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First-principles calculation of phase equilibrium of V-Nb, V-Ta, and Nb-Ta alloys
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In this paper, we report the calculated phase diagrams of V-Nb, V-Ta, and Nb-Ta alloys computed by combining
the total energies of 40-50 configurations for each system (obtained using density functional theory) with the
cluster expansion and Monte Carlo techniques. For V-Nb alloys, the phase diagram computed with conventional
cluster expansion shows a miscibility gap with consolute temperature 7, = 1250 K. Including the constituent
strain to the cluster expansion Hamiltonian does not alter the consolute temperature significantly, although it
appears to influence the solubility of V- and Nb-rich alloys. The phonon contribution to the free energy lowers
T, to 950 K (about 25%). Our calculations thus predicts an appreciable miscibility gap for V-Nb alloys. For
bee V-Ta alloy, this calculation predicts a miscibility gap with 7, = 1100 K. For this alloy, both the constituent
strain and phonon contributions are found to be significant. The constituent strain increases the miscibility gap
while the phonon entropy counteracts the effect of the constituent strain. In V-Ta alloys, an ordering transition
occurs at 1583 K from bece solid solution phase to the V,Ta Laves phase due to the dominant chemical interaction
associated with the relatively large electronegativity difference. Since the current cluster expansion ignores the
V,Ta phase, the associated chemical interaction appears to manifest in making the solid solution phase remain
stable down to 1100 K. For the size-matched Nb-Ta alloys, our calculation predicts complete miscibility in

agreement with experiment.
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I. INTRODUCTION

Vanadium, niobium, tantalum, and their binary alloys
have been the subject of research due to their super-
conducting properties and low-temperature structural phase
transformations.!” Short-range order and superconductivity
of V-Nb, V-Ta, and Nb-Ta alloys have been examined for
understanding the influence of alloying on the superconducting
transition temperatures.2 Recently, V, Nb, and Ta have been
found to undergo a martensitic-like structural distortion *= in
which they transform from the high-temperature bce structure
to either a rhombohedral structure or to a tetragonal structure.
Apart from this, vanadium-based alloys are known to have the
desired combination of physicomechanical properties, com-
patibility with nuclear fuel, and high resistance to corrosion *’
making them potential structural materials for fast-neutron
nuclear power plants which can be operated at temperatures
exceeding 1000 K for increasing the thermodynamic efficiency
of electric power production.

The capability of vanadium to form a continuous series of
solid solutions with other refractory metals makes it possible
to design binary, ternary, and more complex alloys based on
it. Alloying is found to significantly increase the resistance
to creep and deformation of vanadium. Nb, Ta, and W are
found to harden vanadium significantly compared to Ti, Zr,
and Cr. In V-Nb-Zr-C alloy, the high-temperature strength
increases markedly with increasing Nb concentration. On the
other hand, it is known that the state of atomic order of the alloy
determines its hardness, strength, corrosion properties, and
electrical resistivity. Decay of the solid solution to ordering or
phase separation is known to significantly lower the hardness
and resistance to corrosion of many alloys. In other words,
the ordering or phase separation behavior of the alloy decides
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many physical properties, including microstructure, transport,
and mechanical behavior. This means that knowledge of the
alloy phase equilibrium and phase transformation properties
is essential for effective design of the alloy.

The experimental phase diagram of V-Nb alloys shows a
continuous series of solid solutions without a miscibility gap.
The solid state part of the V-Ta phase diagram consists of a
major solid solution region and a two-phase region made up of
the V,Ta Laves phase and bec solid solution. The Nb-Ta phase
diagram shows complete miscibility in the solid state without
any evidence for a solid-state transformation down to ambient
temperature.®” Recent first-principles study of phase equilib-
rium of similar refractory bcc binary alloys, such as Nb-Mo,
Nb-W, Ta-W, and Ta-Mo, has however predicted several inter-
mediate ground states.'? For V-Nb, V-Ta, and Nb-Ta systems,
while there exist a few CALPHAD studies, first-principles
studies of phase equilibrium do not exist in the literature.

This work aims to corroborate and complement these
experimental observations by more precisely locating the
position of the miscibility gap in these systems via first-
principles calculations. Although both V-Nb and Nb-Ta were
previously reported to exhibit complete solubility, we in fact
find that their miscibility gaps have rather different locations
(around 950 K for V-Nb but close to 0 K for Nb-Ta). This has
important implications for thermodynamic modeling in these
systems. Moreover, our analysis of the metastable bcc phase
diagram of the V-Ta system avoids masking by the V,Ta Laves
phase and enables the determination of the bcc miscibility gap.
Furthermore, calculation of phase stability of V-Nb alloys
is also of interest because in the high-chromium ferritic-
martensitic steels, considered as a substitute for austenitic
steels in nuclear reactors, fine dispersions of two distinct
vanadium nitrides, V( ¢Nbg »Crg»N and V 45Nbg 45Cro | N, are
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known to precipitate and remain stable against coarsening
leading to enhanced creep strength.!'~'® Experience in carrying
out the phase equilibrium calculation of the binary systems
studied here would be a valuable input for the study of phase
stability of V-Nb(Cr)-N (qua)ternary nitrides.

We use density functional theory based total energy
calculations combined with the cluster expansion and Monte
Carlo techniques for calculation of phase equilibrium. Cluster
expansion consists of considering the alloy being made of
“geometric objects” (or figures), such as points, pairs, triplets,
and associating a characteristic energy J with each of these ge-
ometric objects. For a given underlying Bravais lattice, cluster
expansion then expresses the energy E (o) of any configuration
o of the alloy as a linear combination of the characteristic
energies J and the correlation functions of every figure, like a
generalized Ising Hamiltonian. Finite-temperature properties
are calculated by resorting to Monte Carlo simulations using
the cluster expansion Hamiltonian E(c). Furthermore, our
cluster expansion Hamiltonian includes the strain energy due
to lattice constant mismatch of the constituents and the phonon
contributions besides chemical interactions, which are known
to improve the accuracy of the computed thermodynamic
properties.!’—3?

The paper is organized as follows: A brief review of the
formalism of the cluster expansion method and Monte Carlo
simulation is given in Sec. II. In Sec. III the results are
presented. The results are discussed in Sec. IV, and our findings
are summarized in the final section.

II. METHODOLOGY

A. Cluster expansion

Computation of phase equilibrium and ground-state struc-
ture of an A|_, B, binary alloy requires, in principle, calcu-
lation of the total energy for all possible configurations of
placing atoms A and B on N sites of the underlying Bravais
lattice. As the number of possible configurations 2V becomes
enormous even for a modest number of sites N, it is difficult to
calculate the energy quantum mechanically for an exhaustive
set of configurations. The cluster expansion method constructs
an Ising-like Hamiltonian for the energies of the different
atomic configurations. Detailed illustration of the method can
be found in many papers.'®20:26:33-39 Here a brief description
of the main aspects is given. In the cluster expansion, the alloy
is treated as a lattice problem in which the lattice sites are
fixed at those of the underlying Bravais lattice (fcc, bec, etc.)
and a configuration o is defined by specifying the occupation
of each of the N lattice sites by an A atom or a B atom. For
each configuration, one assigns a set of “spin” variables S;
(i =1,2,...,N) to each of the N sites of the lattice, with
8; = —1 or +1 depending on the site i being occupied by an A
or B atom, respectively. For a lattice with N sites, the problem
of calculating the energies of the 2V possible configurations o
can be exactly mapped into a generalized Ising Hamiltonian:

E(o)=Jo+ Zjisi(a) + Zjijgi(g)sj(a)
i j<i

+ Y JinSi@)8;0)8 o)+, (D)

k<j<i
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where the J’s are the interaction energies of various order,
also known as the effective cluster interactions. The first
summation is over all sites in the lattice, the second over
all pairs of sites, the third over all triplets, and so on. The
primary advantage of the cluster expansion is that the J’s
are the same for all configurations o. Thus, once the J’s are
known, the energy E (o) of any configuration can be calculated
almost immediately by simply calculating the spin products
and summing them using Eq. (1).

Equation (1) defines a set of linear equations, in which a
2N % 2V matrix of spin products multiplies a 2V vector of J’s,
giving a vector of the energies of the 2V configurations. The
J’s can then be solved exactly if the matrix of spin products
is nonsingular. Sanchez et al.>* have proven that the matrix is
indeed orthogonal which guarantees that the vector of J’s in
Eq. (1) can always be determined.

Although the cluster expansion given by Eq. (1) contains,
in principle, many interactions, the energetics of bonding is
usually determined by relatively short length scales. Therefore,
a finite number of interaction parameters is expected to
provide the desired mapping of energetics with sufficient
accuracy. Then one can determine the J’s from the energies
of a small set of ordered configurations, calculated directly,
for instance, by first-principles total-energy methods. Once
numerical values for the parameters J are available, the payoff
is fast access to many properties of interest, e.g., ground-state
structures, order-disorder transition temperatures, short-range
order, and composition-temperature phase diagrams, which
can be directly determined by experiments.

The lattice symmetry further reduces the number of
interaction energies that need to be determined. A set of lattice
sites, called a “figure,” has the same interaction energy as any
other figure that is related to it by the space-group symmetry
of the underlying lattice. A correlation function II can be
defined for each class of symmetry-equivalent figures F and
configuration o as the average of the spin products over all
figures that make up F':

— 1 A A A
Hp(o) = i, > 8,(0)8,(0)...8;,(0), @
f

where f runs over the My figures in class F, and the spin
indices run over the n sites of figure f. Equation (1) can then
be rewritten for the energy of formation of structure o as

AHce(0) =N Y DpJiTlp(0), 3)
F

where Dy is the number of figures of class F per site.
The important step of the cluster expansion method is the
determination of the J’s. In the direct inversion method
of Connolly and Williams,** energy of formation of N,
(~30-40) ordered configurations are calculated directly. Ng
figures are chosen, with Np < N,, such that the cluster expan-
sion of Eq. (3) is converged when the sum is restricted to these
Ny figures. The correlation functions, TI, and the calculated
energies of formation, A Hgirect(0'), of these configurations are
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then used to fit the interaction energies Jg, by minimizing the
following expression with respect to the N values of Jg:

2

N, Nr
Y wo|AHgirea(0) = N Y DpJellp(o)| . (4)
o F

Here w, are weights. The weights are chosen according to
w, = g/N.(0), where N (o) is the number of point group
operations of configuration o and g is the order of the point
group of the underlying Bravais lattice. The expression (4) is
minimized typically using the singular value decomposition
technique.

B. Density functional theory calculations

Electronic structure total energy calculations of ordered
configurations, required for the construction of the cluster
expansion Hamiltonian, are performed using the Vienna Ab
initio Simulation Package*'*> (VASP) with the generalized
gradient approximation (GGA)**™® and the projector aug-
mented wave (PAW) basis*’*® with an energy cutoff of 400
eV. The first-order Methfessel-Paxton method*’ of electronic
occupancy has been used with a smearing width of 0.2 eV.
Brillouin zone integration is carried out using a Monkhorst-
Pack k-point mesh.’® For constructing the cluster expansion
Hamiltonian and calculation of thermodynamic properties, the
Alloy Theory Automated Toolkit (ATAT) has been used.’!'=?
ATAT uses a script interface to VASP. This script defines a
parameter called KPPRA, which automatically sets up the
k-point mesh for similar systems. In this work KPPRA is
set to 8000, which, for bec V, translates to a 20 x 20 x
20 grid. These choices of basis cutoff and k-point grid ensure
convergence of the total energy within a few meV /atom.

C. Constituent strain energy

The conventional cluster expansion described above con-
siders the chemical interactions and their configuration depen-
dence. It ignores the strain energy due to the size mismatch of
the constituent atoms. The constituent strain energy, defined as
the energy required to maintain coherency along an interface
between bulk crystals A and B, is however significant in
general. It is required for the accurate calculation of phase
diagrams, miscibility gap temperature, short-range order,
etc.!8:22-23:37.5457 .Nb and V-Ta alloys have a lattice constant
mismatch of 8.5%. Nb-Ta is a size-matched alloy. V-Nb and
V-Ta alloys could be expected to show appreciable atomic
relaxations. Therefore, the conventional cluster expansion of
Eq. (3) has to be modified such that it accounts for both
the chemical interactions and constituent strain energies, and
produces accurate formation energy for any configuration o
with the atomically relaxed geometry and equilibrium volume.
The modified expression for A Hcg(o) is given below:

AHce(0) =N Y DpJiTlp(o) + AEcs(@). (5
F

Here the first term is the conventional cluster expansion
representing the chemical interactions and the second term
is the strain energy due to lattice constant mismatch.
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The strain energy A Ecs(o) of configuration o is expressed
as

AEcs(o) =Y Jes(x,B)IS(k,0)I, (6)
k

AEG(x k)
4x(1 —x)’

where S(k,0) = Zj Sje’ik'Rf is the structure factor and

AEZ(x,k) is the constituent strain energy. It is defined as
the energy change when the bulk solids A and B are deformed
from their equilibrium cubic lattice constants a4 and ap to a
common lattice constant ¢, in the direction perpendicular to
k, while they are relaxed in the direction parallel to k. It is
given by

Jcs(x,lz) = (7)

AEZ(x, ) = min[(1 — x)AEP (a1,k) + xAE (a1 b)),
3

where AES (a,k) is the strain energy required to deform A
biaxially to a, . The constituent strain energy corresponds to
the k — 0 limit of Jeg(x,k) and takes on different values
depending on the direction in which this limit is taken.
The nonanalyticity in Jcs(x,lg) as k — 0 corresponds to
infinite-range real-space elastic interactions. Including these
long-range terms explicitly (rather than trying to cluster
expand them) removes the k — 0 nonanalyticity of Jes(x,k).

Numerical calculation of the constituent strain energy
AEéqS (x,k) is done in three steps. First, the epitaxial energies
of each of the pure constituents are calculated. That is, for
pure A and B, the total energies are calculated for several
different values of a,, while in each case, the unit cell
is allowed to relax in the direction perpendicular to the
interface to minimize the total energy. This series of energies,
AE} s(k,ay), is then interpolated to all values of a, between
as and ap using a polynomial. This process is repeated for
five principal directions of k: (001), (011), (111), (201), and
(311).

In the second step, AEqg(x,k) is determined by using
the total epitaxial energy of AEZq(l%,a 1) and AE;q(l%,a 1)
in Eq. (8), where the equilibrium in-plane lattice constant
a,, common to both A and B, is chosen to minimize the
strain energy, and AEePi(l%,al) = Eepi(lg,al) — Eepi(/%,aeq).
The constituent strain energy AEE%(X,IE) is determined for
arbitrary composition x and a finite number of directions k.
Figure 1 shows the constituent strain energy for V-Nb, V-Ta,
and Nb-Ta alloys. Each of the energies AEY" and AEY" are
positive definite by definition and, hence, the coherency strain
must be positive definite. For V-Nb and V-Ta, the constituent
strains are positive and anisotropic. For both the alloys, it is
evident from Fig. 1 that all the curves are skewed to the V side.
Figure 1 also shows that (111) is the softest and (100) is the
hardest interface orientations. The constituent strain energy of
the size-matched Nb-Ta alloy consists of positive as well as
negative values for the different principal interface orientations
k and is negligibly small in magnitude, which implies that
as expected, the constituent strain contribution to the free
energy is unimportant for size-matched alloys. Moreover, we
made a comparison of the maximum of the elastic strain
energy of V-Nb and V-Ta alloys with those of Mo-Ta, Cu-Au,
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FIG. 1. (Color online) The constituent strain energy AEEqS(x,IQ)
of V-Nb, V-Ta, and Nb-Ta systems as a function of composition x for
several principal interface orientations k.

Cu-Ag, and Ni-Au alloys from the literature.'*??>?* Figure 2
gives the comparison, which shows that the constituent strain
energy scales with the magnitude of size mismatch of the
alloy.

Finally, the constituent strain energy for arbitrary interface
orientations £ is interpolated by fitting the results obtained for
the principal interface orientations to an expansion in Kubic
harmonics:

Imax

AES (k) =" cx)Ki(k). ©
=0

Typically four or five terms are used in this expression as
anharmonic effects are known to be significant.

D. Phonon entropy

The cluster expansion, including the constituent strain,
described above, gives energies of arbitrary lattice configu-
ration at 0 K and ignores the vibrational excitations. Early
theoretical calculations of phase equilibrium have indicated
that the phonon contribution should be included for improving
the accuracy. Sanchez et al.,’® in their study of the Ag-Cu alloy,
have shown that even a crude model of the vibrational entropy
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FIG. 2. (Color online) Comparison of the maximum of the con-
stituent strain energy corresponding to principal interface orientations
for V-Nb and V-Ta alloys with those of Mo-Ta, Cu-Au, Cu-Ag, and
Ni-Au alloys from the literature (Refs. 10 and 22). The constituent
strain energy scales with the magnitude of size mismatch of the alloy.

markedly improved the computed solubility with respect to
the experimental data. Asta et al.,' in their work on the
phase stability of the Cd-Mg system, have demonstrated that
the nonconfigurational contributions to the free energy, such
as phonon entropy, must be considered in any theoretical
study of phase stability which hopes to obtain accurate
results. In the case of Ni-Au alloys,” the nonconfigurational
entropy of formation is shown to be essential to reconcile
the experimental and theoretical miscibility gap temperatures.
Recent first-principles theoretical studies®*-? establish that the
vibrational entropy contribution is indeed essential for accurate
calculation of alloy phase equilibrium.

In a cluster expansion, a Hamiltonian for the alloy system
is constructed by fitting the ground-state energies of typically
30-40 ordered configurations. Vibrational effects can be
formally included by fitting to vibrational free energies,
rather than ground-state energies. This requires computation
of the force-constants tensor and phonon spectrum for the
3040 structures, which is computationally expensive. On the
other hand, first-principles calculation of phonon properties
of Pd-V alloys has revealed that most of the variation in the
stiffness of a given chemical bond across different structures
can be explained by changes in the bond length.”® Based
on this, van de Walle and Ceder identified that the bond
stiffness versus bond length relationship is transferable and
showed that a linear relationship can be used as a first
approximation.?’

A scheme based on bond-length-dependent transferable
force constants has been used successfully in several
studies.”®3163%4 We use this scheme to compute the contri-
bution of lattice vibrations to the free energy of V-Nb, V-Ta,
and Nb-Ta alloys. This method proceeds by parametrizing
the bond-length dependence of the stiffness for each type
of nearest-neighbor chemical bond. This is achieved by
calculating the reaction forces from various imposed atomic
displacements away from their equilibrium positions, which is
done for a few high-symmetry ordered supercells for a range
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FIG. 3. (Color online) Nearest-neighbor bond stiffness (against
stretching or bending) as a function of bond length for V-Nb alloys.
Points indicate ab initio data and lines are linear fits representing the
transferable force constants relation used in the calculations of the
vibrational free energy.

of lattice parameters. In the present work, three structures,
consisting of the two end members and a binary structure,
were considered, for five values of the lattice parameter. The
parameters defining the bond-length-dependent transferable
force constants relation are then obtained from a polynomial
fit of the calculated forces as a function of bond length.
Figures 3—5 show that the linear relationship provides a reliable
description of the nearest-neighbor force constants in V-Nb,
V-Ta, and Nb-Ta alloys.

Once the bond-length dependence of bond stiffness is
known, the nearest-neighbor inter-atomic force constants for
any supercell configuration in the cluster expansion fit can be
predicted from the relaxed bond lengths that are obtained from
the VASP structure energy minimization. The standard lattice
dynamics based on a nearest-neighbor bond Born—von Karman
model>>® then provides the phonon density of states and,
consequently, any thermodynamic property of interest, such as
the vibrational contribution to the free energy. Configuration
dependence of the vibrational free energy is parametrized
with a cluster expansion with temperature-dependent effective
cluster interactions.
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FIG. 4. (Color online) Nearest-neighbor bond stiffness as a
function of bond length for V-Ta alloys. Points indicate ab initio
data and lines are linear fits used in the calculations of the vibrational
free energy.

E. Monte Carlo simulation

The free energies and phase boundaries of the alloys
are calculated using Monte Carlo simulations in which
the energetics of the system is specified by the cluster
expansion Hamiltonian. The Monte Carlo simulations were
performed using the program EMC2 of ATAT, which is described
elsewhere.%® EMC2 samples a semi-grand-canonical ensemble
in which the chemical potential, Au, and the temperature, 7,
are specified with a conserved total number M (=) _;_, M;) of
particles. The composition x = {%;i =2,...,c} is allowed
to vary with a constraint of fixed ) ;_, M; = M. The method
of thermodynamic integration is used to determine the grand
canonical potential ¢* of each phase « as a function of Au. The
grand canonical potential at the starting point of the integration
path is obtained from the high- or low-temperature series
expansion. We have used a 34 x 34 x 34 supercell for the direct
Monte Carlo simulations and a 8 x 8 x 8 supercell for the
k-space Monte Carlo simulations involving constituent strains.
The EMC2 program automatically determines the equilibration
and the averaging times for the given precision on the average
concentration of the alloy, which was set to <0.1% in the
current simulations.
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FIG. 5. (Color online) Nearest-neighbor bond stiffness as a
function of bond length for Nb-Ta alloys. Points indicate ab initio
data and lines are linear fits used in the calculations of the vibrational
free energy.

III. RESULTS

A. Effective cluster interactions and ground-state structures
1. V-Nb alloys

The effective cluster interactions (ECIs) of V-Nb alloy
are shown in Fig. 6. ECIs shown in Fig. 6(a) are solely
characteristic of chemical interaction and their configuration
dependence. Figure 6(b) shows ECIs which include the con-
stituent strain interaction in addition to chemical interaction.
Both sets of ECIs show approximately the same pattern except
that the set of ECIs which includes the constituent strain
contains a three-body interaction parameter in place of a pair
interaction parameter of the set of ECIs which neglects the
constituent strain. We see that the first- and second-neighbor
pair interaction parameters are negative, which is related to the
tendency to phase separate.'”%” While the first- and second-
neighbor pair ECIs constitute the dominant interactions, it is
evident that the second-neighbor pair interaction is more than
twice stronger than the nearest-neighbor pair interaction. A
similar pattern of interactions is seen in the previous studies
of Ni-Au and Ni-Pt alloys.?”°

Figure 7(a) shows the energy of formation, AHcg(o),
versus the concentration of all bcc supercells containing
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FIG. 6. (Color online) Effective cluster interactions of V-Nb
alloys. (a) is characteristic solely of configuration-dependent chem-
ical interactions. (b) represents cluster expansion that includes both
the chemical and constituent strain interactions.

up to 12 atoms, predicted using the interactions shown in
Fig. 6. The direct enumeration approach®> has been used
for constructing the ground-state hull. The ground states are
identified as breaking points of the concentration versus energy
of formation convex hull. For an equiatomic V-Nb alloy, our
cluster expansion predict that the lowest energy of formation is
20 meV /atom, which is in agreement with the (23 meV /atom)
CALPHAD energy of formation of the bce solid solution.®
Figure 7(b) depicts the ground-state search after the constituent
strain is included. The constituent strain has only shifted
the ground-state line slightly. Moreover, in agreement with
the experimental absence of long-range ordered phases, the
current cluster expansion does not predict any intermediate
ground states.
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FIG. 7. (Color online) Ground-state search of V-Nb alloys cover-
ing all bee supercells containing up to 12 atoms. (a) is obtained with
conventional cluster expansion. (b) is obtained with a Hamiltonian
that includes the constituent strain interactions.
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FIG. 8. (Color online) Effective cluster interactions of the
V-Ta alloys. (a) is characteristic solely of configuration-dependent
chemical interactions. (b) represents cluster expansion that includes
both the chemical and constituent strain interactions.

2. V-Ta alloys

The effective cluster interactions of bcc V-Ta alloy are
shown in Fig. 8. The ECIs shown in Fig. 8(a) are characteristic
of chemical interaction only. Figure 8(b) shows the ECIs
representing both the chemical and constituent strain inter-
actions. It is evident that the constituent strain has additionally
introduced a three-body interaction, besides a set of five pair
interactions. The nearest-neighbor pair interaction is positive,
which is related to ordering tendency.'®®” The dominant
negative second-neighbor pair interaction, however, appears
to counteract with the ordering tendency. Figure 9(a) shows
the AHcg(o) versus the concentration of all bce supercells
containing up to 12 atoms. For an equiatomic V-Ta alloy,
our cluster expansion predicts that the energy of formation is
17 meV /atom, which is comparable to the CALPHAD value
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FIG. 9. (Color online) Ground-state search of V-Ta alloys cover-
ing all bee supercells containing up to 12 atoms. (a) is obtained with
conventional cluster expansion. (b) is obtained with a Hamiltonian
that includes the constituent strain to the conventional cluster
expansion.
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FIG. 10. (Color online) Effective cluster interactions of the Nb-Ta
alloys.

of 12 meV /atom of the solution phase.®” Figure 9(b) shows
the result of ground-state search after the constituent strain is
included. The constituent strain has shifted the ground-state
line slightly, without predicting any new ground states. We
note that the current cluster expansion assumes a bcc Bravais
lattice for the alloy and consider only bcc super structures,
ignoring the V,Ta Laves phase.

3. Nb-Ta alloys

The effective cluster interactions of Nb-Ta alloy are shown
in Fig. 10. Nb-Ta is a size-matched alloy. The Nb-Ta cluster
expansion includes many distant neighbor pair interactions.
However, the strengths of these interactions are an order
of magnitude smaller compared to that in V-Nb and V-Ta
alloys. Figure 11 shows the A Hcg (o) versus the concentration
ground-state search for all bce supercells containing up to 12
atoms. It is evident that the cluster expansion has predicted
several intermediate ground states. The formation enthalpy
of these ground-states are, however, very small, less than
—8 meV /atom. This indicates that the ordering temperatures
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FIG. 11. (Color online) Ground-state search of Nb-Ta alloys
covering all bce supercells containing up to 12 atoms.

054202-7



RAVI, PANIGRAHI, VALSAKUMAR, AND VAN DE WALLE

3000 T
V-Nb
Liquidus
2500 J
Solidus
g 2000 | 1
g BCC(V, Nb) CE
=
5 1500 | CE+CS 1
E- CE+CS+P =t
et ———
° = -
= 1000 **w ]
500 W
0 L L L L
0 20 40 60 80 100

Concentration of Nb

FIG. 12. (Color online) The calculated phase diagram of V-Nb
alloys compared with experiments. The liquidus and solidus are
the experimental phase boundaries (Ref. 9). The curves with label
CE represent results of the conventional cluster expansion. CS
and P represent results obtained by adding the constituent strain
and phonon contributions, respectively. The conventional cluster
expansion predicts an appreciable miscibility gap. The phonon
contribution lowers the miscibility gap temperature by about 24%.

for these phases will be very low’ and therefore cannot be
readily observed in the experiments.

B. Phase diagrams
1. V-Nb alloys

The phase diagram of V-Nb alloys, obtained by thermody-
namic modeling of the experimental data, exhibit a continuous
series of solid solutions. X-ray diffraction patterns of several
alloys in the composition range 20-50 at. % Nb, with long-term
annealing (113 hours at 923 K and 170 hours at 1173 K), did
not show any phase other than the bcc solid solution. Melting
point as well as the cooling curve determination have also not
shown any solid-state phase transformations.’

The computed phase diagram of V-Nb alloys is compared
with the so-called experimental results in Fig. 12. The
phase boundary with label CE represents the result of the
conventional cluster expansion, which considers only chemical
interactions. The labels CS and P represent the results obtained
by adding the constituent strain and phonon contributions, re-
spectively. It is evident that the conventional cluster expansion
predicts a miscibility gap with a consolute temperature (the
critical temperature above which the components of a mixture
are miscible in all proportions) 7, = 1250 K. The constituent
strain does not change the miscibility gap temperature appre-
ciably, although it appears to alter the solubility of V- and
Nb-rich alloys. The phonon contribution, combined with the
constituent strain, has lowered the miscibility gap temperature
significantly to 950 K (about 24%). Our calculations thus
predict an appreciable miscibility gap for V-Nb alloys.

2. V-Ta alloys

The V-Ta phase diagram obtained by assessing the exper-
imental thermodynamic data exhibits complete miscibility in

PHYSICAL REVIEW B 85, 054202 (2012)
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FIG. 13. (Color online) The calculated phase diagram of V-Ta
alloys compared with experiments. The solidus, liquidus, and phase
boundaries associated with the V,Ta are the experimental phase
boundaries (Ref. 9). The curves with label CE represent the results
of conventional cluster expansion. CS and P represent the results
obtained by adding the constituent strain and phonon contributions,
respectively. The horizontal line at 1073 K is incorporated to indicate
that the experimental phase diagram is not available below 1073 K.

the solid state above 1583 K. Below this, the phase diagram
consists of a major solid solution region and a two-phase
region made up of the bcc V-Ta solution and the V,Ta
fcc Laves phase.”® The experimental phase diagram is not
available below 1073 K, although CALPHAD models exist.
The current V-Ta phase diagram calculation uses a cluster
expansion based on bcc lattice and ignores the V,Ta phase.
Figure 13 compares the calculated phase boundaries with
experiments. The phase boundary with label CE represents
the result of the conventional cluster expansion. The labels
CS and P represent the result of adding the constituent strain
and phonon contributions. The phase boundary computed with
the conventional cluster expansion shows that the V-Ta is
completely miscible above 1160 K and phase separates below
this temperature. When the constituent strain is included, the
miscibility gap temperature is increased to 1325 K (about
12%). This shows that the constituent strain is significant
in V-Ta alloys compared to V-Nb alloys. When the phonon
contribution is also included, the miscibility gap temperature
is lowered to 1100 K. This indicates that the constituent strain
and phonon interactions have competing effects on the phase
transition temperature of V-Ta alloys. Moreover, we have seen
that the constituent strain energy, for high-symmetry interface
orientations, is slightly higher for V-Ta compared to V-Nb
alloys. The influence of the constituent strain energy on the
phase transition temperature is found to be correspondingly
more appreciable in V-Ta alloys than in V-Nb alloys.

3. Nb-Ta alloys

The Nb-Ta phase diagram, obtained by thermodynamic
modeling of the experimental data, shows complete miscibility
in the solid state without any evidence of a solid-state
phase transformation.’ Figure 14 shows the computed phase
boundary, which almost lies on the horizontal axis. This phase
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FIG. 14. (Color online) The calculated phase diagram of size-
matched Nb-Ta alloys compared with experiments. The solidus and
liquidus are experimental phase boundaries. The computed phase
boundary, with label CE, lies almost on the horizontal axis indicating
complete miscibility down to 40 K.

boundary is obtained with the conventional cluster expansion.
The phonon contribution was found to have no appreciable
effect on the phase boundary. The constituent strain is ignored
as it vanishes in size-matched alloys. This calculation thus
predicts complete miscibility of Nb and Ta and the solution
phase is stable down to 40 K in agreement with experiment.

IV. DISCUSSION

The chemical and the constituent strain interactions are
the two key factors governing ordering or phase-separation
behavior of an alloy. The chemical interactions give attractive
contribution to the free energy of formation. The constituent
strain gives a repulsive contribution. The vibrational entropy
captures the variation in the phonon properties associated with
alloying which alters the stiffness of the chemical bonds.
According to the experiments, V-Nb forms a solid solution
without a miscibility gap. On the other hand, our calculations
predict an appreciable miscibility gap with 7, = 950 K. Our
cluster expansion covers all bcc supercells containing up to
12 atoms. Including structures with more atoms per unit cell
would modify the ECIs. Furthermore, the transferable force
constants scheme of lattice dynamics calculation is approxi-
mate. These factors are likely to influence the computed phase
boundaries. On the other hand, generally, in high-melting
alloys, the slow atomic diffusion at low temperatures often
prevents direct observation of either phase separation or
ordering, and only the high-temperature disordered solid-state
behavior is observed. Therefore, it is likely that miscibility gap
predicted by our first-principles calculations is overlooked in
the experiments due to slow kinetics.

The solid-state part of the V-Ta experimental phase diagram
consists mainly of two regions: (i) a bcc V-Ta solution region
and (ii) a two-phase region made up of V,Ta and the solution
phase. Table I gives the physical properties and ground-state
structures of V-Nb, V-Ta, and Nb-Ta alloys. V-Nb and V-Ta
alloys have nearly the same size mismatch. This indicates
that both the alloys should have same the constituent strain

PHYSICAL REVIEW B 85, 054202 (2012)

TABLE 1. Physical properties and ground-state structures of
V-Nb, V-Ta, and Nb-Ta alloys. Given are constituent size mismatches
Aaja = 2(as — ap)/(as + ap), electronegativity difference on the
Pauling scale A x, and low-temperature phases.

System Aal/a Ay Low-Temperature Phases
V-Nb 8.54% 0.03 Solid solution

V-Ta 8.57% 0.13 V,Ta and solid solution
Nb-Ta 0.03% 0.10 Solid solution

energies. On the other hand, the electronegativity difference
of V-Ta is significantly higher compared to that of V-Nb.
Electronegativity difference often controls the charge transfer
and hence the bonding. This means that, due to the large
electronegativity difference, chemical interactions dominate
in V-Ta alloys which leads to the ordering transition at 1583 K
with the formation of the V,Ta phase from the solution phase.

Our calculation for V-Ta alloys, which ignores the V,Ta
phase, predicts a miscibility gap with consolute temperature
T, = 1100 K, which is appreciably lower than 1583 K.
Formation of the V,Ta phase is driven by the dominant
chemical interaction in the alloy, which appears to manifest
by making the solution phase remain stable down to 1100 K.

V. SUMMARY AND CONCLUSION

We have computed the phase equilibrium of V-Nb, V-Ta,
and Nb-Ta alloys by combining density functional theory
total energy calculations with the cluster expansion and
Monte Carlo techniques. For V-Nb alloys, the phase boundary
computed with the conventional cluster expansion produces a
miscibility gap with a consolute temperature 7, = 1250 K.
Including the constituent strain to the cluster expansion
Hamiltonian does not alter the miscibility gap significantly,
although it appears to influence the solubility of V- and Nb-rich
alloys. The phonon entropy, combined with the constituent
strain, lowers the miscibility gap temperature significantly
to 950 K. The predicted miscibility gap of V-Nb alloys is
appreciable compared to the complete miscibility claimed by
the experiments. While the accuracy of the cluster expansion
can be improved by considering structures with more atoms
and better lattice dynamics models, it is also likely that, in
the alloys with high-melting point, the slow atomic diffusion
at low temperature prevented observation of phase separation
or ordering. For bcc V-Ta alloys, this calculation predicts a
miscibility gap with 7, = 1100 K. For these alloys, both the
constituent strain and phonon contributions are found to be
significant. The constituent strain increases the miscibility gap
while phonon entropy reverses the effect of the constituent
strain. In V-Ta alloy, the ordering transition occurs at 1583 K
from bcce solid solution to the V,Ta Laves phase due to the
dominant chemical interaction associated with the relatively
large electronegativity difference. Since the current cluster
expansion ignores the V,Ta phase, the associated chemical
interaction appears to manifest in making the solid solution
phase remain stable down to 1100 K. For Nb-Ta alloys, our
calculation predicts complete miscibility in agreement with
experiment.
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