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Magnetic-field-induced spin texture in a quantum wire with linear Dresselhaus spin-orbit coupling
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A quantum wire with strong Rashba spin-orbit interaction is known to exhibit a so-called spin texturing
effect in presence of a moderate external magnetic field acting transverse to the wire axis and parallel to the
symmetry-breaking “gate” electric field causing Rashba interaction. This effect typically disappears when the
external magnetic field is made stronger than the effective spin-orbit magnetic field due to the Rashba interaction.
In this work, we present a detailed study of the spin texturing phenomenon in a quantum wire with strong linear
Dresselhaus spin-orbit interaction and an external transverse magnetic field. Unlike the pure Rashba case, we
observe a persistent spin texture even in the limit when the external magnetic field is large and much stronger than
the effective spin-orbit magnetic field due to Dresselhaus interaction. Magnetic field dependence of spin texture
is therefore an experimentally viable method for identifying the dominant spin-orbit interaction in a zinc-blende
quantum wire. We show that the local distribution of the spin density can be modulated by spin-orbit coupling
strength, magnetic field, and the Fermi level of the electron gas.
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I. INTRODUCTION

Spin-orbit interaction in quantum confined structures has
attracted immense interest due to its fundamental role in
virtually all spintronic devices.1 In particular, electrical control
of spin-orbit interaction is the basis of many embodiments
of the spin field effect transistor.2–4 However, spin-orbit
interaction is also the main ingredient of Elliott-Yafet and
D’yakonov-Perel’ spin relaxation, which limit spin lifetime
and are detrimental to spintronic device operation.5

Two major spin-orbit interactions that are gate-tunable in
quantum confined systems,2–4 and hence crucial for many
spintronic applications are (a) Rashba effect, which arises
when an electron experiences a strong electric field due to
the asymmetry in the confinement potential (or structural
inversion asymmetry)6 and (b) Dresselhaus interaction, which
appears due to the microscopic electric field arising from the
lack of inversion symmetry in the Bravais lattice (or bulk
inversion asymmetry).7 These spin-orbit interactions lift the
spin degeneracy of the subbands for nonzero wave vectors
(so-called “zero-field spin splitting,” which is observed in
the beating pattern of Shubnikov-de Haas oscillations),8,9

introduce nontrivial features in the energy spectrum and
form the basis of many spintronic devices as described
in Refs. 3,4,10,11. Presence of an external magnetic field
introduces additional complexities in the subband structure.
Many single-particle, effective-mass calculations employ a so-
called zeroth order model in which the spinor part of the wave
function is assumed to be independent of spatial coordinates.
This assumption fails to account for several intricacies of the
energy spectrum as well as many spin-dependent phenomena,
which have been discussed in Refs. 12–17.

In this paper, we focus on a “spin texturing effect,”18

which typically manifests in quantum confined systems in the
presence of spin-orbit interactions and external agents such
as magnetic field,15 transport driving electric field,19,20 and
terahertz radiation.21,22 Spin texturing, also known as spin
accumulation19 or spin density modulation,20,21 is a spatial
variation of ensemble averaged spin polarizations transverse
to the quantum wire channel. The concept of spin texturing

is crucial for spintronics due to many reasons. First, this
concept is closely related to that of spin current, since in many
instances, spin current is measured as a change in the local spin
density.20 The definition of spin current is still a topic of much
debate, but the above picture is experimentally accessible
since it is possible to measure local spin density in a sample
by various experimental techniques.19,23–25 Spin texture is
also important since it represents the spatial distribution of
the effective magnetic field due to spin-orbit interaction, a
knowledge of which is crucial for spintronic devices.26

The factors that critically influence spin texturing are
external (transport driving) electric field, magnetic field,
spin-orbit coupling strength, and the confinement potential.19

However, the complex interplay of these effects is still largely
unexplored. Reference 15 considered the case when the spin-
orbit interaction is of Rashba type and an external transverse
magnetic field is present. Reference 20 considered combined
presence of Rashba and Dresselhaus interaction in a one-
dimensional superlattice. In this case, spin texture can be tuned
by an external electric field. The effect of terahertz radiation
on similar structures has been reported in Refs. 21 and 22.

In this work, we focus on a relatively less studied scenario
where spin texture is induced by an external magnetic field.
We note that such situation arises frequently in experiments
that measure the local spin density of the sample by techniques
such as (a) spin-polarized scanning tunneling microscopy (SP-
STM),24 (b) magnetic resonance force microscopy (MRFM),25

and most importantly, (c) optical techniques,19,23 since all
these methods employ an external magnetic field. We consider
the linear Dresselhaus spin-orbit interaction, which is always
present in systems with a zinc-blende structure (irrespective of
any other spin-orbit interaction) and is particularly dominant
in structures with strong and symmetric confinement potential.
Our goal is to isolate and investigate the combined effect of
Dresselhaus spin-orbit interaction and the external magnetic
field on spin texturing, since these factors will always be
present in spin-texture measurement experiments performed
on III-V nanostructures,19,23

In this work, we report the subband structure and the spin
texture in a III-V quantum wire with hard-wall confinement for
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a wide range of magnetic field, Dresselhaus coupling strength,
and carrier concentration. We find a sinusoidal variation in
the spin accumulation, which is strongly dependent on the
above-mentioned parameters. The spin vector is out-of-plane
and the spin component along the channel axis changes sign
for the two edges of the quantum wire, which is reminiscent of
the spin Hall effect.19 The spin component along the magnetic
field, however, has the same sign for two edges. We offer
a simple physical picture that explains these features. Quite
counterintuitively, unlike the pure Rashba case,15 we observe
the spin texture to persist even when the external magnetic
field is large. Thus magnetic field dependence of spin texture
can be used as a viable experimental method to identify the
dominant spin-orbit interaction in a zinc-blende quantum wire.

This article is organized as follows. In Sec. II, we first
introduce our model describing the Dresselhaus spin-orbit
interaction in a quantum wire and then outline the numerical
method used to solve the nonrelativistic Pauli equation in this
system. This will be followed by results and discussion in
Sec. III, which describes the magnetoelectric subbands and
demonstrates the magnetic field induced spin texturing effect
in presence of Dresselhaus spin-orbit interaction. We conclude
in Sec. IV.

II. MODEL AND METHODS

In this work, we adopt a coordinate system in which
x̂, ŷ, and ẑ are oriented along cubic crystallographic axes
[100], [010], and [001], respectively. These directions are
defined in a III-V primitive cell in which the anion (such
as As) resides at (0,0,0) and the cation (e.g., Ga, In, etc. ) is
located at ( 1

4 , 1
4 , 1

4 ). This specification uniquely determines the
sign of the Dresselhaus constant α.27,28 We note that in some
works (for example, Ref. 29) the cation is placed at the origin,
which makes the Dresselhaus constant negative.

We consider a two-dimensional electron gas (2DEG) grown
along ŷ. The corresponding confinement potential Vy(y)
is determined by the layer sequence of the semiconductor
heterostructure. There also exists a transverse confinement
potential Vz(z) and the quantum wire is infinitely long along x̂.
Unlike many previous reports that considered parabolic con-
finement (e.g., Refs. 12,13,30–34), in this work, we assume
both confinement potentials to be “hard-wall,” i.e.,

Vy(y) = 0 for 0 � y � Wy and ∞ otherwise,

Vz(z) = 0 for 0 � z � Wz and ∞ otherwise.

Quantum wires with hard-wall confinement can be realized
by various methods such as implantation-enhanced interdiffu-
sion technique,35,36 molecular beam epitaxy double growth
technique (or cleaved-edge overgrowth)37 and overgrowth
on patterned surfaces using molecular beam epitaxy.38 A
schematic of this system is shown in Fig. 1.

We choose the confinement along ŷ to be much stronger
(Wy << Wz) such that only the lowest subband is occupied
in this direction under all operating conditions. The electron
motion is confined in the xz plane. For the purpose of
numerical computation, the material parameters are chosen
to be consistent with indium arsenide (InAs) with an effective
mass m∗ = 0.03m0 (m0 is the free electron mass) and Landé g

FIG. 1. Quantum wire with a rectangular cross section. The
widths along ŷ and ẑ are given by Wy and Wz, respectively, and
Wy << Wz so that only one subband is occupied along ŷ but many are
occupied along ẑ. Confining potentials are hard-wall type as described
in the text.

factor = −15. This material is a narrow-gap semiconductor
with strong Rashba constant that can result in significant
spin-orbit coupling in presence of a confining potential with
structural inversion asymmetry (SIA). However, due to the
symmetric confinement potentials as shown in Fig. 1, this
interaction is absent. The major source of spin-orbit interaction
in this system is the Dresselhaus term, which originates due
to the bulk inversion asymmetry (BIA) of InAs, which has a
zinc-blende structure and therefore lacks a center of inversion.
In the absence of an external magnetic field, the Dresselhaus
spin-orbit interaction is responsible for lifting the twofold spin
degeneracy for nonzero wave vectors.

As shown in Fig. 1, a magnetic field is present along
the growth direction (ŷ), which can originate, for example,
from a ferromagnetic tip in spin-polarized scanning tunnel-
ing microscopy24 or magnetic resonance force microscopy25

experiments. In the Landau gauge �A = (Bz,0,0), the single-
particle effective mass Hamiltonian of this system is
given by

H =
[

(px + eBz)2

2m∗ + p2
z

2m∗ + Vz(z)

]
σ0

− gμB
�B · �σ

2
+ H

QWi,B
D . (1)

In Eq. (1), the first term represents the kinetic and potential
energy contributions, where �p is the electron momentum and
σ0 is the 2 × 2 identity matrix. The second term represents the
Zeeman splitting, where μB denotes the Bohr magneton and
�σ is the Pauli spin matrix. The term H

QWi,B
D represents the

Dresselhaus Hamiltonian for the quantum wire in presence of
Bŷ.

A. Dresselhaus spin-orbit interaction

In absence of any external magnetic field, the Dresselhaus
term for a bulk III-V semiconductor has the following form:39

H bulk
D = h̄

2
�σ · ��(p), (2a)

�x(p) = Cpx

(
p2

y − p2
z

)
, C = α

h̄m∗3/2
√

2Eg

, (2b)

where Eg is the band gap, α is a numerical coefficient
representing the spin-splitting of the conduction band, and the
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components �y(p),�z(p) are obtained from Eq. (2b) by the
cyclic transposition of the indices: x → y → z → x.

For the quantum wire described above, the Dresselhaus
Hamiltonian can be obtained by replacing ��(p) by its average
value along ŷ:39

H
QWi
D = h̄

2
�σ · 〈 ��(p)〉y

= h̄C
2

〈
p2

y

〉
[σxpx − σzpz] − h̄C

2

[
σxpxp

2
z − σzpzp

2
x

]
.

(3)

The first term is linear in the in-plane momentum components
(px,pz), whereas the second term is cubic. Due to the strong
confinement along ŷ in our model, the cubic term can be
ignored compared to the linear term:

H
QWi
D ≈ h̄C

2

〈
p2

y

〉
[σxpx − σzpz] ≡ γD

h̄
[σxpx − σzpz], (4)

where γD represents the strength of the Dresselhaus spin-orbit
coupling in the quantum wire system under consideration.

In presence of the ŷ directed magnetic field as described
before, the Dresselhaus Hamiltonian for the quantum wire will
take the following form in the Landau gauge:

H
QWi,B
D ≈ γD

h̄
[σx(px + eBz) − σzpz]. (5)

Note that by varying Vy(y) (and hence Wy), 〈p2
y〉 can be

changed, which will affect the strength of the Dresselhaus
coupling γD . Such field-tunable Dresselhaus interaction is the
basis of a new type of spin field-effect transistor as described
in Ref. 4.

B. Perturbative approach and matrix elements

Combining Eqs. (1) and (5), the Pauli equation becomes

H�(x,z) = E�(x,z), (6a)

H =
[

(px + eBz)2

2m∗ + p2
z

2m∗ + Vz(z)

]
σ0

− gμB
�B · �σ

2
+ γD

h̄
[σx(px + eBz) − σzpz] ,

(6b)

where �(x,z) is the two-component eigenspinor correspond-
ing to the energy eigenvalue E. Since the Hamiltonian in
Eq. (6b) is independent of x, we take a plane-wave solution in
this direction with wave number qx , quantized in units of 2π/L,
where L(→ ∞) is the length of the wire. The eigenspinor
therefore takes the following form:

�(x,z) = exp(iqxx)√
L

φ(z) ≡ exp(iqxx)√
L

[
φ+(z)
φ−(z)

]
. (7)

Using this solution, the Pauli equation can be transformed into
the following form:

(H0 + Hp)φ(z) =
(

E − h̄2q2
x

2m∗

)
φ(z) = εφ(z), (8a)

where ε = E − h̄2q2
x

2m∗ , the “unperturbed” part is chosen to be

H0 =
[
− h̄2

2m∗
d2

dz2
+ V (z)

]
σ0 − g

2
μBBσy, (8b)

and the remaining terms constitute the “perturbation” Hamil-
tonian

Hp =
(

e2B2z2

2m∗ + eBzh̄qx

m∗

)
σ0

+
(

γDqx + eBzγD

h̄

)
σx + iγDσz

d

dz
. (8c)

The exact solution of Eq. (8a) can be found numerically,
which is presented in Sec. II C. However, it is instructive to
examine the various coupling coefficients between the spin-
split bands.

The set of eigenfunctions of H0 are given by

φ
n′,σ ′
0 =

√
2

Wz

sin

(
n′πz

Wz

)
ζσ ′

for z ∈ [0,Wz], ζ± = 1√
2

[
1
±i

]
(9a)

with the corresponding energy eigenvalues

ε
n′,σ ′
0 = h̄2

2m∗

(
n′π
Wz

)2

∓ g

2
μBB, (9b)

where σ ′(≡ ±) indicates the spin-split levels. By expanding
φ(z) in terms of the unperturbed eigenfunctions φ

n′,σ ′
0 , we

obtain the following equations:

φ(z) =
∑
n′,σ ′

cn′,σ ′φ
n′,σ ′
0 , (10a)

(
ε

n,σ
0 − ε

)
cn,σ +

∑
n′,σ ′

cn′,σ ′Hnn′,σσ ′
p = 0,σ = ±, (10b)

Hnn′,σσ ′
p = 〈

φ
n,σ
0

∣∣Hp

∣∣φn′,σ ′
0

〉
, (10c)

Hnn′,+−(−+)
p = i[1 − (−1)n+n′

]

π

4nn′E0

(�E(n,n′)/E0)

√
�D

so

E0

×
[

1 ± h̄ωc

E0

E0

�E(n,n′)

]
, for n �= n′, (10d)

Hnn,+−
p = −Hnn,−+

p = −iγD

(
qx + eBWz

2h̄

)
≡ −iγDkx,

(10e)

and

Hnn′,++
p = Hnn′,−−

p = 2nn′

m∗Wz

(h̄ωc/E0)(
�E2(n,n′)/E2

0

)h̄2

×
{

h̄ωc

E0

π3

2Wz

(−1)n+n′ − qx[1 − (−1)n+n′
]

}
,

(10f)

where

�E(n,n′) = h̄2

2m∗

[(
nπ

Wz

)2

−
(

n′π
Wz

)2
]

,

E0 = h̄2π2

2m∗W 2
z

, and ωc = eB/m∗.

We note that there are three relevant energy scales,
namely, (a) energy gap between the subbands, which is
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roughly characterized by E0 = π2h̄2/2m∗W 2
z ≈ 1.255 meV

for the lower order bands, (b) Dresselhaus spin-orbit cou-
pling strength represented by �D

so = m∗γ 2
D/2h̄2 ≈ 0.02 meV

for γD = 10−11 eVm,14,34 and (c) Landau energy h̄ωc =
eh̄B/m∗ ≈ 3.86 meV for B = 1 T. The relative strengths
of these energies, controllable by γD and B, determine the
subband structure and profoundly affect the spin texturing.
We note that a factor of two reduction in Wy results in a factor
of 16 increase in �D

so.
The terms Hnn′,+−

p and Hnn′,−+
p (n �= n′) in Eq. (10d) in-

dicate coupling between opposite spin states (+,−) be-
longing to different (n �= n′) subbands, whereas the terms
Hnn,+−

p and Hnn,−+
p in Eq. (10e) represent coupling between

the spin-split branches of the same subband. The terms
Hnn′,++

p and Hnn′,−−
p in Eq. (10f) are coupling between same

spin states belonging to different subbands. From the above
equations, the following observations can be made:

(1) we note that in absence of the spin-orbit interaction
(γD = 0) coupling between the opposite spin states is zero.
This makes intuitive sense since in the absence of spin-orbit
coupling, the only spin-dependent term is the Zeeman term,
which results in spin eigenstates ζ± [see Eq. (9a)]. Clearly
such states are decoupled in absence of other spin-dependent
terms.

(2) On the other hand, coupling between same spin states
exist even in absence of spin-orbit interaction. This is due to
the first term in the perturbation Hamiltonian [see Eq. (8c)],
which effectively modifies the potential profile in the range
[0,Wz].

(3) The coupling between the Zeeman split states in a given
subband depends only on the spin-orbit coupling strength γD

and the shifted wave vector kx . This is in stark contrast with
the parabolic confinement case,31 where the analogous term
also depends on the parabolic confinement and vanishes in the
2D limit.

C. Numerical approach

For numerical calculation of the energy eigenvalues E and
the (spinor) eigenfunctions φ(z) of the Hamiltonian in Eq. (8a),
we use the following method. Equation (8a) can be recast into
the following form:[

Bqx + C − Aq2
x

]
2×2 φ(z)2×1 = Eφ(z)2×1, (11)

where

A = − h̄2

2m∗ σ0, (12a)

B = eBh̄z

m∗ σ0 + γDσx, (12b)

C =
[
− h̄2

2m∗
d2

dz2
+ Vz(z) + e2B2z2

2m∗

]
σ0

− gμBBσy

2
+ γD

h̄

(
eBzσx + ih̄σz

d

dz

)
. (12c)

Equation (11) is solved numerically for each qx (or kx) to
find the eigenvalue E and the corresponding eigenfunction
φ(kx,z) subject to the boundary conditions φ±(kx,z) = 0
for z = 0,Wz. A similar numerical model has been used in
Refs. 14–16.

III. RESULTS AND DISCUSSION

Spin texture is known to depend critically on the subband
structure.15 Magnetoelectric subbands that form in quantum
confined systems in presence of spin-orbit interaction have
been studied by many groups in the past.12,13,18,30–32,34 All of
these studies have chosen a parabolic confinement potential
and therefore the results from these work cannot directly be
applied in the present case where the confinement is hard-
wall type. Therefore we first briefly highlight the essential
features of the magnetoelectric subbands that arise for hard-
wall confinement.

A. Energy spectrum

1. Without spin-orbit interaction (γD = 0)

We first consider the simple case when the Dresselhaus
spin-orbit interaction is zero but the external magnetic field
is present. In this case, coupling between opposite spin states
will vanish (Hnn′,σσ ′

p = 0,σ �= σ ′) as can be seen from Eqs.
(10d) and (10e). The magnetic field makes the potential profile
parabolic in the range [0,Wz] and enhances the confinement
[first term in Eq. (8c)] by an amount 1

2m∗ω2
cz(z + 2z0), where

z0 = h̄qx

eB
. As a result, the subband bottoms are shifted vertically

upward compared to the B = 0 case as shown in Figs. 2(a)
and 2(b). Additionally, each subband is Zeeman split due to
the magnetic field.

Figure 2(a) shows the magnetoelectric subbands for B =
1T (or h̄ωc/E0 = 3). The subband bottoms are more flat
compared to the parabolic (B = 0) case and the flatness
increases with increasing B [see Fig. 2(b), B = 2T, h̄ωc/E0 =
6] indicating the formation of closed Landau orbits.

2. Without external magnetic field (B = 0)

To identify the effect of the Dresselhaus spin-orbit inter-
action on the subband structure, we first consider the case
when the external (ŷ directed) magnetic field is absent. We
vary the Dresselhaus parameter γD in a wide range that can
be divided in three distinct categories: (a) weak spin-orbit
limit, characterized by �D

so/E0 � 0.1, (b) strong spin-orbit
interaction for which �D

so/E0 ≈ 1, and (c) the giant spin-orbit
limit, which represents the situation �D

so/E0 >> 1. As men-
tioned before, γD can be changed by varying the confinement
(Wy) along ŷ. Figures 3(a)–3(e) show the magnetoelectric
subbands for these three cases. In Fig. 3(a), the weak spin-orbit
interaction lifts the spin degeneracy at all points except kx = 0
and generates two horizontally displaced parabolas, which are
uniformly shifted downward compared to the spin-degenerate
band. These features have been reported earlier by several
groups in the context of parabolic confinement31–34 and can be
understood simply as follows.

In the absence of the external magnetic field, the term
Hnn′,σσ

p (n �= n′) is zero and if we ignore intersubband
coupling [i.e., �E(n,n′) → ∞] then the term Hnn′,σσ ′

p ∝
nn′/�E(n,n′),(n �= n′,σ �= σ ′) vanishes as well, irrespective
of the value of spin-orbit interaction strength �D

so/E0. In
this case, the only surviving term is Hnn,+−

p = −Hnn,−+
p =
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FIG. 2. Magnetoelectric subbands in absence of spin-orbit interaction (γD = 0). The grey curves represent the spin-degenerate subbands,
which occur when the magnetic field is also zero. The dark curves indicate the Zeeman-split subbands for (a) magnetic field B = 1 T
(h̄ωc/E0 = 3) and (b) B = 2 T (h̄ωc/E0 = 6). The shifted wave vector kx is in nm−1.

−iγDkx . It is then straightforward to directly calculate the
energy eigenvalues from Eq. (10b), which gives

E = h̄2

2m∗

(
kx ± m∗γD

h̄2

)2

+ E00,

where

E00 =
[

h̄2

2m∗

(
nπ

Wz

)2

− m∗γ 2
D

2h̄2

]
.

Clearly, compared to the zero γD case, the spin-split bands
have shifted horizontally by an amount ±m∗γD/h̄2 and
vertically downward by an amount m∗γ 2

D/2h̄2. This feature

is clearly seen in Figs. 3(a) and 3(b). This model also
indicates that the parabolicity of all bands is maintained,
irrespective of the value of γD . However, nonparabolicity
is quite apparent in Figs. 3(c)–3(e), which we discuss
next.

Figure 3(c) shows the subband structure for strong spin-
orbit coupling (�D

so/E0 = 1). The degeneracy at kx = 0 is
maintained. Deviation from nonparabolicity is accentuated
for higher spin-orbit coupling (�D

so/E0) strengths, as shown
in Figs. 3(c), 3(d), and 3(e). This is because of finite
intersubband coupling (Hnn′,σσ ′

p �= 0,σ �= σ ′), the strength of

which increases with
√

�D
so/E0 [see Eq. (10d)].
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FIG. 3. (Color online) Energy spectrum in presence of finite Dresselhaus spin-orbit interaction and zero magnetic field. Subband structure
in (a) the weak spin-orbit (Dresselhaus) regime, i.e., �D

so/E0 < 0.1, and (b) magnified region near kx = 0 for the lowest subband in (a). The
horizontal lines (EF1,EF2) represent two possible locations of the Fermi level. The upper parabola corresponds to the spin-degenerate case
(no spin-orbit interaction), (c) the strong spin-orbit (Dresselhaus) regime, i.e., �D

so/E0 = 1, and (d) and (e) giant spin-orbit (Dresselhaus)
regime, i.e., �D

so/E0 >> 1. The dotted lines in (a) and (c) indicate the spin-degenerate subband structure in absence of Dresselhaus spin-orbit
interaction.

3. Simultaneous presence of spin-orbit interaction and magnetic
field (γD �= 0,B �= 0)

Next, let us consider the case when both spin-orbit inter-
action and magnetic field are present. Figures 4(a)–4(e) show
representative situations. In these plots, we keep the spin-orbit
coupling fixed at the “strong limit” (i.e., �D

so/E0 = 1) and
vary the magnetic field from weak [h̄ωc/E0 = 0.1, Figs. 4(a)
and 4(b)] to strong [h̄ωc/E0 ≈ 1, Fig. 4(c)] and finally, giant

[h̄ωc/E0 = 10, Figs. 4(d) and 4(e)] limit. Due to the presence
of the magnetic field, spin degeneracy is lifted at all kx . In
the strong and giant B limit, the term Hnn′,σσ

p ,σ = ± [see
Eq. (10f)] dominates and the subband structure [see Figs.
4(d) and 4(e)] approximately resembles those of Fig. 2(b).
However, unlike Fig. 2(b), due to the presence of the spin-orbit
term, the spin splitting is kx dependent. The effect of spin-orbit
term is more prominent in the weak B limit [see Fig. 4(a)],
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FIG. 4. (Color online) Energy spectrum in presence of strong Dresselhaus spin-orbit interaction (�D
so/E0 = 1) and an external magnetic

field. (a) Weak magnetic field limit (h̄ωc/E0 = 0.1), (b) magnified image of subband 1 in (a) near kx = 0, showing the camelback feature, (c)
strong (h̄ωc/E0 = 1), and (d) and (e) giant (h̄ωc/E0 >> 1) magnetic field regime.

where the lowest spin-split band has a “Mexican hat” (or
“camelback”)40 shape. This feature is also present in Rashba
spin-orbit systems in presence of axial41 or transverse15

magnetic field. This is a signature of spin-orbit coupling and
gradually disappears as the external magnetic field is increased
as shown in Figs. 4(a)–4(e).

The critical magnetic field (Bc) for which the camelback
shape disappears has been estimated40 under the assumption of

negligible intersubband coupling:

Bc = 2m∗γ 2
D

|g|μBh̄2 .

Clearly, this estimate is only valid in the small spin-orbit limit
where the intersubband coupling is negligible. In the strong
spin-orbit limit [as in Figs. 4(a)–4(c)], the estimated value of
Bc using the above formula is 0.174 T, whereas the camelback
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FIG. 5. (Color online) Edge states in a quantum wire in giant magnetic field limit (h̄ωc/E0 = 3): (a) in absence of spin-orbit interaction
(�D

so/E0 = 0) and (b) with strong spin-orbit interaction (�D
so/E0 = 1). The z dependence of the real (denoted by “o”) and imaginary (denoted

by “*”) parts of the spinor wave function φ(z) = [φ+(z) φ−(z)]T are shown. In (a), black symbols indicate φ+(z) and the red symbols indicate
φ−(z). All plots correspond to the wave vector kx = −0.2 nm−1 and the lowest Zeeman-split branch of subband 1.

shape persists at higher magnetic fields [see Fig. 4(c), B =
0.33 T]. The camelback shape is less prominent for higher
subbands.

B. Wave functions

Figure 5 shows the typical spinor wave functions φ+(kx,z)
and φ−(kx,z) for subband 1 in presence of giant magnetic
field (h̄ωc/E0 = 3) for two different cases: (a) in absence of
Dresselhaus spin-orbit coupling [�D

so/E0 = 0, Fig. 5(a)] and
5(b) with strong spin-orbit coupling [�D

so/E0 = 1, Fig. 5].
In both cases, we show the wave function corresponding to
the lowest spin-split band (n = 1) with kx = −0.2 nm−1. The
wave function is skewed to the right edge of the quantum

wire, because of the +ẑ directed Lorentz force acting on the
backward traveling electrons.

From Fig. 5(a), we note that the spinor wave function
φ(kx,z) = [φ+(kx,z) φ−(kx,z)]T can be separated in a spatial
part φs(kx,z) and a space-independent spinor part [i 1]T .
Clearly the spinor part is the eigenfuntion of σy corresponding
to the eigenvalue −1 as expected for the lowest spin-split band
with a negative g factor [see Eq. (6b)].

However, this situation changes completely in presence
of spin-orbit interaction. In Fig. 5(b), we show the wave
functions for strong spin-orbit interaction �D

so/E0 = 1. Note
that now it is not possible to separate the spatial part and the
spinor part of the wave function and hence the two-component
spinor wave function cannot be expressed as a product of
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a space-dependent function and a space-independent spinor
part. Similar observation has been made in previous works
such as Refs. 12,13,16, and 17. In the following section, we
will show how this feature gives rise to spin texture along the
transverse width of the quantum wire.

C. Spin textures

The spin orientation of the eigenspinor φn(kx,z) in the nth
subband [see Eq. (8a)] is given by20

�̃σn(kx,z) = φ†
n(kx,z) �σ φn(kx,z). (13)

The corresponding spin “density” for a given kx is defined as15

�sn(kx,z) = �̃σn(kx,z)

| �̃σn(kx,z)| . (14)

To compute the real-space spin density �S(z) (or spin texture)
that can be probed experimentally, we combine the spin density
contribution from all occupied states:15,20,22

�S(z) =
N∑

n=1

∫ k+
Fn

k−
Fn

�sn(kx,z)dkx

k+
Fn − k−

Fn

, (15)

where N is the number of occupied spin-split levels and
k+
Fn(k−

Fn) is the wave vector of the nth level where the Fermi
level intersects the E − kx plot on the right (left) of the energy
axis. Here, we assume that the temperature is low enough such
that the states below the Fermi level are fully occupied whereas
those above it are unoccupied.

Equation (15) can be applied directly when the Fermi level
intersects the subband only at two points, one on each side
of the energy axis. However, under certain situations, Fermi
level can intersect the same band at four different points. For
example, in Fig. 4(b), if the Fermi level is below the local
energy maxima at kx = 0, then it intersects the lower subband
at four different points. In such case, Eq. (15) is modified as
follows:15

�S(z) =
∫ kF2

kF1
�sn(kx,z)dkx

kF2 − kF1
+

∫ kF2′
kF1′ �sn(kx,z)dkx

kF2′ − kF1′
, (16)

where kF1,kF2(kF1′ ,kF2′ ) are the wave vectors where the Fermi
level intersects the lowest spin-split band on the left (right) of
the energy axis.

A similar situation arises in B = 0 case where the spin-split
subbands are displaced horizontally. If the Fermi energy is
below the degeneracy point (at kx = 0) of subband 1, then
we can again use Eq. (16), but kF1,kF2(kF1′ ,kF2′ ) will then
indicate the intersection points of the left (right) shifted band
with the Fermi level.

We note that z dependence of �sn (and hence �S) originates
from the fact that in presence of spin-orbit interaction, the
spinor wave function cannot be separated into a space-
dependent part and a space-independent spinor component as
discussed in the previous section [see Fig. 5(b)]. The spin
texture, i.e., spatial modulation of �S along z, is therefore
critically dependent on the wave functions in presence of spin-
orbit coupling. In the following discussion, we will discuss the
spatial evolution of �S(z) for a wide range of magnetic fields
and Dresselhaus spin-orbit interaction strengths.

1. Without spin-orbit interaction (γD = 0)

We start with the simple case when the spin-orbit interaction
is absent (�D

so/E0 = 0) and the wire is subjected to a moderate
external magnetic field (h̄ωc/E0 = 0.3). In this case, the band
structure resembles Figs. 2(a) and 2(b), and each subband
will be split vertically into two branches. Since Bŷ is the sole
magnetic field present in the system, only ŷ component [Sy(z)]
of �S(z) will be nonzero and other components will vanish.
Since B is independent of the spatial coordinates, Sy(z) will
be independent of z. Further, Sy(z) will be negative if the
lowest Zeeman-split band is considered since the g factor is
negative in Eq. (1). Such a situation is depicted in Fig. 6(a).

If both lower and upper Zeeman-split bands are occupied
[see Fig. 6(b)], then the overall |Sy(z)| is significantly lower
due to the averaging effect as described by Eq. (15). In this case,
the upper Zeeman branch has spins along +ŷ, which partially
cancel the spins of the lower branch, which are oriented
along −ŷ.

From Figs. 6(a) and 6(b), we note that in absence of spin-
orbit interaction, components of �S(z) are independent of the
transverse coordinate z and hence no spin “texturing” or spatial
modulation of spin density exists.

2. Without external magnetic field (B=0)

We next consider another limiting case when the external
magnetic field is zero (h̄ωc/E0 = 0) but the Dresselhaus
spin-orbit interaction is present (�D

so/E0 = 0.06). In this case,
the band structure resembles Figs. 3(a) and 3(b) where the
spin-orbit coupling splits the spin-degenerate band into two
horizontally displaced branches, which are degenerate only at
kx = 0. Such zero-field spin splitting has been used before
to define a kx-dependent effective Dresselhaus spin-orbit
magnetic field �BD acting along ±x̂.17,40

Since in this case there is no net ŷ- or ẑ-directed magnetic
field, the components of �S(z) along these directions are zero.
Additionally, since the sample is overall nonmagnetic, Sx(z)
will be zero as well for any z. This is shown in Fig. 6(c).
Another physical explanation is provided below.

3. Simultaneous presence of spin-orbit interaction and magnetic
field (γD �= 0,B �= 0)

In this case, due to the presence of both x̂- and ŷ-directed
magnetic fields, components of �S(z) are nonzero along these
directions and lie in the xy plane. Their exact orientation will
depend on the relative values of the quantities �D

so/E0 and
h̄ωc/E0, which represent the strengths of spin-orbit interaction
and the applied magnetic field, respectively. Since there is no
net ẑ-directed magnetic field in any situation, the z component
of �S(z) is zero at all locations and hence the spin vector �S(z)
is two dimensional.

Small carrier concentration. We first consider the case
when the carrier concentration is “small” so that only the
lowest spin-split band is occupied at zero Kelvin (the Fermi
level is below the bottom of the upper spin-split level of
subband 1). Figure 7 shows the spin texture in real space for
a weak Dresselhaus spin-orbit coupling strength (�D

so/E0 =
0.06) and an external magnetic field varying from the weak to
the giant limit (h̄ωc/E0 = 0.006–6). Figure 8 shows the texture
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FIG. 6. (Color online) Components of �S(z) along the width of the quantum wire. (a) and (b) γD = 0 (�D
so/E0 = 0) and B = 0.1T

(h̄ωc/E0 = 0.3). (a) Only the lowest spin-split band of subband 1 is occupied. (b) Both spin-split bands of subband 1 are occupied. (c)
γD �= 0 (�D

so/E0 = 0.06),B = 0 (h̄ωc/E0 = 0), and the lowest subband is occupied. In (c), all components of �S(z) are zero since the sample is
nonmagnetic and no external field is present.

for the strong (�D
so/E0 = 1) and the giant (�D

so/E0 >> 1)
spin-orbit limits.

For Figs. 7(a)–7(e), 8(a), 8(b), and 8(d), the magnetic field
is below the critical value and therefore the lowest spin-split
band has a camelback structure. The Fermi level can be either
above [e.g., Figs. 7(b), 7(d), 7(e), 8(a), 8(b), and 8(d)] or below
[see Figs. 7(a) and 7(c)] the local maximum at E(kx = 0). For
Figs. 7(f), 8(c), 8(e), and 8(f), the camelback feature is not
present.

The spin textures in all these cases have certain features in
common.

(1) The x̂ component of �S(z) is zero at the wire center and
takes positive (negative) values for z < Wz/2 (z > Wz/2),
i.e., it has a negative slope in the vicinity of z = Wz/2. For
the large spin-orbit case (�D

so/E0 � 1, Fig. 8) Sx attains an
extremum near the edges. In all cases, Sx has opposite signs
at the two edges.

The features in Figs. 6(c) and 7 can be qualitatively
understood as follows. The electrons in the quantum wire
experience two magnetic fields: (a) the external, space-
invariant magnetic field Bŷ and (b) the pseudomagnetic
field due to the Dresselhaus spin-orbit coupling (say �BD).
This pseudomagnetic field can be estimated in two different
ways.17,40 However, in the present case, we are interested in

estimating the �BD experienced by an electron with a given kx .
For this purpose, we equate the “effective” Zeeman splitting
energy due to �BD to the spin-splitting energy γDkx , which
yields �BD = γD

�kx/|g|μB .26,29 Clearly, this field is dependent
on the electron wave vector kx and is oriented along the wire
axis (±x̂).

Electrons with positive kx will experience a +x̂-directed
�BD . Now, if these electrons belong to the lower (upper) spin-
split band, their spins will orient along +(−)x̂ since the wire
material has a negative g factor. Using the same argument,
electrons with negative kx will experience a −x̂-directed �BD .
Again, if these electrons belong to the lower (upper) spin-
split subband, their spins will orient along −(+)x̂, due to the
negative g factor of the wire material. The states with zero kx

experience no Dresselhaus magnetic field. This is expected,
since by definition, spin-orbit interaction is present only for
moving electrons and no spin-orbit-induced splitting is present
for zero kx .

If no other magnetic field (spin-orbit related or externally
applied) is present as in Fig. 6(c), then the spin polarizations
will be purely along ±x̂. Under equilibrium and when no
external magnetic field is present, +kx and kx states will cancel
each other at any location z, resulting in zero current. At the
same time, since their spins are oppositely oriented, the total
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FIG. 7. (Color online) Spin texture for the weak spin-orbit coupling case (�D
so/E0 = 0.06) and lowest spin-split subband occupancy for

various carrier concentrations. Magnetic field is varied from the weak [h̄ωc/E0 = 0.006 in (a) and (b)] to the moderate [h̄ωc/E0 = 0.06 in (c)
and (d)], the strong [h̄ωc/E0 = 0.6 in (e)], and the giant [h̄ωc/E0 = 6 in (f)] limits. Except (f), in all cases, the lowest spin-split subband has a
camelback shape. In (a) and (c), EF is below the local maximum at E(kx = 0), whereas in (b), (d), and (e), EF is above this value but below
the bottom of the upper spin-split band of subband 1.

spin component along x̂ will be zero. Therefore no net spin
component is observed when the external magnetic field is
zero and the system is in equilibrium. As mentioned before,
this physical picture is consistent with the fact that the quantum
wire is nonmagnetic and agrees with Fig. 6(c).

When an external magnetic field is applied along +ŷ,
positive and negative kx states are spatially separated along
z (see Fig. 5). Due to Lorentz force, electrons with positive kx

will deflect toward z = 0, whereas electrons with negative

kx will shift toward z = Wz. Therefore now one expects
a net +x̂ component of spins near z = 0 and a net −x̂

component of spins near z = Wz for the states belonging to
the lowest spin-split band. The sign of the x̂ component of
spin polarization at the two edges will change if the upper
spin-split band is considered. States with zero kx will remain
at the center (z = Wz/2) and will show a net zero x̂ component
of spin at this location. As a result a spatial variation in the net
x̂ component of spin is observed (see Fig. 7).
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(2) The external magnetic field will also orient the spins
along −(+)ŷ for the lower (upper) spin-split band as evident
from the Zeeman term in our model [see Eq. (6b)]. The net
magnetic field is entirely ŷ directed at the center because
electrons in that region experience zero �BD as described
before. Therefore the ŷ component of spin has the largest
magnitude at the center. As we move away from the center,
the magnitude of �BD increases and the net magnetic field
gradually accumulates an x̂ component. As a result, the
magnitude of ŷ component of spin gradually reduces toward

the edges, whereas the magnitude of x̂ component of spin
increases. This qualitatively explains the spatial textures of
the net spin components and the π/2 phase shift between
them.

The physical picture outlined above is consistent with
our numerical simulation, which shows Sx(z) > 0(< 0) for
z > Wz/2(< Wz/2) and Sy(z) > 0 for the electrons in a lower
spin-split band for a positive g factor material. As expected,
opposite signs have been observed for the electrons in a upper
spin-split band.
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FIG. 8. (Color online) Spin texture for the strong [�D
so/E0 = 1 in (a)–(c)] and the giant [�D

so/E0 = 3.52 in (d)–(f)] spin-orbit couplings.
Magnetic field is varied from the weak to the strong limit [h̄ωc/E0 = 0.1–10 in (a)–(c) and h̄ωc/E0 = 0.352–35.2 in (d)–(f)]. The lowest
spin-split band is occupied in all cases. For (a), (b), and (d), the lowest band has the camelback shape and the Fermi level is above E(kx = 0).

045413-12



MAGNETIC-FIELD-INDUCED SPIN TEXTURE IN A . . . PHYSICAL REVIEW B 85, 045413 (2012)

(3) Stronger spin-orbit interaction shortens the “wave-
length” of the standing wave of the spin components as can
be seen from Fig. 8. Interestingly, even in the strong B limit
[h̄ωc/E0 >> �D

so/E0, Figs. 7(e) and 7(f)], we find a strong x̂

component to persist. This can be attributed to B dependence
of BD via the kx term. This feature is in stark contrast with
the Rashba case reported in Ref. 15, where a strong external
magnetic field (Bŷ) masks the weaker Rashba field and rotates
the spins predominantly along ŷ.

Large carrier concentration. We now consider the case
when the carrier concentration is “large” enough so that both
spin-split branches of the lowest subband are occupied. Figure
9(a) shows the spin texture for the case when both spin-orbit
interaction and magnetic field are weak (i.e., �D

so/E0 =
0.06,h̄ωc/E0 = 0.006). Figure 9(b) shows the spin texture
for each spin-split branch of the lowest subband 1 and the
net spin components. For this case, both spin-orbit coupling
and magnetic field are weak (�D

so/E0 = 0.06, h̄ωc/E0 = 0.1).
Figure 9(c) shows the spin texture for strong spin-orbit cou-
pling and weak magnetic field (�D

so/E0 = 1, h̄ωc/E0 = 0.1)
and finally, Fig. 9(d) shows the spin texture when both spin-
orbit coupling and the magnetic field are strong (�D

so/E0 =

1, h̄ωc/E0 = 1). The common features in all these cases are
as follows.

(1) The x̂ component of spin is zero at the wire center
(z = Wz/2) as before but now it takes positive (negative)
values for z > Wz/2 (z < Wz/2). This component can undergo
another sign change depending on the strength of the spin-orbit
coupling [see Figs. 9(c) and 9(d)], but again, it has opposite
signs at the two edges as before. Comparing Figs. 7(a) and
9(a), we note that when both levels are occupied there is a sign
reversal in Sx(z).

(2) The magnitude of the ŷ component is maximum and
takes a positive value at the wire center (z = Wz/2) and
becomes smaller toward the edges. For strong spin-orbit
coupling [see Figs. 9(c) and 9(d)], the ŷ component undergoes
a sign change near the edges and become negative.

(3) Figure 9(b) shows the spin components of each spin-
split band for weak spin-orbit coupling and weak magnetic
field (�D

so/E0 = 0.06, h̄ωc/E0 = 0.1). The spin components
have opposite signs in the lower and upper bands, and
hence the overall spin density is smaller due to this can-
cellation effect. The physical picture has been described
before.
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FIG. 9. (Color online) Spin texture for the case when both spin-split branches of the lowest subband are occupied. (a) Both spin-orbit
coupling and magnetic field are weak (�D

so/E0 = 0.06, h̄ωc/E0 = 0.006), (b) Spin texture for the lowest branch of subband 1 (1L, top panel),
upper branch of subband 1 (1U, middle panel), and the net spin components (bottom panel) for weak spin-orbit coupling and weak magnetic
field (�D

so/E0 = 0.06, h̄ωc/E0 = 0.1), (c) Spin texture for strong spin-orbit coupling and weak magnetic field (�D
so/E0 = 1, h̄ωc/E0 = 0.1)

and (d) spin texture when both spin-orbit coupling and the magnetic field are strong (�D
so/E0 = 1, h̄ωc/E0 = 1). In all cases, the lowest level

(1L) has a camelback shape.
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IV. SUMMARY AND CONCLUSION

To summarize, we have studied the effect of a transverse
magnetic field on subband structure and spin texturing in
a hard-wall quantum wire for a wide range of Dresselhaus
spin-orbit coupling strength and various carrier concentrations.
Even in the absence of any transport-driving electric field,
Rashba effect, or terahertz radiation, a strong spin texturing can
originate due to interaction between an external magnetic field
and Dresselhaus spin-orbit coupling. These two ingredients
are always present in typical spin accumulation experiments
performed on zinc-blende quantum confined structures. We
observe a π/2-phase shift between the transverse spin
density components, which can be explained qualitatively
in the weak spin-orbit regime. In presence of stronger

spin-orbit interaction, stronger magnetic field, and larger
carrier concentration, these features are preserved but the exact
form of the modulation becomes more complex. Compared to
the pure Rashba case, the spin texture does not quench in the
high-magnetic-field limit, thus making this effect significant
even when the Dresselhaus interaction is weak. These effects
can be probed by the available experimental techniques and
the magnetic field dependence of spin texture can be used to
identify the dominant spin-orbit interaction in a zinc-blende
quantum wire.
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