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A novel embedded atom method (EAM) potential for the � phases of Al-Pd-Mn has been determined with the
force-matching method. Different combinations of analytic functions were tested for the pair and transfer part.
The best results are obtained if one allows for oscillations on two different length scales. These potentials stabilize
structure models of the � phases and describe their energy with high accuracy. Simulations at temperatures up
to 1200 K show very good agreement with ab initio results with respect to stability and dynamics of the system.
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I. INTRODUCTION

The ternary intermetallic system Al-Pd-Mn has been of
great interest in the last years, because it forms a high number
of complex metallic alloy compounds (CMAs). In this paper,
we focus on the � phases, which are approximants of a
decagonal quasicrystal with a lattice constant of 1.6 nm in
the periodic direction. Under plastic deformation, these phases
show a novel type of dislocations, so-called metadislocations,
which were first described by Klein et al.1

Ab initio studies of these metadislocations, even with fast
codes using density functional theory like VASP,2,3 are currently
unfeasible. Their spatial extent is about 200 Å and they involve
more than 10 000 atoms—impossible to simulate even with
state of the art ab initio programs.

With classical molecular dynamics (MD) it is easily
possible to simulate structures with millions of atoms in
reasonable time. The treatment of atoms as point masses
interacting with an effective potential allows for microscopic
insight into many processes on the atomic scale. The ability
to control almost any aspect of the simulation can be used for
optimizing the structure, determining physical properties or
explaining physical phenomena in detail.

However, obtaining an effective potential for classical
molecular dynamics is not straightforward. In order to extract
reliable results, a potential has to be adjusted to the specific
physical conditions considered. These can be, for example,
high pressures, strain, surfaces, or phase boundaries. A
common way is to fit a potential such that it reproduces
experimental data like lattice constants, cohesive, and surface
energies4,5 or simply combining pure element potentials into
an alloy potential.

For ternary systems, like Al-Pd-Mn, establishing a potential
with these approaches is very challenging. The small number
of available experimental data is not enough to fit reliable
effective potentials. Hence, to obtain a potential that can be
used for structure analysis and optimization, we apply the
force-matching method6 using the POTFIT package.7,8 In the
force-matching method, results from ab initio simulations are
used as reference data to adjust the parameters of a potential.
This not only dramatically increases the amount of information
available for fitting (the total number of data points can easily
reach several thousands). Also, if the reference data is found to
be insufficient, more pertinent reference data can be generated

at relatively low cost. This makes it possible to create realistic
potentials for binary or ternary systems. In our case, we used
forces on individual atoms, the cohesive energy and stresses
on the unit cells to fit a reliable potential.

In Sec. II, we describe the interaction model used in
this research. The fitting procedure using the force-matching
method is presented in Sec. III, the reference data used are
given in Sec. IV. The results will be discussed in detail in
Sec. V.

II. EAM POTENTIALS

A common way to describe atomic interactions in metals is
the embedded atom method (EAM).9 It implicitly includes
many-body interactions by a term that depends on the
environment of every atom. The potential energy of a system
described with the EAM method can be written as

Epot = 1

2

∑
i,j

j �= i

�ij (rij ) +
∑

i

Fi(ni) (1)

with ni =
∑
j �=i

ρj (rij ). (2)

The first term in Eq. (1) represents the pair interactions between
atoms i and j at a distance rij = |rj − r i |. The function Fi(ni)
is the embedding energy of atom i in the host density ni . This
density ni (2) is calculated as the sum over contributions from
the neighboring atoms, with ρj being the transfer function of
atom j . It does not represent an actual physical density; ni is
a purely empirical quantity.

For the pair and transfer part, we have tested three different
combinations of analytic functions as model potentials. Poten-
tial I has oscillations in the pair potential but not in the transfer
function. In contrast, potential II has oscillations only in the
transfer function. Finally, a third potential has oscillations in
both functions.

For the simple pair potential without oscillations, we chose
a Morse potential. It has a single minimum and is used in
model II only:

�(r) = �

(
r − rc

h

)
De{(1 − e−a(r−re))2 − 1}. (3)

054201-11098-0121/2012/85(5)/054201(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.054201


SCHOPF, BROMMER, FRIGAN, AND TREBIN PHYSICAL REVIEW B 85, 054201 (2012)

� is a cutoff function, where the free parameters rc and h

describe the cutoff radius and the smoothing of the potential.
The remaining parameters are De, a, and re; De is the depth of
the potential minimum, re the equilibrium distance and a the
width of the potential minimum. The pair potential function
with oscillations is adopted from Mihalkovič et al.:10

�(r) = �

(
r − rc

h

)[
C1

rη1
+ C2

rη2
cos(kr + ϕ)

]
. (4)

This “empirical oscillating pair potential” (EOPP) has been
used in various works on complex metallic alloys and
quasicrystals,11–13 as it provides great flexibility. The first
term of Eq. (4) with the parameters C1 and η1 controls the
short-range repulsion. The second term is responsible for the
damping (C2,η2) of the oscillations with the frequency k.

The cutoff function �(x) is defined by

�(x) = x4

1 + x4
(5)

for x < 0 and �(x) ≡ 0 for x � 0. This function guarantees
that the potential functions, as well as their derivatives up to the
second order, approach zero smoothly at the cutoff distance rc.

Two different analytic forms were used as transfer func-
tions; one allows for oscillations, the other one does not. The
latter one is a simple exponential decay frequently used in
established EAM potentials:5,14,15

ρ(r) = α exp(−βr), (6)

where α is the amplitude and β is the decay constant. This
function is used in model I. For models II and III, we
used an oscillating transfer function, which is taken from
Ref. 16:

ρ(r) = �

(
r − rc

h

)
1 + a1 cos(αr) + a2 sin(αr)

rβ
. (7)

The four free parameters are a1, a2, α, and β, where a1 and
a2 determine the amplitude of the oscillations, α is the wave
vector and β controls the decay.

The embedding function F (n) was adopted from Ref. 14.
It is based on the general equation of state from Rose et al.17

The original form is given as

F (n) = F0

[
q

q − p

(
n

ne

)p

− p

q − p

(
n

ne

)q]
+F1

n

ne

. (8)

The parameters in this function are F0, F1, p, q, and ne. p and
q are real values and ne is the equilibrium density. In this paper,
we use this function in the limit p → q and chose ne = 1:

F (n) = F0 [1 − q ln n] nq + F1n, (9)

because the original form is numerically unstable with our
optimization algorithms.

The number of free parameters of our three potential models
is comparatively large. The nonoscillating (oscillating) pair
potential has three (six) parameters, and the non-oscillating
(oscillating) transfer function requires two (four) values.
All models share the embedding function with three free
parameters. Every pair and transfer function has one additional
parameter h for the cutoff function �. The cutoff radius rc is

TABLE I. Binary structures (T = 0) used to fit the potentials,
with their corresponding Pearson symbol.

Al-Mn structures Al-Pd structures

Al10Mn3.hP26 AlPd.cP8
Al11Mn4.aP15 Al21Pd8.tI116
Al12Mn.cI26 Al3Pd2.hP5
Al6Mn.oC28

AlMn.tP4

kept fixed at 7 Å. In a ternary system like Al-Pd-Mn with 12
potential functions, this adds up to a total number of 60, 48,
and 66 parameters for the models I, II, and III, respectively.

III. FITTING PROCEDURE

All force-matching was performed with the POTFIT package
of Brommer and Gähler,7,8 which has previously been used to
optimize tabulated pair and EAM potentials. For this work, its
capabilities were extended to analytic potential models.

All free parameters of the analytic functions were fitted
to an ab initio reference database containing relaxed (T = 0)
structures, snapshots from ab initio MD simulations at higher
temperatures and a few strained samples (see Tables I and
II). All ab initio calculations were performed with the Vienna
Ab Initio Simulation Package (VASP)2,3 using the generalized
gradient approximation (GGA) and the projector augmented
wave (PAW) method.18

Two different optimization algorithms were used to fit the
potentials. They both minimize the sum of squares defined by

Z =
∑

ωE|�E|2 +
∑

|�F |2 +
∑

ωS |�S|2, (10)

where �E, �F , and �S are the energy, force and stress
residuals. These deviations are calculated as the difference
of the ab initio and the EAM value, e.g.,

�E = EEAM − Eab initio.

TABLE II. Ternary structures used to fit the potentials and their
ab initio formation enthalpy �H .

Number of atoms �H (eV/atom)

T = 0 Al92Pd28Mn10
a −0.512

Al92Pd28Mn8
a −0.485

Al112Pd36Mn6
b −0.526

Al114Pd34Mn6
b −0.503

Al112Pd34Mn6
b −0.512

Al110+xPd32Mn8
b see Sec. V A

Al124Pd8Mn24
b,c −0.297

Al147Pd43Mn18
b −0.485

Al294Pd88Mn16
b −0.491

T > 0 Al92Pd28Mn8
a,d –

Al92Pd28Mn10
a (1500 K) –

aStructure generated from canonical cell tiling.21

bFrom structure optimization.
cT-Al-Pd-Mn, see Sec. IV.
dFrom several MD runs at 600, 1100, and 1800 K with small strains.
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ωE and ωS are global weights for the energies and stresses.
ωE = 22 500 was chosen to obtain potentials that yield very
precise energies, but also reasonable forces. For configurations
with about 150 atoms, this effectively weighs the energies
with a factor of approximately 50. The stress weight ωS was
set to 750, so that the total weight of the six stress tensor
components per configuration is approximately equal to ten
times the weight of all forces in one configuration.

The first optimization algorithm used is simulated
annealing.19 It is based on the Metropolis criterion, where
a decrease in the target function Z is always accepted
and an increase only with a probability P = e−�Z/T . This
allows the algorithm to escape local minima. The artificial
temperature T is steadily decreased during the optimization.
To ensure that the fit converged to the global minimum, the
optimization was restarted with a high temperature several
times. Subsequently, a conjugate gradient based method20 was
applied to converge to the final optimum. During the fitting
procedure, all parameters were confined to a predefined range
by use of numerical punishments.

IV. REFERENCE DATA

The structures used as reference data are shown in Tables I
and II. There are 119 configurations with a total of 16 103
atoms. The number of reference data points is 49 340. They
consist of 48 309 forces, 119 energies, and 714 stresses.

In addition to the binary and ternary structures, one
reference configuration for each of the pure elements was
also included. These were, in detail, Al.cF4, Pd.cF4, and
Mn.cI58. This was done to get reliable reference points for
the calculation of the enthalpy of formation.

All atomic configurations from binary systems (see Table I)
were taken from the alloy database of Widom et al.22 and have
been fully relaxed with ab initio methods. They were chosen
to provide more data for the Pd-Pd and Mn-Mn interactions.
Magnetism was not included in our ab initio calculation; it
was shown that the manganese atoms in the � phases are
nonmagnetic.23 Because the structures we want to investigate
are on the aluminum-rich side of the phase diagram, there is
only little data for the Mn-Pd interaction.

The reference configurations for the � phases are from
different sources. The structures in Table II denoted with
superscript a were taken from the alloy database.22 They
were generated with the canonical cell tiling,21 which creates
hypothetical models by decorating a tiling with clusters. To
compensate for the low amount of manganese in these samples
and the hence resulting lack of data, five of the aluminum
atoms were replaced by manganese in some configurations.
Ab initio molecular dynamics simulations with VASP2,3 were
run with these samples at 600, 1100, and 1800 K to obtain
different local atomic configurations. These calculations were
done in the generalized gradient approximation (GGA) with
PAW potentials.18

At the same time, ab initio structure optimization was
carried out for two of the � phases. Particularly, this were
the � phase with the smallest unit cell, which contains about
152 atoms and is called ξ and the next bigger one, containing
about 304 atoms, which is called ξ ′. All structures generated

TABLE III. Root mean square errors after the optimization for
forces (in meV/Å), energies (in meV/atom), and stresses (in kPa).
These data are calculated with the reference configurations used for
fitting the potentials.

RMS errors for Model I Model II Model III

forces 265.63 221.40 220.07
energies 19.36 14.49 12.53
stresses 99.99 76.83 98.30

in the course of this optimization are denoted in Table II by
superscript b.

To judge the stability of these structures, their energy is
compared to a mixture of competing phases, the convex hull.
This hull, defined over a ternary phase diagram, contains
the cohesive energies of all stable compounds as vertices. If
the energy of a structure is above this convex hull, it could
decompose into the neighboring structures and thus lower its
energy. If the energy of a new structure is below the convex
hull, it is considered to be thermodynamically stable. The
structures that define the convex hull for the � phases, are
T-AlPdMn, Al12Mn, Al21Pd8, and Al3Pd2. They have also been
included in the reference database. A detailed description of
these phases and the convex hull is given in Ref. 24.

V. RESULTS

We determined parameters for all three potential models
from the reference data described above. The root mean
square (RMS) errors for forces, energies, and stresses after
the optimization are in the same order of magnitude for all
models (see Table III). While model III has the smallest errors
for forces and energies, model I has the biggest errors for all
three quantities. Model II has the smallest stress deviations.
While the force error for model I is about 20% larger than the
one for model III, the energy error is significantly larger with
about 50% difference.

A graphical representation of these errors can be seen in
Fig. 1. The scatter plots in the upper row display the energies
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FIG. 1. Scatter plot for energies and forces with the EAM values
on the vertical axis and the ab initio reference data on the horizontal
axis. The insets are magnified by a factor 4.5.
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TABLE IV. Root mean square errors for forces (in meV/Å),
energies (in meV/atom), and stresses (in kPa). These data are
calculated with test data, containing only structures that were not
included in the optimization process.

RMS errors for Model I Model II Model III

forces 141.90 131.90 130.46
energies 10.42 10.47 10.28
stresses 32.39 23.76 36.89

of the reference data. Forces are shown in the lower row. The
range of the force plots is due to the many high-temperature
MD simulations that are included in the reference data. The
forces therein can become very large because of the short
interatomic distances that may occur at these temperatures.

These errors cannot solely be used to judge the quality and
transferability of the potentials. For that purpose, another set of
ab initio data has been extracted from the structure optimiza-
tion. It has not been included in the reference data and can be
used to determine the transferability of the different potentials.
The same errors as before have been calculated and can be seen
in Table IV. As with the reference data, model III has the lowest
force and energy errors. The relative error of the energy is about
0.2%, for stresses about 5%, and 550% for forces. This is due to
the fact that all configurations in these test data are ground-state
structures and therefore only contain very small forces.

The errors for the test data in Table IV are smaller than
those of the reference configurations in Table III, because
there are only ground states included and no high temperature
MD runs.

Based upon these simple energy and force considerations,
all the potential models appear to be of similar quality.
Model III, however, should be slightly superior to the other
two potentials. Further tests are necessary to determine the
performance of the potentials in different situations. They will
be presented in Sec. V B.

FIG. 2. (Color online) Detailed structure of the pseudo-Mackay
icosahedral cluster. A few atoms of the second and third shell are
omitted to see the central atom and the aluminum atoms in the first
shell. The icosahedron and icosidodecahedron are indicated by planes
and bars, respectively. The central atom is manganese. Aluminum
atoms are depicted in yellow (light gray) and palladium atoms in
magenta (dark gray).

TABLE V. Cohesive energies (in eV/atom) of different optimized
configurations for the ξ phase. The energy differences �E between
the ab initio calculations and the respective model are given in
meV/atom.

Number of atoms Eab initio
�E (meV/atom)

per PMI (eV/atom) Model I Model II Model III

8 −4.753 −13 −12 −20
8.25 −4.755 −6 −7 −13
8.5 −4.756 −1 −3 −5
8.75 −4.757 +3 +2 +2
9 −4.755 +4 +4 +3
9.25 −4.747 +1 +1 +1
9.5 −4.741 +1 +0 +2
9.75 −4.731 −6 −5 −2
10 −4.731 +0 +2 +4
10.25 −4.714 −12 −12 −5
10.5 −4.704 −15 −17 −7
10.75 −4.692 −19 −21 −13
11 −4.683 −22 −24 −17

A. Structure refinement

In Ref. 24, the structure of the � phases of Al-Pd-Mn
has been optimized by energy minimization in ab initio
and molecular dynamics simulations. We use several of the
structures tested there to judge the quality of the optimized
potentials. The � phases consist of columns of pseudo-Mackay
icosahedral clusters (PMIs),25 a slight deviation of the famous
Mackay icosahedron.26

Every PMI cluster consists of a single atom at the center
with a first shell of an experimentally poorly determined
number of aluminum atoms. The second shell is an icosahedron
of 12 transition metal atoms and the outer shell an icosidodec-
ahedron of 30 aluminum atoms, see Fig. 2. Almost all atoms of
the � phases belong to these clusters. It is difficult to measure
the exact number of atoms in the first shell because aluminum
atoms are hard to observe in diffraction experiments.

For the lowest quasicrystal approximant, the ξ phase,
there are four PMI clusters in one unit cell. Several different
occupancies of aluminum atoms in the first shell were tested in
Ref. 24. Each configuration was denoted by a single number,
giving the average number of aluminum atoms per cluster.
Structures from eight up to eleven atoms per PMI were
generated and tested.

TABLE VI. Cohesive energies (in eV/atom) of the four almost
stable phases after relaxation. The energy differences �E are given
in meV/atom. The composition is given in numbers of aluminum,
palladium and manganese atoms, in this order. All configurations
have nine aluminum atoms in the inner shell of the PMI clusters.

Eab initio
�E (meV/atom)

composition (eV/atom) Model I Model II Model III

ξ -228–64–12 −4.702 −5 +4 0
ξ -224–68–12 −4.748 +1 +7 +4
ξ ′-228–64–12 −4.703 −5 +3 +1
ξ ′-224–68–12 −4.748 +1 +5 +5
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TABLE VII. Cohesive energies for different phases in the Al-Pd-Mn system. All energies and energy differences are given in eV/atom.
The mean square displacements (�x) after relaxation are given in Å/atom. A displacement of 0 means the value is smaller than 10−4 Å/atom.

Eab initio
Model I Model II Model III

System E (eV/atom) EEAM �E �x EEAM �E �x EEAM �E �x

AlPd.cP2 (B2) −5.330 −5.430 −0.100 0 −5.503 −0.173 0 −5.445 −0.115 0
AlPd3.cF16 (D03) −5.236 −5.426 −0.190 0 −5.424 −0.188 0 −5.430 −0.194 0
Al3Pd.tI8 (D022) −4.421 −4.546 −0.125 0 −4.540 −0.119 0 −4.560 −0.139 0
Al3Pd.cP4 (L12) −4.609 −4.647 −0.038 0.13 −4.651 −0.042 0.17 −4.650 −0.041 0.17

Al3Mn.tI8 (D022) −5.132 −5.053 0.079 0.04 −5.129 0.003 0.01 −5.175 −0.043 0
Al3Mn.cP4 (L12) −5.032 −5.187 −0.155 0 −5.180 −0.148 0 −5.197 −0.165 0

The results with the different potential models can be seen
in Table V. All structures were completely relaxed with ab
initio methods, the corresponding ab initio energy is given
in the second column. The energies of these configurations
with the generated EAM potentials have been calculated after
subsequent relaxation with the respective potentials. This
relaxation causes small displacements of the atoms from their
ab initio determined positions. For models I, these average
displacements are 0.10 Å/atom, 0.08 Å/atom for model II,
and 0.11 Å/atom for model III. This clearly shows that all
potential models can stabilize the ground states of all structures
that were generated.

All models are having difficulties with the energies of
structures that contain less than nine or more than ten atoms
in the inner shells of the PMI clusters. This may be an
indication for the mechanical instability found during the
structure optimization.24 The energy of these structures is
highly unfavorable; at elevated temperatures some atoms
drifted from the outer shell to the inner shell or vice versa
to achieve an inner shell with nine or ten aluminum atoms.

All energy differences between the ab initio and EAM
calculations are smaller than 10 meV/atom for configurations
ranging from 8.5 to 10 atoms per PMI cluster. This energy
is considered a critical threshold for the accuracy of the
potentials. Regarding the energy differences between the
different structures, which are on the order of 1 meV/atom,
all potentials can evidently distinguish between these different
configurations.

The structure optimization in Ref. 24 yielded four almost
stable structures, which are different from the ones shown
in Table V. There, not only the atoms in the inner shell are
varied, but also atoms not belonging to the PMI clusters. These
alterations were not done in a systematic manner, the structures
will be listed in tabular form. The amount of atoms for ξ - and
ξ ′ phases is the same, only the arrangement of the PMI cluster
columns is different. These structures were tested with the
three different potentials. The results can be seen in Table VI.
The two upper structures in this table are ξ phase, the two
lower structures are ξ ′.

After the relaxation with the effective potentials, all models
show a very good agreement with the ab initio calculated
energies. The mean displacements after the relaxation are again
in the same order of magnitude as before, 0.11 Å/atom for
model I, 0.08 Å/atom for model II, and 0.15 Å/atom for model
III. Based on these pure energy comparisons, all three potential
models seem to be of equal quality, with slight advantages for
model III.

B. Tests

A force-matched potential is only useful if it can reproduce
key quantities that were not directly included in the reference
data. Here, we subjected the three potentials to a series of tests.
The first test is whether the potential can stabilize the ξ phase
even at elevated temperatures. As there was a large number
of high-temperature ab initio MD simulations included in the
optimization, the potentials should be able to preserve the
structure of the ξ phase under these conditions. We carried out
an ab initio MD simulation at 1200 K for 50 ps,24 where the
phase is still mechanically stable. In a time-averaged picture
of the density, the atoms in the two outer shells of the PMI
clusters did not move, but the atoms in the first shell showed
some rotational degree of freedom.

All three models were able to stabilize the structure at this
temperature. While models II and III give the same results as
the ab initio calculation (see Ref. 24), model I shows additional
degrees of freedom. In the time-averaged picture, the atoms
forming the outer shell of the PMIs are not as steady as in
the ab initio simulation. Also the atoms, which do not belong
the these clusters, exhibit a density distribution that is twice as
large as expected. This means that model I may have difficulties
stabilizing the structure at even higher temperatures or against
fluctuations in the local atomic arrangement.

For molecular dynamics simulations, the stabilization of
different phases can be a problem. We checked some well-
known phases for all three potential models with respect to
cohesive energy and phase stability. The results can be seen
in Table VII. All three potentials can stabilize the different
phases. The deviation of the atomic positions after relaxation
compared to the ab initio reference values is very small. The
energies are reproduced with errors of under 200 meV/atom.

TABLE VIII. Ab initio energies (in eV/atom) and the differences
for the effective potentials (in meV/atom) for the pure elements.
These energies were used for the calculation of the formation
enthalpies �H .

Eab initio
�E (meV/atom)

(eV/atom) Model I Model II Model III

Al.cF4 −3.688 −5 −4 −3
Pd.cF4 −5.199 0 0 0
Mn.cI58 −8.964 +68 −7 +3
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FIG. 3. Comparison of the ab initio formation enthalpy �H (in
eV/atom) with the three potential models. The lines between the ab
initio data points are added as a guide to the eye.

Another important test is the calculation of formation
enthalpies �H with the potentials. �H is defined as the energy
difference of a structure to the tie plane of the pure element
energies. This has been calculated for all configurations
in Tables V and VI. The reference energies are given in
Table VIII. For the structures with different amounts of
aluminum atoms in the inner shell of the PMI clusters, the
results can be seen in Fig. 3. The deviations from the ab initio
enthalpies are very similar to those from Table V. For less
than 8.5 and more than 10 atoms in the inner shell of the PMI
clusters, the enthalpies differ more than 10 meV/atom.

The enthalpies for the four almost stable structures are
shown in Table IX. All three models give very accurate
enthalpies with deviations all smaller than 10 meV/atom.

During the structure optimization a very long ab initio MD
run with 50 000 steps at 1200 K was performed. Snapshots
were taken from this simulation at different timesteps and
quenched very rapidly. This has also been done with the
EAM potentials. The results show a very good agreement for
different snapshots. The structures only differ very slightly
in atomic positions. While there is a steady offset of about
100 meV/atom in the energy for higher temperatures, the
overall trend can clearly be followed. For lower temperatures
and T = 0, the energies were in the same order as for the

TABLE IX. Ab initio formation enthalpies �H (in eV/atom) of
the four almost stable phases and the differences for the effective
potentials (in meV/atom) after relaxation. The composition is given
in numbers of aluminum, palladium, and manganese atoms, in this
order. All configurations have 9 aluminum atoms inside the PMI
clusters.

�Hab initio
�HEAM − �Hab initio

composition (eV/atom) Model I Model II Model III

ξ -228–64–12 −0.488 −6 +1 −1
ξ -224–68–12 −0.513 0 +4 +3
ξ ′-228–64–12 −0.488 −6 0 0
ξ ′-224–68–12 −0.514 0 +2 +3
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FIG. 4. Difference of the cohesive energy to the convex hull for
different amounts of aluminum atoms in the inner shell of the PMI
clusters. The data points for model I are shifted by +10 meV/atom
and by +5 meV/atom for model II.

structures in Table V. There were no major differences for all
three potential models.

To determine if a structure is thermodynamically stable,
the energy difference of this structure to the convex hull is
calculated. If this difference is negative, the structure is stable,
otherwise it it unstable. For more details on the convex hull
see Ref. 24. This energy difference has been calculated for all
structures in Table V and is shown in Fig. 4.

For the sake of clarity, the data points of model I and II are
shifted by +10 and +5 meV/atom. While these models show a
clear decrease of the energy difference with increasing number
of atoms inside the PMI cluster, model III has minima for nine
and ten atoms, like the ab initio reference calculation. As this
is the main criterion for performing a structure optimization,
models I and II cannot be used for this purpose. Only model
III is able to reproduce the shape of the ab initio calculation.

The melting point for the ξ phase has been determined with
all three potential models. In MD simulations, the volume
per atom has been calculated while the sample was heated
from 950 to 1400 K. At the melting point, there is a jump in
atomic volume, which corresponds to the melting transition.
For model I, this was found at 1130 K, for model II, at
1370 K, and for model III, at 1300 K. With this method,
the melting point is generally overestimated, due to the high
heating rates. For the simulations, we chose a heating rate

TABLE X. Elastic constants of ξ -Al-Pd-Mn in GPa.

ab initio Model I Model II Model III

C11 175.79 255.25 244.66 200.98
C22 192.75 269.79 246.74 193.61
C33 227.46 243.53 246.64 160.57
C12 58.76 158.83 145.57 102.76
C13 67.85 146.75 146.78 92.95
C23 56.34 151.19 146.51 107.04
C44 72.54 42.57 42.42 42.77
C55 67.77 41.46 47.19 46.66
C66 71.25 48.51 48.21 43.76
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FIG. 5. (Color online) Plots of the 12 functions of the EAM potential (model III) for Al-Pd-Mn.

of 5 × 10−5 K per time step, this equals 5 × 109 K/s. If one
compares these temperatures with the experimental value of
1118 K, the value for the potential model I seem to be too low,
model II and III are in the expected temperature range.

Another test we performed is the calculation of the elastic
constants. All � phases have an orthorhombic unit cell.

The corresponding nine elastic constants were determined
by examining the cohesive energy during homogeneous
deformations of the sample.

The results with all three models (see Table X) show
only very little agreement with the ab initio values. Only
model III can reproduce C11 and C22. All other elastic

TABLE XI. Parameters for the model III EAM potential with r in units of Å and V (r) in eV.

EOPP pair function
pair C1 η1 C2 η2 k ϕ h

Al-Al 586.4805 7.6769 −0.0333 1.0012 3.7658 3.8484 1.3897
Al-Mn 338.7250 7.5484 −0.4212 1.9271 2.7530 0.0033 0.5000
Al-Pd 981.8107 9.1908 −89.9193 4.7322 0.2491 1.3235 0.6211
Mn-Mn 3.8460 19.9995 −44.5953 4.1469 1.2084 1.0115 1.5938
Mn-Pd 12.8931 3.4348 −90.3824 4.4851 1.6212 0.0005 0.5007
Pd-Pd 6625.3081 9.5962 99.8792 6.1164 3.8088 2.5086 0.5235

transfer function
element a1 a2 α β h

Al 0.1317 0.0399 2.7507 2.3142 1.9995
Mn −1.5432 1.0321 1.6018 2.4154 1.9996
Pd 0.4962 0.7317 2.9972 3.4308 0.5001

embedding function
element F0 F1 q

Al −2.9403 0.5639 −1.3026
Mn −1.5862 1.3917 −5.3935
Pd −4.0016 0.9432 −5.7749

cutoff radius rc = 7 Å
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constants differ by up to a factor of three. The potentials are
apparently not able to reproduce the shear stress. However, this
behavior is to be expected, if one takes into account that these
potentials were generated for energy minimization purposes.
For other applications, like calculating mechanical properties,
an extended database, containing enough data on shears,
should be used. The only samples used for these potentials, that
included deformations, were high-temperature ab initio MD
snapshots. These were strained along either of the cartesian
axes that are perpendicular to the periodic stacking axis of the
quasicrystal. The corresponding elastic constants are C11 and
C22, which are the only ones correctly reproduced by model III.

This clearly shows that force matched potentials are limited
in their applications. They give very accurate results regarding
the energy and forces because they are tuned to these quantities.
For other physical properties, like elastic constants, the
potentials are less accurate.

VI. SUMMARY

The Al-Pd-Mn potentials presented are very well suited to
model the energetics of the � phases. They were obtained with
the force-matching method, which is fitting the parameters to
a large database of ab initio determined reference data. All
three analytic potential models tested were able to reproduce

the ab initio values of the energies with very high accuracy.
The error sum of the fitting process for all three potentials is
very similar, yet they show very different properties when used
in MD simulations.

The differences of the models become visible when cal-
culating energy differences like formation enthalpies or the
convex hull. There, model III shows the smallest deviations
and can reproduce the ab initio values with very high accuracy.
The models I and II also give very good energies differences
but cannot be used to predict the stability of a structure
with the calculation of the convex hull. This indicates that
oscillations on two length scales, like in model III, are
necessary. However, the reasons for this are unclear. For further
structure determination and analysis of the metadislocations in
the � phases, the model potential III will be used.
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22M. Widom and M. Mihalkovič; [http://alloy.phys.cmu.edu].
23F. Hippert, V. Simonet, G. T. de Laissardière, M. Audier, and

Y. Calvayrac, J. Phys. Condens. Matter 11, 10419 (1999).
24B. Frigan, A. Santana, M. Engel, D. Schopf, H.-R. Trebin, and
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