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Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles
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For clinical hyperthermia treatment the heating efficiency of magnetic nanoparticle ensembles is a crucial
element. Using efficient algorithms, this heating is studied numerically with a focus on the effects of dipole-dipole
interparticle interactions. For the time evolution of realistically modeled systems an approach based on the
Landau-Lifschitz-Gilbert equation of motion with Langevin dynamics is taken. Our results suggest a widely
negative influence of dipole-dipole interactions on the heating power of nanoparticles. However, considering
ensembles within a fixed, given sample volume an optimal particle density exists. The presented results may have
important implications for the medical use of magnetic hyperthermia treatment.
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I. INTRODUCTION

Magnetic-fluid hyperthermia, a new experimental cancer
treatment, uses the heating of magnetic nanoparticles in
an alternating magnetic field as a therapeutic measure to
selectively heat and destroy tumor cells within the human
body. For such a treatment magnetic nanoparticles in a solvent
liquid are injected into the bloodstream and can be navigated
by external magnetic field gradients and/or biological receptor
coatings on the particle surface to the target region. The
particles accumulate therefore in the tumor cells and can then
heat them selectively until destruction sets in.

Various studies have already been performed on this sub-
ject, both experimentally and theoretically. Experiments range
from the physical studies of the nanoparticles and the liquid1,2

to medical studies on toxicity,3 targeting ability,4,5 intracellular
mobility,6 and the effectiveness of the heating.7,8 Theoretically,
most works deal with the general description of the particle
assemblies, both analytically9,10 and numerically.11,12 Here the
general focus is on the optimization of the heating power and
its dependence on particle properties, such as their size or the
material parameters.13

Two fundamental values that influence the heating power
of particles directly are the frequency f of the alternating
magnetic field and its amplitude B0. Due to the nonselective
heating effects of eddy currents in the human tissue these
values must, however, be limited in size to assure a safe
treatment for the patient.14 Aside from the small contribution
of eddy currents the heating of magnetic particles may be
caused by magnetic hysteresis losses or by viscous friction
losses that occur with a Brownian particle rotation. The latter
effect is, however, neglectable in a realistic treatment scenario
since particles are strongly immobilized in the human tissue.6

The heating that is linked to the system hysteresis is
caused by magnetic relaxation and does not need to be
distinguished from heating trough Néel relaxation losses.15

Both loss processes are, for one field cycle, fully defined by the
area AHyst that is enclosed in the hysteresis loop of the particle
ensemble.16 The most commonly used quantity that reflects the
heating power of a particle ensemble is the specific absorption
rate (SAR, W/kg), which is defined as the heating power per
particle mass. For a hysteresis loss process, this value is given
as SAR = AHystf

ρ
, where ρ denotes the density of the magnetic

material. When f and B0 are kept constant at their medically

safe values, it is sufficient to discuss a normalized hysteresis
area A = AHyst

4B0Ms
that defines the SAR for a certain material

with saturation magnetization Ms and density ρ.
An important question that has recently found increasing

attention is the influence of the unavoidable dipole-dipole
interactions among the particles. Present discussions are still
not fully conclusive on whether they cause an increase or
a decrease of the SAR. To the best of our knowledge the
latest results on this subject point, however, to a reduced
SAR.17 As the strength of dipole-dipole interactions depends
strongly on the particle density, this interaction may very
well define an optimal density that has to be chosen for a
maximized heating power. We suggest considering a volume
specific absorption rate (VSAR, W/m3) that denotes the
heating power in a fixed sample volume encapsulating a
varying amount of nanoparticles. Optimizing this quantity
would be of great importance for practical studies that focus
on increasing particle densities in the tumor volume through
modern targeting methods.

In order to contribute to the discussion of dipole-dipole
effects in hyperthermia treatment we will employ an advanced
computer model that is able to simulate nanoparticle systems
with many of their practical features, such as a particle-size
distribution, random particle position, random orientation of
the easy axes, and dipole-dipole interaction. We will show
that optimal particle densities exist for a maximization of the
VSAR.

II. MODELING AND SIMULATION APPROACH

Within the computational approach used the magneti-
zation dynamics of each particle is represented by the
Landau-Lifshitz-Gilbert (LLG) equation of motion,18 includ-
ing Langevin dynamics for the consideration of thermal
properties,

Ṡi = − γ

(1 + α2)MsVi

Si × [Hi(t) + αSi × Hi(t)]. (1)

In this equation Si are unit vectors pointing into the direction of
the magnetization. The coefficient γ denotes the absolute value
of the gyromagnetic ratio, and α is the dimensionless Gilbert
damping constant. The effective field Hi(t) = ζ i(t) − ∂H/∂Si

is defined through the Hamiltonian

H = Hanis + Hfield + Hdipol (2)
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and a thermal noise contribution ζ i(t) with

〈ζ i(t)〉 = 0,
(3)

〈ζiν(t)ζjϕ(t ′)〉 = δi,j δν,ϕδ(t − t ′)kBT μs
2α

γ
.

In Eq. (3) the Latin indices refer to different particles, whereas
the Greek ones denote Cartesian coordinates.

In this approach the common approximation of single-
domain magnetic particles is used with a magnetic moment
μi = MsVi · Si that is proportional to the particle volume Vi

and a constant saturation magnetization Ms. The Hamiltonian
defining the effective field in Eq. (1) includes contributions
from a uniaxial anisotropy with anisotropy constant K,

Hanis = −K
∑

i

Vi (ai · Si)
2 , (4)

an alternating, external magnetic field,

Hfield = −B(t) · Ms

∑
i

ViSi , (5)

and dipole-dipole interactions,

Hdipol = −μ0M
2
s

4π

∑
i<j

ViVj

3(Si · eij )(eij · Si) − Si · Sj

r3
ij

.

(6)

In addition to an individual, random orientation of its easy axis
each particle is also equipped with an individual volume. Over
the entire system the particle radii r are distributed according
to a standard lognormal probability density function:19

FP(r) = 1

rσ
√

2π
exp

(
− (ln r − θ )2

2σ 2

)
. (7)

The coefficients θ and σ define the average radius rmid and
the relative standard deviation φ through rmid = exp(θ + 1

2σ 2)

and φ =
√

exp(σ 2) − 1. Even though rmid is kept constant,
the average particle volume Vmid is changed for different
distribution widths φ.

Due to the numerical complexity of the dipole-dipole
interactions an algorithm based on fast-Fourier-transformation
methods is used for its evaluation.20 As this algorithm requires
a regular lattice for its application, the modeled disorder is
introduced by distributing relatively few particles on a very
fine regular mesh. Each particle is set to fully occupy the
space defined by its individual volume Vi and is placed with
a fixed position and orientation of its easy axis. Through this
approach disordered particle systems with up to 105 particles
can be simulated over time scales of the order of 10−5 s. Part
of the remanent state of a sample system is shown in Fig. 1.

As an integration scheme for Eq. (1) a standard Heun
method is used.20 In order to determine the validity of our
approach, first, results neglecting the dipole-dipole interac-
tions were compared with various standard problems that
possess analytical solutions. The more complex simulations
including dipole-dipole interactions are performed for systems
at T = 300 K with constant average particle sizes of rmid =
15 nm. The saturation magnetization is set to Ms = 800 kA/m,

and the anisotropy constant is set to K = 10 kJ/m3. Such
particles are in the transition between superparamagnetic and

FIG. 1. (Color online) Illustration of the remanent states of
two simulated particle ensembles. The lower system is a more
dense version of the upper one with slightly lower remanence. The
color coding as given in the inset in the upper plot visualizes the
current magnetization orientation, which is also indicated by
the peak on each particle. The depicted particle size corresponds to
the assigned individual particle volume Vi . In this case the lognormal
size-distribution width is defined by φ = 0.6 [see Eq. (7)].

Stoner-Wohlfarth-like behavior. They are expected to be the
best candidates for an efficient magnetic heating under realistic
conditions.15

The influence of the Gilbert damping parameter α is
investigated for low- and high-damping cases. Since no
qualitative change in the results is found (see Fig. 4), the
majority of the simulations are performed in a high-damping
limit with α = 1. For the same reasons also the frequency is
chosen to be up to two orders of magnitude higher then under
experimental conditions where f is usually set in the region of
100 kHz. Neither of these simplifications is strictly necessary,
but they serve to significantly reduce computation times. The
magnetic field amplitude is set to B0 = 20 mT, a practically
used value.14

The typical system size in the range from 2000 to 8000
particles is small compared to realistic systems but has
proven to show reliable behavior. Within the limits of our
computational means larger systems did not show a qualitative
change in the results.
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III. RESULTS

Using the computer model that was introduced in the
previous section, the influence of dipole-dipole interactions on
the heating power is investigated for many different cases. The
heating power is characterized by the reduced hysteresis area
A as it was introduced in Sec. I. In addition to the variation of
particle concentration c = Vparticle/Vsystem (%) (where Vsystem

is the volume of the entire sample encapsulating all magnetic
nanoparticles and Vparticle = ∑

i Vi is the total volume of
the particles), the influence of different sample shapes and
different spatial distributions is studied as well. The heating
efficiency of the particles is discussed per particle mass as well
as per sample volume.

The most basic effect of dipole-dipole interactions on the
hysteresis loops can be seen in Fig. 2. Three simulated curves
are shown for different particle concentrations c. Note that the
limit c → 0 corresponds to vanishing dipole-dipole interaction
since we keep the volume of the particles constant, and the
limit c → 0 hence refers to an increasing system volume
and, with that, to an increasing distance between particles.
Both the remanence and the coercive field are reduced for an
increasing particle concentration. It is interesting to note that
for higher concentrations no saturation is reached and only an
inner hysteresis loop can be seen. The hysteresis area A and
therefore the system’s SAR are clearly reduced.

This reduction is shown in more detail in Fig. 3. Here
different particle-size distributions and sample shapes are
analyzed. Note that the term sample shape here refers to the
overall shape of the the entire ensemble of particles, not to
the shape of the individual particles. For φ = 0 all particles
have identical size, while φ = 0.8 corresponds to a lognormal
distribution of finite width. The sample shape is generally
defined by the ratio Rx,y = Lz : Lx,y of its length in the
field direction versus its orthogonal width. The decrease in
hysteresis area A for an increasing particle concentration c can
be seen for all systems. For only the elongated sample a limited
benefit is produced by the dipole-dipole interactions at small
concentrations. This effect is due to the shape anisotropy of the
elongated sample leading to an increased coercivity and hence
hysteresis area. The influence of the particle-size distribution
is less pronounced.
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FIG. 2. (Color online) Simulated hysteresis curves for different
particle concentrations c. The remanence and the coercivity are
clearly reduced for higher concentrations.
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FIG. 3. (Color online) Reduced hysteresis area A vs particle
concentrations c. This dependence is shown for different sample
shapes and size distributions.

In comparison to the results of Fig. 3 it can be seen in Fig. 4
that the former frequency and damping values (f = 10 MHz
and α = 1) produce only small alterations to simulation results
obtained for more realistic values of f and α. The qualitative
behavior of the system for increasing particle density remains
the same.

When increasing the particle concentration in a system,
it is further important to consider the spatial distribution of
particles. When used for hyperthermia treatment, magnetic
nanoparticles will have a functionalized nonmagnetic coating
that protects the particles, prevents particle agglomeration,
and may be equipped with biological targeting receptors.
If no or very little coating exists, particles will be able to
randomly form dense clusters even when diluted significantly
in a solvent, while a thicker coating might well prevent this
cluster formation. The effect such a difference in the spatial
distribution has on the influence of dipole-dipole interactions
is shown in Fig. 5. The simulated hysteresis curves are, in one
case, for a system where particles are generally placed with
a larger distance to other particles (repellent particles) and, in
another case, for a system where particles are placed randomly
and thus may statistically form denser clusters (free particles).
These distinct spacial distributions are created using different
system-modeling algorithms. Free particles are simulated by
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FIG. 4. (Color online) Reduced hysteresis area A vs particle
concentration c. The effects of different frequencies f and damping
constants α are shown. Qualitatively, the same dependence on particle
density can be seen for all cases.
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FIG. 5. (Color online) Simulated hysteresis curves for systems
with different spatial distribution of the particles. While the repellent
particles have larger interparticle distances, the free particles are ran-
domly arranged. For both cases two different particle concentrations
c are shown.

distributing a fixed amount of particles on a fine mesh of
variable size. The elementary mesh constant is chosen to be
small enough that two particles may be “touching” even for
small concentrations. An overlap of two particles is prohibited
by a positioning algorithm that prevents particles from being
placed too close to each other. Repellent particle systems are
created by expanding the mesh of a very dense free-particle
system. An appropriate renormalization of the elementary
mesh constant is used to lower the particle concentration to any
appointed value. It is evident from the results that for the same
particle concentration c significantly stronger dipole-dipole
effects occur for free particles than for repellent particles. That
means that clusters of particles with relatively small distances
govern the effects of the dipole-dipole coupling.

In contrast to the focus that has so far been on the hysteresis
area A and therefore on the heating power per particle mass
(SAR), in Fig. 6 we investigate the heating power per sample
volume (e.g., size of the tumor). All former results showed
decreasing hysteresis areas for (strongly) increased particle
concentrations. Within a fixed sample volume, however, the
increased concentration will also lead to more particles that
produce heat. In order to study the heating power in a fixed
sample volume for different particle concentrations Fig. 6
shows the quantity Ac, characterizing the volume specific ab-
sorption rate (VSAR), depending on the particle concentration
c. For small concentrations an almost linear increase of the
VSAR can be seen since dipole-dipole interactions are still
very weak. At higher concentrations a maximum can be found
with a further increase of particle density, leading again to
a reduced VSAR. This result is of great importance since it
suggests that an upper limit exists for the number of particles
that should be injected into a fixed tumor volume, defined
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FIG. 6. (Color online) Heating power per sample volume Ac vs
particle concentration c. Systems with different spatial distributions
(regular simple cubic and hexagonal structures as well as random
repellent and free particles) are compared. In all cases an optimal
density exists.

by the dipole-dipole interactions. As can be seen from the
different curves in Fig. 6, this optimal value is influenced by the
different spatial distributions of the particles. For a comparison
to the disordered systems (repellent and free particles) results
for two ordered systems with hexagonal (Hex) and simple
cubic (SC) lattice structures are also presented.

IV. CONCLUSION

The efficiency of magnetic particle heating for hyperther-
mia treatment was investigated numerically. A clearly negative
influence of the dipole-dipole interactions was found for in-
creasing particle concentrations, though the study of different
sample shapes showed that only in very elongated samples
can a slightly increased hysteresis area be achieved through
small dipole-dipole interactions. The reduced hysteresis area
found for all other cases of interacting systems is in agreement
with the theoretical findings of Serantes et al.17 and Burrows
et al.21 The experimental results presented by Linh et al.22

further support our findings.
In an additional investigation we showed that for the highest

heating power per sample volume an optimal particle concen-
tration exists. Such an optimal concentration maximizes the
sample VSAR instead of the commonly discussed SAR. We
showed that different spatial particle arrangements influence
the optimal concentration values with a possible saturation
behavior. Corresponding experimental results with a saturated
heating power under increasing particle numbers can be found
in the works of Hilger et al.23,24 In a practical treatment
scenario finding the optimal particle concentration can be
of great importance for an efficient application of magnetic
hyperthermia.
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3U. O. Häfeli, J. S. Riffle, L. Harris-Shekhawat, A. Carmichael-
Baranauskas, F. Mark, J. P. Dailey, and D. Bardenstein, Mol.
Pharmaceutics 6, 1417 (2009).

4I. Hilger, A. Kießling, E. Romanus, R. Hiergeist, R. Hergt,
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