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It has previously been pointed out that the coexistence of infinite-range and short-range interactions causes a
system to have a phase transition of the mean-field universality class, in which the cluster size is finite even at the
critical point. In the present paper, we study this property in a model of bistable molecules, whose size changes
depending on the bistable states. The molecules can move in space, interacting via an elastic interaction. It is
known that due to the different sizes, an effective long-range interaction between the spins appears, and thus this
model has a mean-field type of phase transition. It is found that the scaling properties of the shift of the critical
temperature from the pure short-range limit in the model with infinite-range and short-range interactions hold
also in the present model, regarding the ratio of the size of the two states as a control parameter for the strength
of the long-range interaction. By studying the structure factor, it is shown that the dependence of the cluster
size at the critical temperature also shows the same scaling properties as a previously studied model with both
infinite-range and short-range interactions. We therefore conclude that these scaling relations hold universally in
hybrid models with both short-range and weak long-range interactions.
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I. INTRODUCTION

The divergence of the correlation length at the critical point
is considered to be one of the most important properties of
second-order phase transitions. However, it is also known that
in phase transitions of infinite-range interacting systems that
belong to the mean-field universality class, the correlation
length does not diverge, and the spatial configuration is
uniform with no domain structures or clustering. In a previous
work, we studied a hybrid model with both short-range and
weak long-range interactions.1 The Hamiltonian of that model
is given by

H = (1 − α)HIS + αHMF, (0 � α � 1), (1)

with

HIS = −J
∑
〈i,j〉

σiσj , (2)

and

HMF = − 4J

2N

∑
i,j

σiσj = −2J

N

∑
i,j

σiσj . (3)

We defined the model on the square lattice with periodic
boundary conditions. Here, the strength of the infinite-range
interaction is controlled by varying α. When α = 0, the system
is equivalent to the pure short-range Ising model, and the
system with α = 1 is equivalent to the pure infinite-range
interaction model. The critical temperature in the previous
hybrid model (1) shows a crossover from that of the pure
short-range Ising model to that of the infinite-range interaction
model. It should be noted that even for infinitesimally small

α, the phase transition belongs to the mean-field universality
class, and at the critical point, the spin configuration is uniform
with no large-scale clustering. A scaling formula for the α

dependence of the critical temperature Tc is found, such that

Tc(α) − T IS
c

T MF
c − T IS

c

� 1.773517α
1
γ = 1.773517α

4
7 . (4)

The correlation length ξc at Tc is also found as a function of α,

ξc(α,L) = Lf (Lα
ν
γ ) = Lf (Lα

4
7 ), (5)

for small α and large L. The function f (x) is a scaling function
which asymptotically approaches 1/x for large x.

Although the long-range interaction in this model is rather
artificial, recently it has been pointed out that spin-crossover
materials and related materials show a similar kind of long-
range correlation.2 Spin-crossover materials are molecular
crystals, in which the molecules can exist in two different
states: the high-spin (HS) state and the low-spin (LS) state.
The HS state is preferable at high temperatures because
of its high degeneracy, while the LS state is preferable at
low temperatures because of its low enthalpy. In addition to
temperature, pressure changes and light exposure also often
induce a phase transition in spin-crossover materials. Spin-
crossover and related materials are used in many applications,
because of their inherent bistability that leads to changes
in optical and magnetic properties, etc.3 Phase transitions
in spin-crossover and related materials have been studied
extensively in chemistry4–10 and recently also in physics.11–16

For a wide variety of applications, it is of great interest to study
the ordering process in spin-crossover materials.
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This type of materials are also regarded as fundamental
models for intermolecular short-range and elastic interactions
due to the lattice distortion, and an elastic interaction model
has been proposed.2,11 An important characteristic of this
model is an effective long-range interaction due to the lattice
distortion caused by the size difference between the HS
(large) and LS (small) molecules. Even at the critical point,
there exists no large-scale domain structures. However, in the
elastic interaction model, there does not exist intermolecular
short-range interaction, so the model does not show any
crossover from an effective short-range interacting system
to an effective long-range interacting system. Therefore,
developing quantitative hybrid models with both short-range
and the elastic interactions for the critical behavior of such
materials is very important.

In this paper, we focus on a system with both elastic
interactions and short-range Ising interactions. We perform
Monte Carlo (MC) simulations to study the properties of this
model at the critical point. The rest of the paper is organized
as follows. In Sec. II, we introduce a new model with both
elastic and short-range Ising interactions, and we propose a
relation between this model and the model studied previously.1

We find that the scaling formulas for the critical temperature
and correlation length obtained in the previous paper1 apply
to this model, as well. In Sec. III, we briefly review the MC
algorithms and give the result of MC simulations for the critical
temperature, confirming the relation. In Sec. IV, we similarly
confirm the scaling form of the correlation length at the critical
point. In Sec. V, we summarize our results, and in the Appendix
we discuss in detail how we calculate the correlation length at
the critical point.

II. MODEL

In this paper, we adopt the following model with both lattice
distortion and inter-molecular short-range interactions on the
square lattice with periodic boundary conditions. From now
on, L denotes the number of molecules along an edge of the lat-
tice, so the total number of sites is N = L2. The Hamiltonian is

H = HIS + Hnn + Hnnn + Heff, (6)

with⎧⎪⎪⎨
⎪⎪⎩
HIS = −J

∑
〈i,j〉 σiσj ,

Hnn = k1
2

∑
〈i,j〉[|r i − rj | − (Ri(σi) + Rj (σj ))]2,

Hnnn = k2
2

∑
〈〈l,m〉〉[|r l − rm| − √

2(Rl(σl) + Rm(σm))]2,

Heff = (
D − kBT

2 log g
) ∑N

i σi,

(7)

where r i represents the continuous coordinate of the molecule
i, and Ri(σi) is the radius of the molecule i which depends
on the molecular state σi . Here σi = +1 and −1 represents
HS and LS state, respectively. Hereafter, we simply call
σi the spin state. HIS is the short-range pure Ising model.
Hnn and Hnnn denote the elastic interaction Hamiltonians
of nearest-neighbor 〈i,j 〉 and next-nearest-neighbor 〈〈l,m〉〉
pairs, respectively, and k1 and k2 are the corresponding spring
constants. The next-nearest-neighbor interaction is introduced
to maintain the shape of the lattice, and the strength of k2 is
not important as long as the global shape of the square lattice

is kept. Here we take k2 = k1/10. We define the pure elastic
interaction model as

HElastic ≡ Hnn + Hnnn. (8)

The molecular radius is determined by the local spin state:
RH for the HS state (large, σi = +1) and RL for the LS
state (small, σi = −1). When |r i − rj | is equal to the sum
of the radii Ri(σi) + Rj (σj ), the corresponding contribution
to the elastic energy has its minimum. In Heff , which
represents the ligand field, D denotes the energy difference
between the HS state and LS state, and g denotes the ratio
of the degeneracies of the HS state and LS state. The order
parameter of these models (6) and (8) is defined as

m ≡
∑N

i σi

N
, (9)

which is related to the fraction of HS molecules, fHS, as
m = 2fHS − 1.

In order to see the competition between the short-range
interaction and the lattice distortion due to the molecular size
difference, we consider the model (6) along the coexistent
line, 〈m〉 = 0, as we studied in the previous work for the Ising
model. Thus we set D − (kBT/2) log g = 0. For simplicity,
this situation is described by the present model (6) in which
D = 0 and g = 1. In this model, a ferromagnetic second-order
phase transition takes place at the critical temperature Tc.
Below Tc, there exist two different ordered states, the HS state
and the LS state.

It has been found that in the pure elastic interaction model
(8), the spin configuration is uniform at the critical point, with
no large-scale clustering.2 The phase transition belongs to the
mean-field (MF) universality class, and the spin correlation
function approaches a nonzero constant in the long-distance
limit.

The origin of the long-range interaction in the elastic model
is lattice distortion due to the size difference between the HS
and LS states. We expect that the ratio of the radii RL/RH

controls the strength of the effective long-range interaction.
Namely, RL/RH plays a role similar to α in the previous hybrid
model (1). The strength of the long-range interaction is given
by the elastic energy, which is of the order of (k1/2)(RH −
RL)2 ∝ (1 − RL

RH
)2. We therefore consider that the parameter

to indicate the strength of the long-range interaction is given
by

α ∝
(

1 − RL

RH

)2

. (10)

With this relation, we expect that the relations (4) and (5) take
the following forms,

Tc

(
RL

RH

)
− T IS

c ∝
(

1 − RL

RH

) 8
7

, (11)

and

ξc

(
RL

RH
,L

)
= Lf

(
L

(
1 − RL

RH

) 8
7

)
, (12)

respectively. As in our previous work,1 as long as the value of
1 − RL/RH is small, we expect these formulas to be correct.
In Fig. 1, we depict a typical configuration of the elastic and
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FIG. 1. (Color online) Typical configuration of the mixed elastic
and short-range interaction model at the critical point. RH/RL = 1.1,
for which Tc = 0.54575. Light gray (red online) solid circles denote
HS state spins, and dark gray (blue online) solid circles denote LS
state spins.

short-range interaction model at its critical temperature. Unlike
the pure short-range Ising model, the spin configuration is
uniform with no large-scale clustering, even at the critical
temperature. A lattice distortion also occurs, and we observe
an uneven system surface.

III. CRITICAL TEMPERATURE

In this section, we perform MC simulations to test
the scaling relation for the critical temperature (11). For
the simulation, we adopt the NPT -MC method15 for the
isothermal-isobaric ensemble with the number of molecules
N , the pressure of the system P , and the temperature T . In
this paper, in order to exclude other effects than those due
to the elastic interaction through distortion, we fix P = 0.
We also fix the spring constants as k1 = 40 and k2 = 4 as
in our previous work.2 The critical temperature of the pure
elastic interaction model (8) is T Elastic

c � 0.2 for RH = 1.1,2

and we choose J = 0.1 in order to keep the two terms in the
present model (6) of comparable magnitude near the critical
temperature. Therefore, T IS

c = 0.2269 . . . in these units on the
square lattice. We use a standard Metropolis method, adopting
periodic boundary conditions. In most cases, we performed
eight independent runs of 4 000 000 Monte Carlo steps per spin
(MCSS) for each data point with 100 000 MCSS for the initial
equilibration. We confirm that the statistical errors are smaller
than the marks in the following graphs. We fix RL = 1.0 and
choose RH = 1.005,1.008,1.010,1.015,1.02,1.05, and 1.1.

We have previously pointed out that even infinitesimally
weak long-range interactions become dominant in the ther-
modynamic limit.1 In the case of the previous hybrid model
(1), this property is explained by the fact that in a well

coarse-grained Hamiltonian, the long-range interactions be-
come stronger than the short-range ones. We need systems
sufficiently large that clusters caused by the short-range
interactions can be regarded as block spins.1 Here we assume
that this size-dependent crossover phenomenon also takes
place in the present model (6).

Here, in order to estimate the critical temperature, we adopt
a method we also used in our previous paper. We use the
crossing point of the forth-order Binder cumulant17 U4(L)
for different system sizes to estimate the critical temperature
Tc(RL/RH) with high precision. The cumulant is defined as

U4(L) ≡ 1 − 〈m4〉L
3〈m2〉2

L

, (13)

where m = 1/L2 ∑
i σi . In the case of the pure elastic inter-

action model (8) on the square lattice with periodic boundary
conditions, the fixed-point value of the cumulant2 is the same
as the exact value for the infinite-range interaction model
(3), UMF

4 � 0.27 . . ..18,19 With the radii ratio RL/RH = 1, the
present model (6) is equivalent to the pure Ising model on
the square lattice with periodic boundary conditions. For this
case the fixed-point value of the cumulant is the same as the
value for the Ising model (2), U IS

4 � 0.61 . . . on the square
lattice.20 Other shapes of the system, boundary conditions, and
anisotropy may lead to different values of U4 at the crossing
point.21,22

In Fig. 2, we see that the crossing points of the Binder
cumulant decrease toward the mean-field fixed-point value,
UMF

4 � 0.27 . . .18,19 from the Ising fixed-point value, U IS
4 �

0.61 . . .20 as L increases. This indicates that a size-dependent
crossover occurs, and that the critical point of this model
belongs to the mean-field universality class. We estimate the
critical temperature as follows. Assuming that the critical
behavior of the model belongs to the mean-field universality
class, we get a series of upper bounds on the critical temper-
ature as the temperature at which U4(L) crosses UMF

4 . Lower
bounds are given by the cumulant-crossing temperatures of
U4(L) and U4(L/2). In Fig. 3, bars denote those upper bounds
and lower bounds of the critical temperature, and we plot
the middle points of those bounds by bullets. Increasing L,
the temperature range between the upper bounds and the
lower bounds becomes narrow.For each value of RL/RH, we
extrapolate those middle points for the two largest system sizes
versus 1/L to obtain the corresponding critical temperature in
the thermodynamic limit. With this method, we expect that a
critical temperature of a hybrid system with both short-range
and long-range interactions can be obtained accurately in
general.The data collapse well onto a straight line as shown
in Fig. 4, confirming the scaling form (11) for RH smaller
than 1.02. The points fall above the line for large values of
1 − RL/RH. In this model, we fix the strength of the Ising
interactions, while in the previous hybrid model (1), the factor
1 − α multiplying the Ising Hamiltonian causes a deviation of
the critical temperature in the opposite direction (see Fig. 4 of
Ref. 1).

IV. CORRELATION LENGTH

In this section, we perform MC simulations to test the scal-
ing relation for the correlation length at the critical point (12).
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FIG. 2. (Color online) Temperature dependence of the Binder cumulant U4(L) for (a) RH = 1.005, (b) RH = 1.01, (c) RH = 1.02, and
(d) RH = 1.05. Points denote Monte Carlo data, and the solid lines are polynomial fits. The upper and lower horizontal lines denote the
fixed-point values for the Ising model (U IS

4 � 0.61) and the infinite-range model (UMF
4 � 0.27), respectively. The left vertical line in (a)

represents the critical temperature of the pure Ising model. The linear system size L is 10,20,40,80,160, and 320 for circles, squares, upward
triangles, downward triangles, diamonds, and asterisks, respectively.

We previously calculated the critical correlation length in the
previous hybrid model (1) from MC simulations.1 In that paper,
we used the spin-correlation function c(r) = 〈σ (r ′)σ (r ′ + r)〉
to estimate the correlation length, excluding the contribution
of long-range correlations from the correlation function. In
the present model (6), because of strong anisotropy of the
correlations,2 it is not practical to calculate the correlation
length ξ (RL/RH) with this method.

Here we instead obtain the correlation length from the
structure factor,

S(k) = 1

N

∑
l,m

〈σlσm〉eik·r l,m , (14)

which is readily measured in scattering experiments. All
the contributions of the long-range correlations are given by
S(k = 0), so we can easily exclude them from the calculation.
Here we note that there exist many experimental studies on
the structure factors of magnetic materials,29 obtained by
neutron scattering. In the case of spin-crossover materials, the
structures have been studied by single-crystal x-ray diffraction
experiments.30,31 The structure factor for the HS/LS state

domains discussed in the present paper can be obtained from
diffuse x-ray scattering.

In the pure short-range Ising model at the critical tem-
perature, the structure factor has its peak at k = 0 with
infinitesimally narrow width in the thermodynamic limit.
However, in the hybrid model with both short-range and
long-range interactions, the system prefers a spatially uniform
configuration and the cluster size is suppressed even at the
critical temperature, and the peak has a finite width in the
thermodynamic limit. Here we obtain the correlation length
at the critical point ξc by calculating the characteristic peak
width of the structure factor.

In Fig. 5, we depict the structure factor of the pure Ising
model at its critical temperature (circles) together with that
of the hybrid model at its critical temperature (squares).
Figure 5(a) shows the structure factor of the system for
L = 160, and Fig. 5(b) is for L = 20. We find a qualitative
difference between these figures. Namely, we find a flat region
in S(k) of the hybrid model around k = 0 in Fig. 5(a), while
S(k) for both the pure short-range Ising model and the hybrid
model show similar peaks in Fig. 5(b).
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(a) (b)

FIG. 3. (Color online) Size dependence of the crossing point of the Binder cumulant (a) and an enlarged view of the same for small
RH (b). From above to below, we show simulation results with L = 20,40, and 80 for RH = 1.10 and 1.05, L = 20,40,80, and 160 for
RH = 1.02,1.015,1.01, and 1.008, L = 20,40,80,160, and 320 for RH = 1.005. The points at 1/L = 0 are linear extrapolations from the two
smallest nonzero values of 1/L. Solid squares, solid circles, diamonds, downward triangles, upward triangles, open squares, and open circles
represent Tc(L) for RH = 1.10, RH = 1.05, RH = 1.02, RH = 1.015, RH = 1.010, RH = 1.008, and RL = 1.005, respectively.

The structure factor of the hybrid model consists of two
parts: a δ function at k = 0 and a broad peak reflecting short-
range order with the correlation length ξc. The two parts are
superimposed in Fig. 5(a). The flat region belongs to the diffuse
peak, which is due to the finite cluster structure of the hybrid
model. We find that for sufficiently large systems, the diffuse
peak and the δ peak at k = 0 are well distinguished. In those
systems, we define the characteristic peak width |kpeak| as the
spectral peak width of the diffuse peak as shown by the arrows
in Fig. 5(a).

In Fig. 5(b), for small L, the resolution in k space (2π/L) is
rather coarse, so the data points do not reflect the finite width
of the peak in the hybrid model well. It is hard to distinguish
between the structure factors of the Ising model and the hybrid
model in such small systems.

FIG. 4. (Color online) The (1 − RL
RH

) dependence of the shift of
the critical temperature in a log-log plot. The oblique dashed line
(blue online) represents a numerical fit of the four leftmost points to
(1 − RL

RH
)

8
7 .

We note that the sum rule of the structure factor is∑
k S(k) = N . In the hybrid model, S(k) for large |k| is larger

than that of the pure short-range Ising model because S(k)
around k = 0 is suppressed in the hybrid model.

We can estimate the correlation length ξ from the structure
factor by considering the first moment of k−1,

〈k−1〉 ≡
∑
k 	=0

1

|k|S(k), (15)

where k = |k|. In our present model, the correlation function
of the spin configuration is given by2,23

〈σiσj 〉 = c(r i,j ) = cSR(|r i − rj |) + cLR. (16)

Here, cSR(|r i − rj |) denotes the contributions from the short-
range interactions, and cLR denotes those from the long-range
interactions. We note that the long-range correlation cLR

does not depend on the distance |r i − rj |. In Eq. (15),
the contribution from the long-range correlations cLR [i.e.,
S(k = 0)] is excluded, so we use the asymptotic formula for
the pure short-range Ising model,24

c(r) ∝ 1

r2−d+η
e−r/ξ . (17)

In the thermodynamic limit, we replace the sum in (15) by an
integral:

〈k−1〉 =
∫ ∞

k=2π/L

∫ 2π

φ=0
kdkdφ

1

k

∫ ∞

r=0

∫ 2π

θ=0
rdrdθeikrcosθ c(r)

(18)

∝
∫ ∞

k=0
dk

∫ ∞

r=0
drr1−ηe−r/ξ J0(kr) (19)

= ξ 1−η

∫ ∞

K=0

∫ ∞

R=0
R−ηe−RJ0(K)dKdR (20)

∝ ξ 1−η = ξ 3/4. (21)

In the last line, we use the substitutions, K = kr , R = r/ξ ,
and J0(K) is the Bessel function. There is no singularity in
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2πkx /L (ky=0)2πkx /L (ky=0)

FIG. 5. (Color online) The structure factor of the pure short-range Ising model (circles) and the hybrid model with RH = 1.02 (squares), at
each its critical point. (a) L = 160 and (b) L = 20.

the integral, and 〈k−1〉 gives a power of the correlation length.
Therefore we define the critical correlation length ξc at the
critical temperature Tc as follows,

ξc ∝ 〈k−1〉
4
3
c , (22)

where 〈k−1〉c represents the value at the critical point. The
scaling relation for 〈k−1〉c is, by making use of (12),

〈k−1〉
4
3
c ∝ ξc = Lf

(
L

(
1 − RL

RH

) 8
7

)
, (23)

where g(x) ∝ 1
x

for x → ∞.
We obtained 〈k−1〉c and the corresponding values of ξc for

various values of L and RL/RH. Those are plotted in Fig. 6.
In the enlarged view of Fig. 6 for small L, we find inflection
points. For small L, ξc(RL/RH,L) grows faster in the hybrid
model than in the pure Ising model.

Here let us consider the reason for this behavior. This
fast growth is due to the coarse resolution in k space.
The characteristic peak width of the hybrid model does
not represent well the structure factor in the small systems
[Fig. 5(b)], and the correlation length of the hybrid model is
overestimated in Eq. (23). This extra size dependence for small
size comes from the discontinuous nature of k space, and is
not essential for the present purpose.

For large L, the growth of ξc(RL/RH,L) becomes much
slower than in the pure Ising model. For RH = 1.02 and L =
320, ξc(RL/RH,L) is almost saturated. For other values of RH,
ξc(RL/RH,L) is expected to saturate for still larger systems. It
means that for sufficiently large systems, the difference of the
structure factor of the hybrid model and the pure short-range
model is clear.

The same behavior is found in the previous hybrid model
(1). In both models, the previous hybrid model (1) and
the present model (6), the long-range interactions suppress

(a) (b)

FIG. 6. (Color online) The size dependence of 〈k−1〉
4
3
c ∝ ξc at the critical point Tc(RL/RH) (a), and an enlarged view of the same for small

L (b). L = 2,4,6,8,10,14,20,30,40,80,160, and 320. Circles, squares, upward triangles, downward triangles, diamonds, and crosses represent
T = 0.23107 for RH = 1.003, T = 0.23428 for RH = 1.005, T = 0.23965 for RH = 1.008, T = 0.24345 for RH = 1.01, T = 0.2537 for
RH = 1.015, and T = 0.2649 for RL = 1.02, respectively. The dashed line (blue online) represents T = 0.2269 for RH = 1.00, the pure
Ising-model limit.
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FIG. 7. (Color online) Scaling plot of the correlation length
at the critical point. Circles, squares, upward triangles, downward
triangles, diamonds, and crosses represent T = 0.23107 for RH =
1.003, T = 0.23428 for RH = 1.005, T = 0.23965 for RH = 1.008,
T = 0.24345 for RH = 1.01, T = 0.2537 for RH = 1.015, and T =
0.2649 for RL = 1.02, respectively. Data are included only for
L > Lcl. The dashed line is proportional to y = x−1. The data are
in good agreement with the scaling relation, but they converge more
gradually to the asymptotic formula than when the correlation length
is calculated from the correlation function.1

the clustering of spins. Thus there appear tightly correlated
effective block spins. In the coarse-grained Hamiltonian with
the block spins, the long-range interactions become effectively
stronger than the short-range interactions.1

According to this picture, for L smaller than the clusters
caused by the short-range interaction, the long-range inter-
action is irrelevant. Thus, for small L, the system is an
effective short-range interacting system. On the other hand,
for sufficiently large L, the system is an effective long-range
interacting system. We refer the crossover length as Lcl, which
we define as Lcl = 1/|kpeak|. The inflection points in Fig. 6 also
indicate the crossover length of the system size Lcl. For L >

Lcl, the correlation length at the critical point, ξc(RL/RH,L),
tends to be saturated. For L < Lcl, ξc(RL/RH,L) grows faster
than linear.

We also found that the peak position of χ̃ (L) ≡ 1
NT

(〈M2〉 −
〈|M|〉2) shows similar behavior. The peak position, the
effective “critical point” for a system of size L, saturates at
the critical temperature in the thermodynamic limit:

Tc

(
RL

RH
,L

)
→ Tc

(
RL

RH
,∞

)
. (24)

As in the previous work,1 we found a nonmonotonic depen-
dence of the peak position as a function of L. For small L,
the peak positions approach Tc from the high-temperature
side, while for large L, the peak position is on the low-
temperature side and eventually approaches Tc from below.
This nonmonotonic behavior indicates the crossover from
the effective short-range system to the effective long-range
system. It is an interesting problem to study the relation
between the crossover phenomena in χ̃ (L) and the correlation

length ξc in Fig. 6. We expect that this general system size
dependence occurs in any hybrid model where effective spins
play an important role.

In the Appendix, we discuss in detail how the correlation
lengths are measured. In Fig. 7, we plot the data for L >

Lcl(RL/RH) in a scaling plot of the form (23). We find that
the data collapse onto a scaling function and thus we conclude
that (23) is justified.

V. SUMMARY AND FURTHER DISCUSSION

In general, spin-crossover and related materials have both
short-range and long-range interactions. If the elastic potential
is chosen spin-state dependent,27,28 in which different potential
functions (coupling constants) are given for LS-LS, LS-HS,
and HS-HS molecular pairs, it is considered that the interaction
has intrinsically both short-range and long-range components.
In this paper, we have studied critical properties of the present
model (6) with elastic and short-range interactions. By Monte
Carlo simulations we confirmed that the present model obeys
a scaling relation for the shift of the critical temperature as a
function of the strength of the long-range interaction, which
is determined by the ratio of the radii of the molecules in
both states. We similarly confirmed that the present model
also obeys a scaling relation for the correlation length at
the critical point, which was found in our previous work
for the hybrid model with infinite-range and nearest-neighbor
interactions.1 Although the origin of the long-range interaction
is very different in the previous model and the present
model, we found several kinds of universality in their critical
properties.

In the present model, because of the anisotropy in the
correlation function, we estimated the correlation length from
the structure factor. By this method, the correlation length
can be measured in scattering experiments on real materials.
Because spin-crossover materials usually undergo first-order
phase transitions, experiments on the structure factors of these
materials have been so far only done for HS/LS ordered
phase.30,31 Our results show that the structure factor of
spin-crossover materials should exhibit a peak with finite
width at the critical point due to the elastic interaction. We
hope such unique behavior will be observed by single crystal
x-ray diffraction along the coexistence line and at the critical
point.

It was confirmed that the present model (6) possesses an
effective long-range interaction. The details of the effective
long-range interactions introduced by the elastic degrees of
freedom in the present model are not known. Only for d = 1,25

it has been shown rigorously that the model can be mapped
onto a short-range Ising model. There has also been much
previous research on three-dimensional elastic solids, and it
is generally argued that the dominant long-range interactions
are of a dipole-dipole nature, ∼ 1/r3.26 Although the effects
of distortions in the present model are not identical to those
in the classical elastic media for which these results were
obtained, we assume that the elastically mediated interactions
in our model also are of such long-range type. However,
in our present model the spin correlation function shows
infinite-range correlations above the critical temperature.2,23

Therefore, we assume that there are similar but unknown
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infinite-range interactions in the present model. Understanding
the mechanism by which the infinite-range interactions arise
remains an intriguing problem for future research.
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APPENDIX: CALCULATING THE CORRELATION
LENGTH ξ

In the previous work on the model defined in (1), there
exist both short-range and infinite-range interactions, but no
anisotropy. Therefore we could exclude the contribution of

the long-range correlations uniformly from the correlation
function, obtaining the correlation length from the following
relation,

ξ =
∫ L/2

0 (c(r) − c(L/2))rdr∫ L/2
0 (c(r) − c(L/2))dr

. (A1)

Here, c(L/2) which is proportional to 1√
N

is a good approxi-
mation for the large-r limit of c(r).

In the present paper, we adopt another method because
of the strong anisotropy in the correlation function. In a d-
dimensional system, we can estimate ξ from

〈k1−d〉 ≡
∑
k 	=0

1

|k|d−1
S(k) ∝ ξ 2d−3−η. (A2)

In the present model defined by (6) with very weak elastic
interactions, there exist rather large, but finite clusters at the
critical point due to the short-range interactions. In (A2), we
sum the structure factor with importance 1/|k|d−1 in order to
avoid divergences and to collect the contributions from length
scales on the order of L, using the asymptotic form of the
correlation function (17).
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