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Heat flow in nanostructures in the Casimir regime
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In small structures the phonon mean free path due to phonon-phonon interactions and defect scattering may
exceed the sample dimensions. The thermal conductivity then becomes dependent on the size and shape of the
sample. In this article we present calculations of the conductivity under these conditions for several different
geometries. Numerical results are presented for Si and GaAs.
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I. INTRODUCTION

In a series of experiments performed between 1935 and
1938 de Haas and Biermasz1–3 discovered that at low temper-
atures (typically below about 10 K) the thermal conductivity
of high-quality dielectric crystals becomes dependent on the
sample size. Peierls,4 in a letter to de Haas, suggested that
this effect might be due to the “reflexion of elastic waves
from the walls of the rod.” This general idea was worked
out in more detail by Casimir in 1938.5 At low temperatures
only long-wavelength acoustic phonons are important. Casimir
showed that the conductivity could be written as

κ = 1
3C〈v〉�C, (1)

where C is the specific heat, and 〈v〉 is an appropriate
average phonon velocity. If the sound speed is isotropic and
independent of phonon frequency, this is given by

〈v〉 = 1/v2
l + 2/v2

t

1/v3
l + 2/v3

t

, (2)

where vl and vt are the velocities of the longitudinal and
transverse phonons, respectively. Casimir found that for a
cylindrical rod of radius R the effective mean free path was

�C = 2R. (3)

For a rod of square section with side D the result is

�C = D

2
[3 ln(1 +

√
2) −

√
2 + 1] ≈ 1.115D. (4)

Note that Eqs. (3) and (4) are based on the assumption that the
scattering at the surface of the sample is perfectly diffuse, i.e.,
a phonon incident on the surface of the sample is reemitted in
a random direction.

Equations (3) and (4) hold when the rate of phonon scatter-
ing due to phonon-phonon interactions and phonon scattering
by defects is so small that phonons can travel across the width
of the sample without scattering.6 For macroscopic samples,
this situation occurs only at low temperatures. However, for
nanostructures, scattering by boundaries is important at much
higher temperatures, and for sufficiently small samples the
conductivity will be size dependent even at room temperature.
One can make a rough estimate of the size required for this.
For example, if for silicon we take the average phonon velocity

to be the Debye velocity [5700 m s−1 (Ref. 7)], the kinetic
formula implies an average mean free path in a bulk sample at
room temperature of 47 nm. Thus to be in the Casimir regime
the dimensions need to be less than this.

This effect has been studied experimentally8–15 in a variety
of nanostructure samples. Experimental work is complicated
by the possible presence of defects within the material
and by imperfect knowledge of the details of the sample
surface. Most of the theoretical work has used the phonon
Boltzmann equation16–21 with some approximation to the
collision term. For example, the scattering of phonons by
isotopes has often been taken to be directly proportional to
the fourth power of the phonon frequency, although this is
in fact correct only for frequencies much below the Debye
frequency. In most cases, a simplified form for the phonon
dispersion relation has been taken. However, a quantitative
calculation of the conductivity needs to take into account
the details of the phonon dispersion relation and to allow
for phonon focusing effects.22 Calculations have also been
made using molecular dynamics23 which can include these
effects but such calculations have to be corrected for quantum
effects.

In this paper, we present calculations of the conductivity
under Casimir conditions for several different geometries. We
first derive some exact analytical results for the case that
the phonon velocity is independent of wave vector. We then
present numerical results for silicon and gallium arsenide using
a realistic phonon dispersion relation. Throughout this paper
we are assuming that the relevant phonon wavelength is much
less than the dimensions of the structure, so that the phonon
dispersion relation is the same as in bulk.

II. ANALYTICAL RESULTS

We consider heat flow along a rod with axis in the z

direction. The rod extends from z = −∞ to z = ∞. We take
the scattering of the phonons at the walls to be perfectly diffuse
so that the walls act as “blackbody” emitters and absorbers of
phonons. Thus, the rate at which energy is emitted from a
surface element of area dA is given by

1

8π3

∑
j

∫∫∫
�v�kj .n̂ n�kj (T ) h̄ω�kj k

2 dk d cos θ dφ dA, (5)
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where n̂ is a unit vector normal inward to the surface, �v�kj

is the group velocity of a phonon with wave vector �k and
polarization j , and n�kj is the occupation number for this

phonon. The integrals are over all of �k space subject to the
condition that �v�kj · n̂ be positive. Let ��kj be the distance that

the phonon �kj travels in the z direction before being absorbed
at the wall of the sample (Fig. 1). In order to derive a general

expression for the conductivity, it is convenient to consider
a situation in which the temperature distribution along the
tube is

T (z) = T0 + �T (z), (6)

where �T (z) = a δ(z) and a is some coefficient. Then the net
rate of loss of heat occurring from the region close to z = 0 is

1

8π3

∮
dl

∑
j

∫∫∫
�v�kj · n̂ a

∂n�kj (T )

∂T

∣∣∣∣
T0

h̄ω�kj k2 dk d cos θdφ

= ah̄2

8π3kT 2
0

∮
dl

∑
j

∫∫∫
�v�kj · n̂ n�kj (n�kj + 1) ω2

�kj
k2 dk d cos θ dφ, (7)

where the line integral is around the circumference of the rod,
and we used the relation

∂n�kj

∂T

∣∣∣∣
T0

= h̄ ω�kj

kT 2
0

n�kj (n�kj + 1). (8)

A phonon leaving the position z = 0 with wave vector �k and
polarization j will be absorbed at the position z = ��kj and will
contribute to the increase in the heat at this position. Thus, if
Q(z) is the heat per unit distance at position z, we have

dQ(z)

dt
= ah̄2

8π3kT 2
0

∮
dl

∑
j

∫∫∫
�v�k · n̂ n�kj (n�kj + 1)

×ω2
�kj

δ(z − ��kj ) k2 dk d cos θ dφ. (9)

FIG. 1. Schematic of a rod in which a phonon leaves a point on
the wall at z = 0 and travels with group velocity �v�kj until it hits
another point on the wall with z = ��kj .

From this it follows that

d

dt

∫ ∞

−∞
Q(z)z2dz = ah̄2

8π3kT 2
0

∮
dl

∑
j

∫∫∫
�v�kj · n̂ n�kj

× (n�kj + 1)�2
�kj

ω2
�kj

k2dk d cos θ dφ.

(10)

We now derive an expression for the same derivative
based on the macroscopic equations governing heat transport.
Consider a plane which lies perpendicular to the direction of
the rod and passing through the position z. Let J (z) be the
rate at which heat flows across this plane per unit time. From
Fourier’s law,

J (z) = −κA
∂δT

∂ z
, (11)

where δT (z) = T (z) − T0, and A is the cross-sectional area of
the rod. But

∂ Q(z)

∂ t
= −∂J

∂z
. (12)

Therefore

∂Q(z)

∂t
= κA

∂2δT

∂z2
. (13)

Hence,

d

dt

∫ ∞

−∞
Q(z)z2dz = κA

∫ ∞

−∞

∂2δT (z)

∂z2
z2dz

= −2κA

∫ ∞

−∞

∂δT (z)

∂z
zdz

= 2κA

∫ ∞

−∞
δT (z) dz. (14)

In this derivation the fact that the δT is zero at z = ±∞ is
used. From conservation of energy, the last integral on the
right-hand side of this equation must be a constant. It follows
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that we can use the initial condition [Eq. (6)] to evaluate this
integral. Therefore

d

dt

∫ ∞

−∞
Q(z) z2 dz = 2 Aκ a. (15)

Then by comparing Eqs. (10) and (15) we obtain

κ = h̄2

16π3kT 2
0 A

∮
dl

∑
j

∫∫∫
�v�kj · n̂ n�kj (n�kj + 1)

×�2
�kj

ω2
�kj

k2 dk d cos θ dφ. (16)

We first consider the results from this formula if the
phonons all have the same speed v, regardless of polar-

ization, propagation direction, or magnitude of the wave
vector. The generalization to allow for different velocities
of longitudinal and transverse phonons, but still retaining
isotropy, is straightforward. The Casimir mean free path is
given as

�C = 3κ/Cv. (17)

For cylindrical and square cross-section rods, Eqs. (16)
and (17) lead to the results obtained by Casimir [Eqs. (3)
and (4)].

It is straightforward but tedious to find κ for a rectangular
plate with sides D (thickness) and W (width) and infinite
length along the z direction. The result is

�C = Dn1/2

4

{
3n1/2 ln[n−1 + (n−2 + 1)1/2] + 3n−1/2 ln[n + (n2 + 1)1/2]

−(n + n3)1/2 + n3/2 − (n−1 + n−3)1/2 + n−3/2

}
, (18)

where n = W/D. This result has been obtained previously by McCurdy et al.7 The Casimir mean free path has a logarithmic
divergence when the width of the plate goes to infinity. The limiting form is

�C = 3
4D

[
ln 2 + 1

2 + ln(W/D)
] = D [0.895 + 0.75 ln(W/D)] . (19)

This divergence comes from phonons which propagate nearly
in the plane of the plate, i.e., in the plane normal to the
thickness, and which can therefore have very large values of
|��kj |. The variation of �C with the width of the plate is shown
in Fig. 2. The result Eq. (18) shows that when the Casimir
condition holds, the thermal conductivity for heat flow along a
plate cannot be considered to be a function of just the thickness
of the plate; the width also plays a role. It has been claimed
that the Casimir length for heat flow along a plate is equal to
twice the thickness.19 This appears to be incorrect.

FIG. 2. (Color online) Calculated Casimir length for heat flow
along a rectangular plate with cross-sectional dimensions D and W .
Results are for an isotropic solid in which all phonons have the same
velocity.

It is interesting to consider what happens to this logarithmic
divergence when the plate is curved. There are two cases to
consider. First, consider a plate which has infinite width and
which is bent along the direction in which heat is flowing. Thus,
the direction of heat flow is slowly changing with position. One
can formulate this by a method similar to the approach used
to derive Eq. (16). We suppose that the plate is bent so that the
outer radius is r1 and the inner radius is r2. We can consider
that the plate is part of an annulus. Then it can be shown that
the conductivity is given by

κ = h̄2

16π3kT 2
0 ln(r1/r2)

×
{

r1
∑

j

∫∫∫ �v�kj · n̂ ω2
�kj

n�kj (n�kj + 1) θ2
�kj

d3�k
+ r2

∑
j

∫∫∫ �v�kj · n̂ ω2
�kj

n�kj (n�kj + 1)θ2
�kj

d3�k

}
, (20)

where θ�kj is the angle by which the phonon �kj moves around
the annulus, and the remaining notation is the same as in
Eq. (16). We have not been able to perform analytically the
integrals that enter in this expression for the conductivity, but
for large values of the radius of curvature R the numerical
result is well approximated by the expression

�C = D [1.29 + 0.385 ln(R/D)] . (21)

As R → ∞, �C diverges logarithmically as expected from the
formula for the flat plate [Eq. (19)].

As a second geometry, we consider heat flow in a plate
which is curved around the direction of heat flow, i.e., the z

axis. This geometry can be considered to be a special case
of a more general problem, namely the flow of heat along a
hollow cylinder.24 Let the outer and inner radii of the cylinder
be r1 and r2, respectively. Consider a phonon leaving the outer
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FIG. 3. (Color online) Calculated Casimir length for heat flow
along a cylinder of radius r1 with a hole of diameter r2. Results
are for an isotropic solid in which all phonons have the same group
velocity.

surface at a position (r1, 0, 0) with direction θ,φ. This phonon
will strike the inner wall if r2 > r1| sin φ|, in which case

��kj = [
r1 cos φ − (

r2
2 − r2

1 sin2 φ
)1/2]

cot θ. (22)

If r2 < r1| sin φ| the phonon hits the outer wall and

��kj = 2r1 cos φ cot θ. (23)

A phonon leaving the inner wall always hits the outer wall and

��kj = [(
r2

1 − r2
2 sin2 φ

)1/2 − r2 cos φ
]

cot θ. (24)

Substituting these results into Eq. (16) and performing the
integrals over θ and φ, we obtain

�C = 2r1

1 − β2

{
1 − 3β

4
+ 3β3

4
− 1

2
[(1 + β2)E(β2)

− (1 − β2)K(β2)]

}
, (25)

where β = r2/r1, and K and E are complete elliptic integrals
of the first and second kind. Figure 3 shows �C as a
function of r2/r1. We can use this general expression to find
the conductivity of a thin curved plate of thickness D and
radius of curvature R. To do this we set r1 = R + D/2, and
r2 = R − D/2 and take the limit of Eq. (25) when D 	 R.
After some algebra the result is that

�C = D
(

21
16 + 3

8 ln 8 + 3
8 ln R/D

)
= D(2.092 + 0.375 ln R/D). (26)

FIG. 4. Schematic diagram showing the effect of bending a plate
on phonon propagation. The solid line represents the walls of the
plate and the dashed line shows a possible trajectory of a phonon.

The derivation uses the series expansions25

E(β2) = 1 +
(

1

2
ln

4

γ
− 1

4

)
γ 2 +

(
3

16
ln

4

γ
− 13

64

)
γ 4 . . . ,

(27)

K(β2) = ln
4

γ
+

(
1

4
ln

4

γ
− 1

4

)
γ 2 +

(
9

64
ln

4

γ
− 21

128

)
γ 4 . . . ,

which hold when γ ≡
√

1 − β2 is very small.
From Eqs. (19), (21), and (26) it follows that it may be

possible to make changes to the thermal conductivity of a
plate by bending. However, it is not simple to make a reliable
estimate of the change that can be made. The difficulty is that
the results we have obtained hold strictly in the limit that there
is no scattering other than at the boundaries. It is only if this
is true that the conductivity becomes infinite when there is no
curvature. Phonon scattering within the volume of the material
will cut off the logarithmic divergence. A second consideration
is that when a plate is bent, an inhomogeneous static strain will
be set up. There will be a compressive strain on the concave
side of the plate and an expansion on the other. This will
have the consequence that the phonon dispersion relation will
now depend on position, and a phonon crossing the plate will
have a propagation direction which changes continuously as
it moves (mirage effect Fig. 4). Since sound velocity usually
increases under compression, this effect enhances the change
in the conductivity that occurs just due to a change in the
geometry.

III. NUMERICAL EXAMPLES

We have performed a numerical evaluation of the conduc-
tivity for Si and GaAs. The calculations use the models of the
phonon dispersion relation described in Refs. 26 and 27. These
models reproduce the measured dispersion relations to within
a few percent. To perform the integral in Eq. (16), we have used
a large number of randomly selected wave vectors, typically
300 000. In Figs. 5 and 6 we show results for the thermal
conductivity of plates of Si and GaAs. The plate thickness is
chosen to be 30 nm. For plates with the same ratio of thickness
D to width W , the conductivity must be proportional to D. It
follows that the conductivity must satisfy the relation

κ(D,W ) = W

D
κ(D,D2/W ), (28)
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FIG. 5. (Color online) Calculated thermal conductivity κ for heat
flow along a rectangular plate as a function of the width W . The
thickness D of the plate is 30 nm and the results are for silicon
at 300 K. The contributions from transverse acoustic, longitudinal
acoustic, and optical phonons are shown separately.

and this provides a simple check on the accuracy of the
calculations.

The largest contribution to the thermal conductivity comes
from the longitudinal acoustic phonons. As can be ex-
pected, the optical phonons make a very small contribution.
For a square cross-section rod of Si the conductivity is
66 W m−1 K−1. The specific heat of Si is 1.66 × 106 J m−3 K−1.
Thus, in order for Eq. (1) together with Eq. (4) to describe

FIG. 6. (Color online) Calculated thermal conductivity κ for
heat flow along a rectangular plate as a function of the width W .
The thickness D of the plate is 30 nm and the results are for
gallium arsenide at 300 K. The contributions from transverse acoustic,
longitudinal acoustic, and optical phonons are shown separately.

FIG. 7. (Color online) Calculated thermal conductivity κ for heat
flow along a cylinder of radius r1 = 30 nm with a hole of radius r2.
Results are for silicon at 300 K with the cylinder axis along the [100]
direction. The contributions from transverse acoustic, longitudinal
acoustic, and optical phonons are shown separately.

the results of the numerical calculations, the effective average
velocity entering in Eq. (1) has to be 〈v〉 = 3600 m s−1. As a
result of phonon dispersion, this velocity is considerably less
than the sound velocity in Si. For example, the longitudinal
and transverse sound velocities in the [100] direction of Si are

FIG. 8. (Color online) Calculated thermal conductivity κ for heat
flow along a cylinder of radius r1 = 30 nm with a hole of radius
r2. Results are for gallium arsenide at 300 K with the cylinder axis
along the [100] direction. The contributions from transverse acoustic,
longitudinal acoustic, and optical phonons are shown separately.
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8400 m s−1 and 5200 m s−1, respectively. The corresponding
average velocity for GaAs is found to be 1700 m s−1.

We emphasize that the results shown in Figs. 5 and 6
are based on the assumption that there is negligible phonon
scattering in the bulk of the material. The bulk thermal
conductivity of Si is 141 W m−1 K−1, i.e., about twice
the value that we find for a square rod of side 30 nm.
This therefore indicates that to a reasonable approximation,
structures with lateral dimensions of less than or equal to 30 nm
are in the Casimir regime. For GaAs the bulk conductivity is
55 W m−1 K−1 and for the same geometry the calculated value
is 35 W m−1 K−1, and so again a 30 nm structure should be in
the Casimir regime.

Results for the thermal conductivity for heat flow along the
axis of a hollow cylinder with outer radius r1 = 30 nm are
shown in Figs. 7 and 8. The largest contribution again comes
from the longitudinal acoustic phonons. The conductivity of
the solid cylinder is found to be 115 W m−1 K−1 for Si and
57 W m−1 K−1 for GaAs. These values are close to the values
of the bulk conductivity for these materials; this suggests that
cylinders with radius less than 30 nm are in the Casimir regime.

It is interesting to compare the results obtained here with
a calculation by Mingo for silicon nanowires.28 He used a
realistic interatomic potential to calculate the phonon modes in
the wire, i.e., he did not assume that the phonon dispersion was
the same as in the bulk. In addition, he included contributions to

the scattering rate from anharmonicity and isotope scattering.
The phonon scattering time τ was assumed to depend only
on frequency. For the smallest radius nanowire (18.5 nm)
a conductivity at room temperature of 17 W m−1 K−1 was
obtained. This compares with the result of 70 W m−1 K−1

that follows from our calculation for the same geometry. It
is possible that the difference arises because a wire of this
diameter is not fully in the Casimir regime; our value of
70 W m−1 K−1 is based on the approximation that it is. It
would be interesting to investigate this further.

IV. SUMMARY

In summary, we have presented quantitative calculations of
the phonon thermal conductivity in the boundary scattering
(Casimir) regime. Our numerical results for Si and GaAs are
based on accurate phonon dispersion relations. The results
obtained assume that the scattering at the sample surface is
diffuse.
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