − λ| < 0.1),
computationally it is difficult to distinguish the two transitions.
This shows that the spin transition temperature grows very
rapidly with increasing anisotropy and it rapidly merges
with the orbital transition. We note that with anisotropy the
transition temperatures are within 10% of the mean-field value
of 0.53J1.
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FIG. 6. Spin Binder ratio for spin-space anisotropy (λ < 1) as
a function of temperature (measured in units of J1) for different
L × L lattices. For anisotropic spins with either Ising or single-ion
anisotropy, finite spin ordering is observed besides orbital order.
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FIG. 7. From Binder cumulant ratios systematic crossings are
located for systems of size L and 2L. These are plotted versus
inverse system length and extrapolated to get the thermodynamic
Tc (measured in units of J1). In all cases, the orbital crossings (solid)
approach Tc from above and the spin crossings (dashed) approach it
from below. For λ = 1, spins order only at zero temperature.

We now introduce a single-ion anisotropy, which is tied to
orbital order:

Hion = −D

N∑
i

[
niS

x
i

2 + (1 − ni)S
y

i

2]
. (7)

In transition-metal compounds, ligand crystal-field splitting
lifts the degeneracy of the transition-metal 3d orbitals, and the
orbital angular moments are usually quenched. In this case,
treating the relativistic spin-orbit coupling as a perturbation to
the second order will result in a single-ion anisotropy term that
reflects the underlying symmetry of the crystal. Therefore, an
orthorhombic structural distortion or a net orbital polarization
can lead to a single-ion anisotropy term closely tied to orbital
order. This single-ion anisotropy favors spin orientations along
the AFM direction. One ordered configuration observed in the
simulation is shown in Fig. 8.

Similar to the case of Ising anisotropy [Eq. (6)], we
have simulated these systems with different D values. For
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FIG. 8. (Color online) In the orbital configuration {ni = 1}, the
spin-orbital model with single-ion anisotropy has an AFM exchange
along the x direction and favors the spin order collinear with this
exchange. This is shown by plotting the Sx component from a typical
spin configuration when in the {ni = 1} phase. The false-color plot
represents magnitude of the spin component along the x direction.
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FIG. 9. For an isotropic(λ = 1) 24 × 24 system, we plot the
orbital and spin Binder ratios, gn and gS . gn behaves smoothly
between its limiting values while gS develops what seems like a
divergence at the transition temperature. The development of such an
incipient divergence is an indicator of a first-order transition.

|D| > 0.1, once again we see no separation of the two ordering
transitions for spins and orbitals. This shows that, like the Ising
anisotropy, the uniaxial anisotropy causes a rapid increase in
the spin-ordering temperature and it soon merges with the
orbital order.

In Fig. 9, we show the Binder ratios for orbitals and spins.
Binder ratios for orbitals remain well behaved regardless of
the anisotropy introduced in the models. However, there is
a clear incipient divergence in gS , which is indicative of a
first-order transition. In general, we find that the spins have a
greater tendency for a first-order transition than the orbitals.
The implications of these results for the pnictides are discussed
in the next section.

IV. DISCUSSION AND RELEVANCE TO THE
IRON PNICTIDES

In this section, we use the results of Monte Carlo sim-
ulations, mean-field theory, and general arguments about
quasi-2D spin systems to develop an overall phase diagram
for coupled spin-orbital systems. We will then explore the ap-
plicability of the phase diagram to the iron-pnictide materials.
The key issues of interest to us are whether there is a single
transition or two separate transitions, and whether each of the
transitions is first or second order.

A. The phase diagram of the spin-orbital model

The mean-field theory gives a simultaneous spin and orbital
transition, which could be first or second order depending on
the exchange couplings. Monte Carlo simulations show that
the spin and orbital transitions are practically simultaneous
unless the spin-space anisotropy is very small. In the latter
case, divergent long-wavelength fluctuations push the spin
transition temperature to zero, whereas the orbital transition is
not significantly affected by these fluctuations. The transition
temperatures observed in the simulations are within a few
percent of the mean-field value of 0.53J1 when the anisotropy
is large. As the anisotropy goes to zero, the orbital transition
is reduced by less than 20%, whereas the spin transition is
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reduced all the way to zero. Even a 5% anisotropy causes a
near simultaneous transition.

On general grounds, one knows that in place of long-range
order the correlation length in a 2D Heisenberg spin system
stays finite but grows exponentially as exp(C/T ) as the
temperature is lowered. This implies that if below some energy
scale ε0 these divergent fluctuations are cut off (due to for
example spin-space anisotropy or 3D coupling), it will lead to
long-range order and the transition temperature will depend
on the energy scale as 1/ ln (ε0/ε), rising very steeply with
increasing ε.73 Our Monte Carlo simulations show that unless
the spin transition is significantly suppressed by fluctuations
the spin and orbital transitions would happen together.

The simulation results also show that the isolated orbital
transition is in the universality class of the 2D Ising model.
While we have not been able to observe the isolated finite-
temperature spin transition when it is separated from the
orbital transition, on general grounds, we expect it also to be a
continuous transition in the universality class of the 2D Ising
model (due to a small but nonzero spin-space anisotropy). If the
3D couplings are more important than spin-space anisotropy,
then the transition could have a significant crossover region
in the universality class of the 3D Heisenberg model (but will
ultimately be in the 3D Ising universality class if a uniaxial
spin anisotropy is also present). When the two transitions
come together, the simulations find that the transitions tend
to become first order.

Based on the above, we propose a phenomenological phase
diagram (see Fig. 10) with the following features:

(1) The structural transition is driven by orbital ordering,
which happens at temperature TO . It is set by the exchange
energy scale in the problem.

0 0.5 1 1.5 2
ε/ε0

0

0.2

0.4

0.6

0.8

1

T
/T

0

TN
To

BA CD

1/ln(ε0/ε)

FIG. 10. Phenomenological phase diagram for the spin-orbital
model. The exchange energy scale in the problem sets the transition
temperature TO for orbital order, which in turn drives the structural
transition. ε0 is the energy scale below which long-wavelength
fluctuations are suppressed. There are two separate continuous orbital
and magnetic transitions for ε � ε0 (shown as dotted and dashed
lines, respectively) and one simultaneous first-order transition for
ε � ε0 (shown as a solid line). Near the region ε � ε0 (segment AB
in the figure), the two transition temperatures can be very close and
can be continuous or first order. In iron pnictides, ε would refer to the
larger of the spin anisotropies or 3D couplings.

(2) Let ε0 be the energy scale below which the long-
wavelength fluctuations are suppressed. Then the ratio of Néel
to orbital transition can be parametrized as (x = ε/ε0)

TN

TO

= 2 − x

1 + ln 1/x
for x � 1 (8)

and

TN/TO = 1 for x � 1. (9)

We have two continuous phase transitions for x � 1 and one
simultaneous first-order transition for x � 1. In between, the
region x � 1 can have a small stretch where the two transitions
are practically inseparable but remain continuous (AB in
Fig. 10). The two transitions merge into a first-order transition
at the point B in Fig. 10.

We last note that in principle, doping can be the source
of another kind of additional fluctuation which significantly
reduces both spin and orbital transition temperatures from
the mean-field values. This can also lead to the separation of
structural and magnetic transition as observed in many families
of iron pnictides.

B. Discussion of materials

We next discuss the relevance of this study to various
experimental findings in the iron-pnictide materials.

As mentioned previously, the parent compounds of the 1111
family have two separate second-order phase transitions, while
in the 122 family the two transitions are closer to each other
in temperature. In the undoped BaFe2As2, the two transitions
are slightly separated, where the structural transition starts as
second order and is followed by a simultaneous first-order
jump both in the lattice distortion and magnetic transition at
a lower temperature.39–41 On the other hand, in CaFe2As2 and
SrFe2As2 the structural and magnetic phase transitions happen
together as a single first-order transition.42–44

The three behaviors reported in different iron-pnictide
materials are all captured by our phase diagram of a coupled
spin-orbital Hamiltonian. In particular, phase transitions in the
1111 family correspond to the case when ε is small and away
from ε0, where the structural and magnetic phase transitions
are separated and of second order. On the other hand, phase
transitions of CaFe2As2 and SrFe2As2 correspond to the case
when ε is much larger than ε0, where the two transitions occur
as a single first-order transition. The region ε � ε0 is relevant
to BaFe2As2. In this case, the structural and magnetic transition
temperatures can be very close and there is a tendency for the
magnetic transition to become first order. This indicates that
these materials are close to the boundary between the distinct
regions.

One can further ask which interaction term controls ε in the
iron-pnictide materials. In this study we have investigated the
role of spin-space anisotropies described by Eq. (6) or Eq. (7).
Their effects on the transition temperature are in essence
the same as exchange couplings in the third direction.38,51,53

Phenomenologically, ε would refer to the larger of the terms
in determining the phase transitions. It is known that the 122
family is more disperse in the third direction than the 1111
family. In particular, in the 122 family spin-wave spectra
from neutron scattering are usually fitted with an additional
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3D exchange coupling Jc, while for the 1111 materials Jc is
essentially zero. In BaFe2As2, the third-direction coupling is
nonzero but also appears small; the reported Jc/J1 is roughly
1%.78,79 Since a 2D Ising universality has been found for this
material,77 a uniaxial spin anisotropy could be more important.
On the other hand, in CaFe2As2 and SrFe2As2, Jc is more
substantial and Jc/J1 is estimated to be 10%.22,80 Therefore,
in these materials spin exchange coupling in the third direction
could be the controlling factor for ε.

We note that coupling to other degrees of freedom such
as the lattice variable could also turn the isolated orbital or
magnetic transition into first order. However, besides the phase
diagram, the orbital variables have proven indispensable in
describing various other properties of iron-based supercon-
ductors such as the emergent transport anisotropies.23–27,81,82

A modest orbital polarization has been reported by angle-
resolved photoemission (ARPES) experiments performed on
the 122 family of iron pnictide materials.33–36 This observation
is crucial in explaining the striking phenomenon that in these
materials the resistivity is smaller in the longer AFM axis.23–27

This unexpected behavior is striking especially because optical
measurements indicate a smaller scattering rate along the
shortened FM direction.28,29 It is the presence of an anisotropic
effective mass due to a preferred occupation of dxz over dyz

orbitals on the Fermi level that renders a better conducting
pathway along the AFM direction.81,82

As mentioned previously, with a preferential occupation of
dxz orbitals over dyz orbitals, relativistic spin-orbit coupling
can induce an orbital angular momentum in the x-y plane and
lead to a single-ion anisotropy. An excess population of dxz

orbitals (through an induced dxz + idxy piece) can favor spins
to point along the x axis while excess population of dyz orbitals
can favor spins to point along the y direction. We propose that
this mechanism is the reason why the observed directions of
ordered spin moments are tied to antiferromagnetism and end
up pointing along the AFM direction.

We last note that a possible orbital ordering has also been
proposed for Fe1+yTexSe1−x (the so-called 11 family of iron
chalcogenides).83,84 In these materials, the ordered moments
form a (π/2,π/2) diagonal double stripe pattern, and the spin
orientation points toward the FM direction.85,86 Based on our
discussion above, we believe this implies on the Fermi level a
preferred population of Wannier functions whose orbital lobes
point along the same direction. One direct consequence of
this prediction is that in 11 iron chalcogenides resistivity is
smaller in the FM direction.84,87 This is indeed consistent with
recent resistivity measurements.88 The above prediction could
be further tested by future ARPES and optical experiments on
detwinned iron chalcogenides.

V. CONCLUSION

In summary, we have studied finite-temperature phase tran-
sitions in a Hamiltonian of coupled Heisenberg spin and Ising
orbital degrees of freedom. Using mean-field theory, Monte
Carlo simulations, and general arguments we established the
phase diagram of such a spin-orbital model and discussed
its relevance to the iron-pnictide superconductors. We found
that if spin rotational invariance is preserved, the magnetic
transition temperature is pushed to zero in accord with the

Mermin-Wagner theorem. In this case, there is only one single
finite-temperature orbital phase transition which belongs to
the 2D Ising universality class. By introducing spin-space
anisotropies into the Hamiltonian, spins can order at finite
temperatures and the magnetic and orbital transitions are found
to couple together and become first order. This phase diagram
captures several observed behaviors in the 1111 and 122
families of iron pnictides. We also studied the case when
relativistic spin-orbit coupling leads to a uniaxial anisotropy
and found that the preferred spin orientation is driven by orbital
order. This explains why the direction of ordered moment in
these materials is tied to their antiferromagnetism.

In the field of iron-based superconductors, there are
several open questions that remain to be answered. It is
interesting to further explore other experimental implications
of model Hamiltonians with coupled spin and orbital degrees
of freedom. For example, can fluctuations in orbital and/or spin
variables account for various anomalous phenomena that occur
above the structural and magnetic transition temperatures?89

What are the effects of orbital order and orbital fluctuations on
twin boundaries? Are they related to the enhanced supercon-
ductivity at domain walls in these materials?90,91 Calculations
to address these interesting open questions are areas of future
study.
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APPENDIX

1. Monte Carlo simulations with parallel tempering

We have used a parallel tempering exchange Monte Carlo
(EMC) method to simulate our models.92,93 It is an efficient
extended ensemble simulation method that simulates multiple
copies (replicas) of the system simultaneously at different
temperatures. Exchanges between replica configurations are
accepted or rejected in accordance with detailed balance.
Replica exchange has been used to study systems spanning
many fields including strongly correlated systems, biological
pathways, and spin glasses.94 The advantage of these methods
is that while at high temperatures the system’s memory is
erased, when replicas go back to lower temperatures they
explore large phase space uncorrelated in Monte Carlo time.95

Recently, Katzgraber et al.93 showed that in order to
maximally benefit from EMC, the temperature distribution
must be determined in a nontrivial way via a “feedback”
method. The temperature distribution {Ti} is obtained by
starting with some initial set and recording statistics on the
“round trip” time from Tlow to Thigh. Minimization of this round
trip time results in the optimal distribution. The end points,
{Tlow . . . Thigh}, are fixed and feedbacks of the simulation
are done until the distribution converges. The evolution of
acceptance probability is shown in Fig. 11. Once {Ti} is
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FIG. 11. The acceptance probability is plotted versus temperature
for several feedback steps. The initial geometric distribution shows a
pronounced dip in acceptance near the critical point and later feedback
steps show how this is corrected by clustering replicas around Tc.

determined, an exchange Monte Carlo simulation is performed
using the stored optimal temperature distribution.

Between the EMC moves that exchange replicas, one has
some freedom in how to update each individual replica,
provided one can always know the energy of that replica.
We choose to do local spin/orbital flips by sweeping over the
lattice and randomly choosing whether or not a site in the
lattice attempts a spin flip or an orbital flip.

2. Orbital and spin measurements

There are two order parameters of interest for our Hamil-
tonian, one associated with the orbital degrees of freedom and
another with the spin degrees of freedom. We measure second
and fourth moments for both variables, and, in the case of the
magnetization, we measure at the two AFM wave vectors of
interest, �Q1 = (π,0), and �Q2 = (0,π ).

〈n2〉 =
〈[(

1

N

N∑
i

ni

)
− 〈n〉

]2〉
, (A1)

〈n4〉 =
〈[(

1

N

N∑
i

ni

)
− 〈n〉

]4〉
, (A2)

〈S2〉 =
〈(

1

N

N∑
i

�Sie
i �Q·�ri

)2〉
, (A3)

〈S4〉 =
〈(

1

N

N∑
i

�Sie
i �Q·�ri

)4〉
. (A4)

The ni take value 0 or 1 in our model and 〈n〉 = 1
2 . The

Si are classical Heisenberg spins with magnitude unity and
〈�S〉 = 0. These orbital and spin measurements are used to
evaluate Binder cumulant ratios as discussed below.

3. Binder ratios

We define the Binder ratios for the orbitals gn and for the
spins gS through the relations

gn = 〈n4〉
〈n2〉2

, (A5)

gS = 〈S4〉
〈S2〉2

. (A6)

At low temperatures, the spin and orbital order parameter
distributions will be sharply peaked at their extremum values.
At high temperatures all variables will have gaussian distribu-
tions.

For T � Tc the orbital quantities are

〈n2〉 = 1
4 , (A7)

〈n4〉 = 1
16 , (A8)

gn = 1. (A9)

For the spins, the low-temperature limits are

〈S2〉 = 3
2 , (A10)

〈S4〉 = 9
2 , (A11)

gS = 2. (A12)

The two orbital orders divide the system between Q1 and
Q2, resulting in limits different from those of a system without
competing ordering wave vectors.

At high temperature, T � Tc, we get well-known results
for the Binder ratio:

〈n2〉 = 1, (A13)

〈n4〉 = 3, (A14)

gn = 3, (A15)

〈S2〉 = 3, (A16)

〈S4〉 = 15, (A17)

gS = 5
3 . (A18)

The difference between orbitals and spins comes purely
from the dimensionality of the variable. We note that for gS ,
in contrast to the low-temperature limits, the high-temperature
limits do not depend on the presence of two ordering wave
vectors.

4. First- and second-order phase transitions

We can estimate the thermodynamic Tc by carefully study-
ing the size dependence of various physical quantities. We
rely on the Binder ratios defined previously and well-known
finite-size scaling arguments to address the types of transitions
we measure. We propose the usual scaling ansatz for the
susceptibility,

t = T − Tc

Tc

, (A19)

χ (t,L) = Lγ/νχ̃ (L1/ν |t |). (A20)

Here t is the reduced temperature, and χ (t,L) is the suscepti-
bility per spin for a system of size L. χ̃ is some unknown but
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FIG. 12. For an anisotropic (λ = 0.75) 24 × 24 system, we plot
the orbital and spin Binder ratios, gn and gS . gn and gS both develop
what seem like a divergence at the transition temperature. The
development of such an incipient divergence is an indicator of a
first-order transition.

universal function and ν and γ are critical exponents which
denote the power-law divergence at Tc.

The Binder ratios gn and gS have the property that at Tc,
they are independent of system size, universal constants of
the system. We find Tc from Binder ratio measurements for
many pairs of systems of size L and 2L and plotting versus

temperature. A crossing for a given pair gives a constant and Tc.
Size dependence of this constant exponentially decays to zero
versus the system size.96 A more prominent size dependence
occurs for the spins than orbitals in Fig. 7. We extrapolate
the size dependence to large L by fitting the exponential
decay. The y intercept of this fit is the thermodynamic
Tc.

Next we discuss the determination of the order of the
transition that motivates our phase diagram for the pnictides.
At a second-order phase transition, various thermodynamic
quantities develop power-law singularities characterized by
critical exponents, in this case ν and γ . We arrive at Fig. 4
by varying critical exponents until a collapse of all points
is achieved. In the case of anisotropy, there are no critical
exponents that produce a good data collapse, an indication
that the transition is not second order. To support the claim
that the anisotropy leads to first-order transitions, we show a
plot of Binder ratios for spin-space anisotropy (λ = 0.75) in
Fig. 12. The Binder ratio for spins develops a divergence near
Tc that is accompanied by a weak divergence for the orbital
Binder ratio. On its own, this method does not conclusively
establish the first-order nature of the transition. However, in
conjunction with the lack of critical exponents, we propose
the phase diagram in Fig. 10. Larger system sizes would be
helpful in further studying the divergence of Binder ratios
in Figs. 9 and 12.97
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