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Enhanced shot noise in asymmetric interacting two-level systems
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We study a model of two interacting levels that are attached to two electronic leads, where one of the levels
is attached very weakly to the leads. We use rate equations to calculate the average current and the noise of
electrons transmitted through the two levels. We show that the shot noise is enhanced because of the interactions
and that the Fano factor depends on the properties of the couplings between the levels and the leads. We study
both sequential tunneling and cotunneling processes and show that there is a range of parameters in which the
cotunneling processes affect the noise significantly, even though most of the current is carried by sequential
tunneling processes.
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I. INTRODUCTION

Fluctuations in electrical current, which we simply call
noise, provide additional information about the charge trans-
port that is not accessible from average current measurements
(for a review see Ref. 1). Among the various noise sources
we focus on the shot noise. The discreteness of the transferred
charge causes fluctuations in the current. These fluctuations,
named shot noise, depend on the charge of the conducting
particles and therefore measurements of shot noise provide
information on the discrete nature of the conducting particles
and their correlations. The shot noise of a Poisson process of
uncorrelated current pulses of charge e is Sshot = 2e〈I 〉, where
〈I 〉 is the time averaged current. The noise is proportional to
the average current since in a Poisson distribution the mean
equals the variance, therefore the mean number of current
pulses equals its variance. The Fano factor, F = Sshot/(2e〈I 〉),
is a dimensionless parameter that characterizes the granularity
of the current. When driving a current through a single spinless
electronic level, the correlations that are imposed by the Pauli
exclusion principle reduce the Fano factor; the Fano factor
varies between half and one depending on the symmetry of the
couplings between the level and the external leads.2–4

Correlations can also be imposed by Coulomb interactions.5

In most cases, the effect of Coulomb repulsion on the noise of a
mesoscopic system is similar to the effect of the Pauli exclusion
principle. Both impose a time delay between consecutive
current pulses and therefore we expect negative correlations
between them that suppress the shot noise.6 However, several
theoretical works on various systems have showed that
Coulomb interactions might also lead to a super-Poisson shot
noise with a Fano factor F > 1. Examples of such systems are
quantum dots that are coupled to ferromagnetic leads,7–10 mul-
tilevels quantum dots,11,12 multidots structures,13–18 and also
three terminal quantum dots.19–21 There are also experimental
works22–26 in which a super-Poisson noise was measured in
quantum dots, rather than the sub-Poisson noise, which is
expected from the single level model of the quantum dots.

A simple mechanism that might explain the enhancement
of the Fano factor in such systems is tunneling through two
levels that are coupled to the leads, where one of the levels
is coupled much stronger than the other level. The two levels
are interacting, namely, there is a Coulomb repulsion between
electrons that occupy the two levels. In this case, the electrons

that cross the system tunnel mainly through the level that is
strongly coupled to the leads. However, once in a while an elec-
tron can tunnel into the weakly coupled level and then, because
of the Coulomb interactions, the tunneling of other electrons
through the strongly coupled level is prevented and the current
is blocked. The current resumes only after the electron tunnels
out of the weakly coupled level. Therefore the intuitive picture
is a current that is blocked occasionally and therefore the noise
is enhanced. The idea of two interacting levels as a possible
source of super-Poisson noise was discussed in the context of
quantum dots that are coupled to ferromagnetic leads7,8 and
also in the context of double quantum dots structures.13

In this work, we analyze in detail the model of two
levels with Coulomb interactions that are attached to two
electronic leads. In particular, we study how the shot noise
and the Fano factor depend on the left-right asymmetry,
namely, the asymmetry between the couplings to the two
external leads. The fact that the enhancement of the shot
noise depends on the left-right asymmetry of the coupling
to the leads emerges from previous works (e.g., the results
of Refs. 10 and 13), nevertheless a complete theoretical
analysis of this dependence is missing. We find that the
Coulomb interactions affect significantly the dependence of
the Fano factor on the left-right asymmetry. We study how
the temperature affects this dependence and show that finite
temperature suppresses the Fano factor at very asymmetric
couplings. In addition, we include in our calculations not only
the sequential tunneling processes (leading order perturbation
in the tunneling coefficients) but also the cotunneling processes
(next leading order perturbation) and we find that the latter play
an important role in this system. Surprisingly, and perhaps this
is the main point of our work, there is a range of parameters
where the noise is governed by the rare cotunneling processes
even though most of the average current is carried by sequential
tunneling processes. The importance of the cotunneling pro-
cesses follows the fact that they allow the system to change its
occupation from one level to the other level in a single quantum
process. The two levels mechanism for noise enhancement
can be found in many physical realizations such as single level
with spin-dependant coupling and double quantum dots or two
levels in a quantum dot in a strong magnetic field. Although the
quantitative details of each system are different, the qualitative
behavior of the noise enhancement is the same.
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The paper is organized as follows: in Sec. II, we present the
model that we analyze, then we give in Sec. III a simplified
qualitative description of the transport through the two levels,
which we use to develop an intuitive understanding of the
results that we obtain later through the rate equations method.
Next, in Sec. IV, we give the details of the theoretical calcula-
tions. In Sec. V, we present the results of our calculations and
discuss them. Last, we summarize our results in Sec. VI. In the
two appendices, we list all the tunneling rates that are relevant
for the theoretical calculations (Appendix A) and give techni-
cal details about the regularization procedure that we use in the
calculations of the cotunneling processes’ rates (Appendix B).

II. MODEL

We consider a model of two interacting levels that are
attached to two leads (see Fig. 1). For simplicity, we discuss
a spinless problem.27 One of the levels (level 2 in Fig. 1)
is attached very weakly (compared to the other level) to
the leads. A simultaneous occupation of the two levels is
possible, however this situation is not likely to happen as
it requires an additional charging energy U because of the
Coulomb interaction. This model describes, for example, an
interacting two level quantum dot in a strong magnetic field.
The Hamiltonian that describes the system is

H = Hleads + H2levels + Ht, (1)

where

Hleads =
∑

k

εL
k L

†
kLk +

∑
k

εR
k R

†
kRk,

H2levels = E1d
†
1d1 + E2d

†
2d2 + Ud

†
1d1d

†
2d2,

Ht =
∑
i,k

(
tLi L

†
kdi + tRi R

†
kdi

) + H.c.

Two level system

Left lead Right lead
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μR

E1

E2
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γ1 = πν |tR1 |2 + |tL1 |2

γ2 = πν |tR2 |2 + |tL2 |2
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tR2
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FIG. 1. A schematic picture of the model. The energies of the two
levels are E1 and E2. The bias voltage is the difference between the
two chemical potentials: eVbias = μL − μR . Here, the width of level
2 is much smaller than the width of level 1, which is assumed to be
much smaller than the bias voltages: γ2 � γ1 � |μR,L − E1,2|. We
assume that the tunneling coefficients are independent of the energy
and we also assume, for simplicity, that they all have the same sign
and that the two ratios between the left tunneling coefficients and the
right tunneling coefficients are identical, tL

1 /tR
1 = tL

2 /tR
2 .

Here, Lk (Rk) are left (right) lead annihilation operators, di is
the ith level annihilation operator, and we have assumed that
the tunneling coefficients (tL,R

i ) are independent of the energy.
We also assume that all the tunneling coefficients have the
same sign.

We calculate the average current and the zero-frequency
noise using rate equations method in which we assume that the
two levels are weakly coupled to the leads. By weakly coupled
we mean that the widths of the levels are much smaller than
the temperature, or alternatively, at low temperatures it means
that the bias voltage (see Fig. 1) is much larger than the levels’
widths

γi = πν
(∣∣tLi ∣∣2 + ∣∣tRi ∣∣2) � |μR,L − Ei |, (2)

where μR,L are the electro-chemical potentials of the leads and
we have assumed, for simplicity, the same density of states ν

in the two leads.

III. QUALITATIVE SIMPLIFIED MODEL

In this section, we study a simplified intuitive model that
captures, at least qualitatively, most of the results that we later
achieve through a more rigorous analysis. The propose of this
section is to establish a simple physical picture that we can use
to interpret the results that we get through the rate equations
formalism. Consider the two level system that was discussed in
the previous section and depicted in Fig. 1 and assume strong
interactions, i.e., a large U . At this point, we also assume, for
simplicity, zero temperature. As a function of E1, there are
two regions where we expect to have current: at μR < E1 <

μL where the two levels are between the chemical potentials
(assuming that |E1 − E2| � Vbias), and at μR < E1 + U <

μL where one of the levels is occupied and effectively, because
of the Coulomb interaction, the other level is shifted up and
placed between the chemical potentials. We choose to focus in
this section on the later: μR < E1 + U < μL.

Since level 2 is coupled weaker than level 1 to the leads,
most of the time the current flows through level 1 (i.e., level 2 is
occupied and electrons enter and leave level 1). However, after
a while, the electron in level 2 can tunnel out to the right lead
and by that, because of the Coulomb interaction, it reduces the
effective energy of level 1 (from E1 + U to E1) making the
tunneling out of level 1 impossible. The current is therefore
blocked. The current resumes only after a new electron from
the left lead tunnels into level 2. Hence, the picture is a current
(through level 1) that is stopped occasionally (by tunneling out
of level 2). This situation is schematically drawn in Fig. 2.

A. Simplified model: shot noise on top of a telegraph noise

The current, as drawn in Fig. 2, fluctuates between two
modes: A zero-current mode where the current is dramatically
suppressed, and a nonzero mode where the current is carried
by pulses of charge (electrons) that tunnel through level 1. We
therefore suggest the following simplified model: the current
I (t) is a multiplication of two signals

I (t) = Ishot(t) × Ctelegraph(t), (3)

where Ishot(t) is the current through level 1 and Ctelegraph(t) is
a random telegraph signal that fluctuates between two values,
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Level ‘2’ is occupied

Level ‘2’ is empty
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FIG. 2. A qualitative description of the transport through the
two level system in the region μR < E1 + U < μL. Electrons are
tunneling through level 1 until the electron in level 2 tunnels out
and then the current is blocked. The tunneling events through level
1 resume when another electron tunnels into level 2. The current
behaves as a multiplication of two signals: A sequence of current
pulses through level 1 and a telegraphic signal, the occupation of
level 2. �1 is the average rate of tunneling events through level 1, τ0

is the average time duration until level 2 is filled, and τ1 is the average
time duration until level 2 gets empty.

zero and one, according to the occupation of level 2. In this
simplified model, the current flows only through level 1 and
only when level 2 is occupied. We neglect the effects that the
Pauli principle imposes on the current Ishot(t) and treat it as
a sequence of current pulses of charge e with a Poissonian
statistics characterized by a rate �1. The changes in the value
of Ctelegraph are Poissonian events with the rates 1/τ1 and 1/τ0

for the events of changing the value of Ctelegraph from one
to zero and zero to one, respectively. The fluctuations in the
current Ishot(t) are known as shot noise, and the fluctuations in
the signal Ctelegraph(t) are known as telegraph noise.28

Assuming that Ishot and Ctelegraph are uncorrelated, the
average current is

〈I 〉 = 〈Ishot〉〈Ctelegraph〉 = e�1
τ1

τ1 + τ0
. (4)

The noise is related to the autocorrelation function of the total
current via Wiener-Khinchin theorem

S(ω) = 2
∫ ∞

−∞
dτeiωτ [〈I (t + τ )I (t)〉 − 〈I 〉2]

= 〈Ishot〉2Stelegraph(ω) + 〈Ctelegraph〉2Sshot(ω)

+ 1

π
Sshot(ω) ∗ Stelegraph(ω). (5)

Using the known results for the shot and the telegraph noises,28

we get

S(ω) = 2e2�1
τ1

τ1 + τ0
+ 4e2�2

1

(τ1 + τ0)[(1/τ1 + 1/τ0)2 + ω2]
.

(6)

B. Fano factor and asymmetry dependence

Before we study the Fano factor and its left-right asymmetry
dependence, it seems necessary to inquire about the linear

dependence of the noise on the current as the second term in
Eq. (6) is quadratic in �1. Since the rates 1/τ1 and 1/τ0 are
the rates of tunneling out of and into level 2, they depend,
up to a symmetry factor, linearly on γ2 that was defined
in Eq. (2). Similarly, �1 is linear in γ1. Therefore under
the reasonable assumption that γ1/γ2 is independent of the
left-right asymmetry (that is, the couplings of the levels to
the leads cannot be changed independently), 1/τ1 and 1/τ0

are linear in �1. Hence the zero-frequency noise S(0) depends
linearly on �1 and therefore depends linearly on the current.

The probability of finding level 2 occupied, which is the
probability of finding Ctelegraph = 1, is Pf = τ1

τ0+τ1
. Similarly,

the probability of finding level 2 empty, which at zero
temperature is the probability of finding only level 1 occupied
is Pe = τ0

τ0+τ1
. The Fano factor is

F = S(0)

2e〈I 〉 = 1 + 2τ 2
0 τ1�1

(τ0 + τ1)2
= 1 + �1τ12P 2

e . (7)

Notice that �1τ1 is the average number of tunneling events
during a Ctelegraph = 1 stage, which is the average number of
tunneling events through level 1 before a tunneling event out
of level 2 takes place. At zero temperature, it can be estimated
as |tR1 |2/|tR2 |2, or, assuming the same left-right asymmetry for
the two levels, �1τ1 = γ1/γ2. The Fano factor (7) becomes

F = 1 + 2
γ1

γ2
P 2

e . (8)

The probability Pe depends on the asymmetry between the
coupling to the left and the right leads, i.e., on the ratio
|tLi |2/|tRi |2. To see this consider the simple case of zero
temperature and large U. For μL > μR (see Fig. 1), the rate of
tunneling out of level 2 is, according to Fermi’s golden rule,
�f→e = 2π

h̄
|tR2 |2. Similarly, the rate of tunneling into level 2 is

�e→f = 2π
h̄

|tL2 |2. If we neglect cotunneling effects there are no
direct tunneling processes from level 1 to level 2, so the steady
state probabilities satisfy

Pe�e→f = Pf�f→e. (9)

Pf is the probability of finding both level 1 and level 2 occupied.
In the limit |E1 − E2| � Vbias, the probability of finding only
level 1 occupied, Pe, equals the probability of finding only
level 2 occupied. In the limit of large U , the probability of
finding both level 1 and level 2 empty (for μR < E1 + U <

μL) is zero. Thus Pf + 2Pe = 1. The steady state solution (9)
becomes

Pe = �f→e

�e→f + 2�f→e
= 1∣∣tLi ∣∣2

/
∣∣tRi ∣∣2 + 2

. (10)

By increasing |tLi |2/|tRi |2, we decrease Pe. In the limit
|tLi |2/|tRi |2 → ∞, Pe → 0 so the Fano factor (8) F → 1.
By decreasing |tLi |2/|tRi |2, we increase Pe and in the limit
|tLi |2/|tRi |2 → 0 it gets its maximal value Pe = 1/2 and the
Fano factor is maximal, F = 1 + γ1

2γ2
≈ γ1

2γ2
.

1. Finite temperature

At zero temperature, the only possible tunneling event that
follows a tunneling event from the system to the right lead, is
from the left lead into the empty level. Therefore changing
the value of Ctelegraph from one to zero in the simplified
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model, corresponds to a tunneling event from level 2 to
the right. In addition, every tunneling event from level 1 to
the right, corresponds to a current-pulse in the simplified
model. Hence we can estimate the number of tunneling events
during a Ctelegraph = 1 stage as �1τ1 ≈ |tR1 |2/|tR2 |2. At finite
temperature, there is also a finite probability that a tunneling
event from the system to the right will be followed by a
tunneling event from the right lead back to the empty level.
In the limit |tLi |2/|tRi |2 → 0, the probability of tunneling from
right to left may become important. If the couplings to the right
are much stronger than the couplings to the left, electrons may
tunnel many times back and forth between the right lead and
the system before a tunneling event from the left lead to the
system takes place. The time scales τ1 and τ0 in this case,
become smaller than 1/�1, and the value of �1τ1 goes to
zero. Therefore we expect that at finite temperature the Fano
factor will have the value one in the limit |tLi |2/|tRi |2 → 0. To
conclude, as we decrease |tLi |2/|tRi |2, the Fano factor (7) gets
larger, but at finite temperature at some point, if we decrease
|tLi |2/|tRi |2 even further, the Fano factor will start to decrease
toward the value one at |tLi |2/|tRi |2 → 0.

2. Cotunneling effects

Similar to finite temperature, cotunneling processes may
suppress the Fano factor at |tLi |2/|tRi |2 → 0. Consider the limit
|tLi |2 � |tRi |2. Without cotunneling, if level 2 is empty, the
electron in level 1 need to wait a long time before it can tunnel
out to the right lead since such a tunneling event must follows
a tunneling event into level 2 which, at zero temperature,
is possible only from the left lead. Cotunneling processes,
however, allow the two processes at once; occupying level
2 and evacuating level 1 in a single quantum process. In
particular, the electron in level 1 can virtually tunnel out to the
right lead while another electron is virtually tunnel from the
right lead into level 2 (we use the term virtually to emphasize
the fact that the intermediate state does not conserve energy).
In the limit |tLi |2/|tRi |2 → 0, the total rate of such processes
may become larger than the rate of sequential tunneling from
the left lead into level 1. Thus the occupation of level 2 and
therefore the telegraphic signal, Ctelegraph(t), fluctuates much
faster than the pulses’ rate 1/�1, and the value of �1τ1 goes
to zero. Therefore we expect a suppression of the Fano factor
due to the cotunneling processes toward the value one in the
limit |tLi |2/|tRi |2 → 0.

C. Weak interactions

Up to this point, we have assumed strong interactions,
namely, a very large U . If U is not large compared to the
bias voltage, U < eVbias, changing the occupation of level 2
doesn’t block completely the current through level 1 since
electrons can tunnel through level 1 in both cases while level
2 is empty or occupied. Yet, we can still use the intuitive
picture of a sequence of current pulses through level 1 and a
random telegraph signal describing the occupation of level 2.
The rate of the pulses depends on the occupation of level 2 and
we consider two different rates: �1 describes the tunneling
rate through level 1 while level 2 is full and �̃1 describes
the tunneling rate through level 1 while level 2 is empty

(previously �̃1 was zero). Similar to Eq. (3), we consider the
current

I (t) = Ishot(t) Ctelegraph(t) + Ĩshot(t) [1 − Ctelegraph(t)], (11)

where Ishot (Ĩshot) is a sequence of current pulses with a
characteristic rate �1 (�̃1). The Fano factor is

F = 1 + 2(�1 − �̃1)2τ 2
0 τ 2

1

(τ0 + τ1)2(τ1�1 + τ0�̃1)
, (12)

where τ1 is the average time duration in which level 2 is
occupied and electrons tunnel through level 1 with an average
rate �1, and τ0 is the average time duration in which level 2
is empty and electrons tunnel through level 1 with an average
rate �̃1.

At low temperatures, KBT � eVbias, if μR < E1 < μL and
μR < E1 + U < μL, the tunneling rate through level 1 barely
depends on the occupation of level 2, i.e., �1 ≈ �̃1. We can
approximate Eq. (12) by

F ≈ 1 + 2(	�1)2

�1�2
P 2

e (1 − Pe)2, (13)

where 	�1 ≡ �̃1 − �1 and �2 = (τ0 + τ1)−1 (at low temper-
atures, this is the tunneling rate through level 2). Notice that
Pe = τ0

τ0+τ1
, which is the probability of finding level 2 empty, is

different from the probability of finding only level 1 occupied,
since now the two levels can be empty simultaneously.

The results of the simplified model which we presented in
this section, can be used to analyze transport through other
systems as well. Systems with discrete charge carriers and in
addition a telegraphic behavior can be analyzed in the same
way. Example of such a system is a quantum point contact
capacitively coupled to a system that alternates between two
charge states.29

IV. RATE EQUATIONS FORMALISM

The two level system is weakly coupled to the leads,
therefore we may use the rate equations formalism30 to
calculate the average current and the current noise. In the
weak coupling regime, we describe the whole system using
the four eigenstates of the two level system: |n1,n2〉 (ni labels
the eigenvalues of d

†
i di) and treat the tunneling Hamiltonian

Ht as a perturbation. Transition rates between these states are
related to rates of electron tunneling events. In the following
two sub-sections, we first review the method of current and
noise calculations using rate equations, and then we discuss
the tunneling processes that are relevant to our model.

A. Rate equations

We shortly review the technique for calculating current and
shot noise that was developed in Ref. 30 and the generalization
of it to include cotunneling processes that was developed
in Ref. 31. Consider the two level system that we discuss.
The system can be in one of four states, |n1,n2〉, and its
dynamics is driven by tunneling processes. Generally, there
are a few tunneling processes that change the system’s
state from |i〉 to |f 〉, which we denote their rates by ωα

i,f ,
where α labels the different possible tunneling processes. The
rate ωi,f = ∑

α ωα
i,f is the total transition rate from the state
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|i〉 to the state |f 〉. The system’s dynamics is described by the
rate equations

∂

∂t
P (f,t/i) =

∑
k∈S

[P (k,t/i)ωk,f − P (f,t/k)ωf,k], (14)

where P (f,t/i) is the probability of the system to be in
the state |f 〉 at time t if it was in the state |i〉 at t = 0,
so the initial condition is P (f,t = 0/i) = δi,f . Equation (14)
neglects coherence superpositions of different states [the terms
P (f,t/i) are the diagonal matrix elements of the system’s
density matrix]. Neglecting the coherent superpositions of the

states |1,0〉 and |0,1〉 is justified when the coherence time
is much shorter than the delay time between consecutive
tunneling events. Alternatively, if there is a quantum number
that distinguishes the two states (e.g., spin), if at some point in
time the density matrix that describes the system is diagonal,
then coherent superpositions are zero at all later times.

It appears to be useful to write the rate equations in a matrix
form. We define the vector (there are four such vectors)

Pi(t) ≡ [P (00,t/i),P (10,t/i),P (01,t/i),P (11,t/i)], (15)

and the matrix

M =

⎛
⎜⎜⎜⎝

−∑
k �=00 ω00,k ω10,00 ω01,00 ω11,00

ω00,10 −∑
k �=10 ω10,k ω01,10 ω11,10

ω00,01 ω10,01 −∑
k �=01 ω01,k ω11,01

ω00,11 ω10,11 ω01,11 −∑
k �=11 ω01,k

⎞
⎟⎟⎟⎠ .

(16)

The rate equations become ∂
∂t

Pi(t) = MPi(t) with the initial
condition Pi(t = 0) = [0, . . . ,0,1,0, . . . ,0] ≡ êi . The solu-
tion of Eq. (14) is readily found to be Pi(t) = eMt êi . Let P st

be the stationary solution, namely, MP st = 0 and (since it is a
probabilities vector)

∑
n P st

n = 1.
Current. We define the quantity saα

i,f , the total number of
electrons that tunnel through the junction a = L,R to the right
during the process α that changes the system’s state from |i〉 to
|f 〉. A negative sign corresponds to electrons that are moving
to the left. In our model, saα

i,f can get the values ±2, ±1, and 0.
The stationary current through the junction a can be written as

〈Ia〉 = e
∑
i,f ∈S

∑
α

saα
i,f P st

i ωα
i,f . (17)

Zero-frequency noise. The noise is related to the autocorre-
lation function via Wiener-Khinchin theorem:

Sab(ω) = 2
∫ ∞

−∞
dτeiωτ [〈Ia(t + τ )Ib(t)〉 − 〈I 〉2], (18)

where we are interested in the zero frequency limit. We
write here a compact expression for the noise, details of the
derivation can be found in Ref. 31. The zero-frequency noise
can be written as

Sab(ω → 0) = 2e2{trUab − Wb · M−1Ȳa − Wa · M−1Ȳb},
(19)

with the following vectors:

(Uab)i ≡
∑
f ∈S

∑
α

saα
i,f sbα

i,f P st
i ωα

i,f , (20)

(Ȳa)j ≡
∑
i∈S

∑
α

saα
i,j P

st
i ωα

i,j − 〈Ia〉
e

P st
j , (21)

(Wb)k ≡
∑
f ∈S

∑
α

sbα
k,f ωα

k,f . (22)

We have used the trace of a vector to denote the sum of its
elements. Although the matrix M is not invertible, there is only
one traceless vector Va (i.e., the sum of all its elements is zero)
that satisfies MVa = Ȳa

31 and we use this vector as M−1Ȳa .

B. Tunneling rates

We describe the system using four states, |n1,n2〉. The
system dynamics is driven by transitions between states that are
caused by tunneling processes. For example: Transition from
the state |0,0〉 to the state |1,0〉 happens when an electron is
tunneling from the left lead or the right lead into level 1 while
level 2 is empty. The term Ht in the Hamiltonian (1) allows
tunneling processes and the rates of the transitions are derived
perturbatively in Ht.

Sequential tunneling rates. To the lowest order in Ht, the
transition rates can be calculated using Fermi’s golden rule.
We use the notation ω→

i,j for the rate of a tunneling process
that changes the system’s state from i to j by tunneling an
electron from the left to the right direction (and, similarly, ω←

i,j

for electron that moves from right to left). For example,

ω→
00,10 = �L

1 FFD(E1 − μL) (23)

is the rate of tunneling from the left lead into level 1 while
level 2 is empty, where we have defined

�L
i ≡ ν

2π

h̄

∣∣tLi ∣∣2
, �R

i ≡ ν
2π

h̄

∣∣tRi ∣∣2
, (24)

and the Fermi’s function FFD(x) = (1 + eβx)−1 gives
the probability for the availability of an electron for the
tunneling process. In Fig. 3, we depict the lowest order
tunneling processes, to which we refer as sequential tunneling
processes. The rates of all the sequential tunneling processes
are listed in Appendix A.

Cotunneling rates. The next leading order perturbation in
Ht generates cotunneling processes with intermediate virtual
states. Usually, when the tunneling coefficients are small [γ1,2

045325-5



ASSAF CARMI AND YUVAL OREG PHYSICAL REVIEW B 85, 045325 (2012)

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

ω→
00,10

ω→
10,00

ω←
00,10

ω←
10,00

ω→
00,01

ω→
01,00

ω←
00,01

ω←
01,00

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

ω→
01,11

ω→
11,01

ω←
01,11

ω←
11,01

ω→
10,11

ω→
11,10

ω←
10,11

ω←
11,10

FIG. 3. A schematic picture of the lowest order in Ht transitions
(the sequential tunneling processes) and their notations.

of Eq. (2) are much smaller than the temperature or bias
voltage], the higher-order perturbation theory is not crucial
as it barely improves the approximation. However, this is not
always true. Consider, for example, the limit tRi � tLi ; in this
case, a cotunneling process, which takes an electron out of level
2 into the left lead and takes another electron from the left lead
into level 1, can become more likely to happen than a sequential
tunneling from level 2 to the right lead. In other words, a
second leading order perturbation in tLi can be more important
that a first leading order perturbation in tRi . We discuss later
the importance of the cotunneling processes in the two level
model and at the moment we emphasize that this is more than
a small improvement of the approximation. We discuss two
types of cotunneling processes: elastic-cotunneling, namely,
processes that contribute current but don’t change the state

of the two level system, and inelastic-cotunneling, namely,
processes that change the state of the two level system (and
might not contribute to the current through it).

Elastic-cotunneling rates. Figure 4 depicts schematically
the elastic-cotunneling processes that we take into account in
the transport calculations of the two level system. Each process
has two possible intermediate states. For example, electron
can tunnel through an empty system via level 1 or 2, thus,
cotunneling processes of the form |0,0〉 −→ |0,0〉 have two
possible intermediate states: |1,0〉 and |0,1〉. The two possible
paths interfere and we need to sum the amplitudes of the two
possibilities rather than their probabilities. If there is a quantum
number that distinguish the two levels (e.g., if the system is
a single spinful level with spin-dependent couplings to the
leads) the two path do not interfere, and we simply sum their
rates. We use the notation ω→

i,i (ω←
i,i ) for elastic-cotunneling

processes in which an electron is tunneling to the right (left)
direction (see Fig. 4). Elastic-cotunneling processes in which
an electron tunnels back and forth between one of the levels and
one of the leads don’t change the state of the system and don’t
contribute any current, and therefore don’t appear directly in
the transport calculations. The total elastic-cotunneling rates
are the sum of the rates of all the possible processes, namely,
integration over all incoming electron’s energies. For example,

ω→
00,00 = 2πν2

h̄

∫
dεFFD(ε − μL)[1 − FFD(ε − μR)]

×
∣∣∣∣ tL1 tR1

ε − E1
+ tL2 tR2

ε − E2

∣∣∣∣2

. (25)

The rates of all the elastic-cotunneling processes are listed in
Appendix A. Equation (25) is a formal expression and the
actual rate, which we use in the rate equations cannot be
directly calculated from it. The reason is the divergence of
the integral due to the finite widths of the two levels (which
we treat as two delta functions in energy). This divergence

ω→
00,00

Initial state Intermediate Final state
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Level 2

Level 1

Level 2

Level 1

Level 2
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Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

ω→
01,01

Initial state Final state

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

ω→
11,11

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Elastic-cotunneling processes

state
Intermediate

state

FIG. 4. A schematic picture of the elastic cotunneling processes and their notations. Each process has two possible virtual intermediate
states. The rate is the sum of the amplitudes of the two possible paths (rather than the sum of their probabilities). The processes ω←

i,i are the
same as ω→

i,i after exchanging the final states with the initial states.
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Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

Level 1

Level 2

ω↔
00,11
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FIG. 5. A schematic picture of the inelastic cotunneling processes and their notations. The processes ω01,10 are the same as ω10,01 after
exchanging the two levels. The processes ω11,00 are the same as ω00,11 after exchanging the final states with the initial states.

was already discussed before,32,33 and a regularization scheme
for the calculation of the cotunneling rates was developed. We
summarize the regularization scheme in Appendix B.

It is worth noting that one can avoid the necessity of
regularization by using the diagrammatic technique that was
developed in Refs. 34–36. We find that additional correction
due to levels shifts and broadening captured by this approach37

are irrelevant in the large bias limit (γi � eVbias) that we

consider. Calculation procedure of the average current and
current noise using this technique was developed in Ref. 38
and gives the same results in the γi � eVbias limit.

Inelastic-cotunneling rates. In Fig. 5, we depict the co-
tunneling processes that change the state of the two level
system, i.e., the inelastic-cotunneling processes. To this order
in Ht , the inelastic-cotunneling processes change the system’s
state between the following states: |1,0〉 ←→ |0,1〉 and
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|0,0〉 ←→ |1,1〉. The latter are somewhat more complex than
the other cotunneling processes as they have four possible
intermediate states (see Fig. 5). We use the notation ω

�
i,j for

the rate of processes in which the system changes its state from
|i〉 to |j 〉 in the following way: the electron that enters or leaves
level 1 tunnels to the right direction, while the electron that en-
ters or leaves level 2 tunnels to the left, and similarly we define
ω

�
i,j ,ω

⇒
i,j ,ω

⇔
i,j . We use the notation ω↔

00,11, ω↔
11,00 for processes

in which the two electrons enter or leave the two levels by tun-
neling one to the right and the other to the left. The rates of all
the inelastic-cotunneling processes are listed in Appendix A.

Beyond the cotunneling approximation. The rate equations
based calculation is valid as long as the tunneling coefficients
are small enough as we insert the tunneling processes only up
to second order in the perturbation Ht . Practically, it means that
either γi/eVbias or γi/KBT need to be small numbers. Yet, the
next leading order in Ht generates logarithmic contributions
that diverge at low temperatures and bias voltages.39 Hence,

for bias voltages smaller than a characteristic energy scale,
the Kondo temperature, the perturbative approach fails. The
Kondo temperature in our case is TK ∼ √

γ1Ue−U/2γ1 and
in all cases in this work, we consider much larger bias
voltages. We also want to note that small corrections due to
the renormalization of the energy levels and broadening play
very minor role in the large bias case that we consider. They at
most slightly modify the quantitative results with no important
effect on the qualitative behavior.

V. RESULTS

In this section, we present the main results for the shot
noise and the current through the two level system that is
modeled by Eq. (1). The calculations are based on the rate
equations method, which we presented in Sec. IV. The results
are explained using the approximated intuitive approach of
signal analysis that we developed in Sec. III.
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FIG. 6. (Color online) The current through the two level system with the following parameters (� ≡ �R
1 + �L

1 + �R
2 + �L

2 ): KBT = h̄�,
eVbias = 10h̄�, E1 − E2 = h̄�, U = 100h̄�, and �

R,L
1 = 10�

R,L
2 . We assume the same left-right asymmetry for the two levels: �L

1 /�R
1 =

�L
2 /�R

2 ≡ �L/�R . (a) The symmetric (�L/�R = 1) current as a function of E1. (b) The current at the right peak, E1 = 0, as a function
of the left-right asymmetry. The dashed line is the sequential tunneling current and the solid line is the current including both sequential
and cotunneling processes. (c) The (cotunneling) current at the valley, E1 = −U/2, as a function of the left-right asymmetry. The sequential
tunneling current is practically zero at the valley. (d) The current at the left peak, E1 = −U , as a function of the left-right asymmetry. The
dashed line is the sequential tunneling current, and the solid line is the current including both sequential and cotunneling processes.
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A. Strong interactions

Current. In Fig. 6(a), we plot the symmetric current (�L
i =

�R
i ) through the two level system as a function of E1 at large U

(U > eVbias) with the following parameters (� ≡ �R
1 + �L

1 +
�R

2 + �L
2 ): KBT = h̄�, eVbias = 10h̄�, E1 − E2 = h̄�, U =

100h̄�, and �
R,L
1 = 10�

R,L
2 . Two Coulomb peaks with a width

∼eVbias appear in the current: at E1 ≈ 0 (the right peak), where
the two levels are between the leads’ chemical potentials μL

and μR (similar to the schematic picture in Fig. 1), and at
E1 ≈ −U , where one of the levels is occupied so the other
level is effectively shifted and placed between μL and μR .
The right peak is a bit lower than the left peak because of
the small energy difference between the two levels (E1 > E2).
At finite temperature, this small energy difference makes the
probability of finding level 2 occupied a bit larger than the
probability of finding level 1 occupied. While near the right
peak the current through the strongly coupled level (level 1)
is blocked by the occupation of level 2, near the left peak the
occupation of level 2 allows it, and therefore the left peak is a
bit higher. If the sign of the energy difference was the opposite
(E1 < E2), the right peak was higher than the left peak.

In Figs. 6(b) and 6(d), we plot the left-right asymmetry
dependence of the current at the right and left peaks,
respectively. We assume the same left-right asymmetry for
the two levels, �L

1 /�R
1 = �L

2 /�R
2 ≡ �L/�R . Due to the lack

of a particle-hole symmetry at the peaks the current is not
maximal when the system is symmetrically coupled to the
leads. To understand this, consider the current at the left peak
in the simple case of zero temperature and no cotunneling
processes. The right lead current (17) in this case is simply
〈I 〉 = P11(�R

1 + �R
2 ) ≈ P11�

R
1 , where P11 is the probability of

finding the system doubly occupied. The probability P11 can
be easily calculated since the probability of finding the system
empty in this case (zero temperature and E1 = −U ) is zero.
Also, in the limit |E1 − E2| � Vbias, the probability of finding
only level 1 occupied, P10, and the probability of finding only
level 2 occupied P01 are identical and given by Pe of Eq. (10).
The probability of finding the system doubly occupied is
therefore P11 = 1 − 2Pe. The average current is 〈I 〉 = �R

1 (1 −
2Pe) = (�L

1 + �R
1 ) 1

�L/�R+1 (1 − 2
�L/�R+2 ), and it is maximal,

for a fixed �L
1 + �R

1 , at �L/�R = √
2. Indeed, the current

in Fig. 6(d) is maximal at �L/�R ≈ √
2 (the calculation is

done at finite temperature and includes cotunneling therefore√
2 is only an approximation). Similarly, the maximum of the

right peak is at �L/�R ≈ 1/
√

2. The current at the valley
E1 = −U/2 depicted in Fig. 6(c), carried by cotunneling
processes, is maximal where the two levels are symmetrically
coupled to the leads, �L = �R .

Fano factor. The current is carried by tunneling of electrons,
namely, current pulses of charge e, resulting in a shot noise.
On top of the tunneling events, as we discussed in Sec. III,
there is also a telegraph noise; by tunneling into or out of
level 2, we change the tunneling rate through level 1. Since
most of the current is carried by tunneling through level 1 the
current alternates between two different average values. For
example, if we focus on the left peak of the current, E1 = −U

[see Fig. 6(a)], most of the tunneling events are via level 1
while level 2 is occupied. However, because of the strong
interactions, each time the electron leaves the narrow level,
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FIG. 7. (Color online) The Fano factor F = S/(2e〈I 〉) at E1 =
−U (the left peak of the current) as a function of the left-right
asymmetry with the following parameters: eVbias = 0.1U , E1 − E2 =
0.01U , and h̄�L

1 + h̄�R
1 + h̄�L

2 + h̄�R
2 = 0.01U . We assume that

the two levels have the same left-right asymmetry, �L/�R . When
we change �L/�R , we keep the total width of each level fixed.
(a) The Fano factor for different ratios of the two levels’ widths
[γi = h̄(�R

i + �L
i )/2] with KBT = 0.01U and eVbias = 0.1U . The

dashed lines are the sequential tunneling Fano factors and the solid
lines are the calculated Fano factors including cotunneling processes.
In the inside box in the upper right corner, we zoom in on the small
values of �L/�R . The Fano factor is larger than one (super-Poissonian
noise) and maximal in asymmetric coupling. (b) The Fano factor as a
function of the left-right asymmetry for different values of eVbias/T .
The ratio between the levels’ widths is �

R,L
1 = 10�

R,L
2 . The dashed

lines are the sequential tunneling Fano factors and the solid lines
are the calculated Fano factors including cotunneling processes. The
cotunneling processes dramatically decrease the Fano factor for large
eVbias/T .

level 2, the current drops dramatically and resumes only when
a new electron enters level 2.

In Fig. 7, we depict the Fano factor at the left peak (E1 =
−U ) of the current through the two level system with the
following parameters: eVbias = 0.1U , E1 − E2 = 0.01U , and
h̄�L

1 + h̄�R
1 + h̄�L

2 + h̄�R
2 = 0.01U . By increasing γ1/γ2, we

increase the average number of electrons that tunnel through
level 1 while level 2 is occupied [the quantity �1τ1 in Eq. (7)].
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Indeed, similar to what we expect for the simplified model of
Sec. III [Eqs. (7) and (8)], the noise is larger for large γ1/γ2 as
one can see from Fig. 7(a).

In Fig. 7, we plot the left-right asymmetry dependence of
the Fano factor. Similar to the simplified case of Sec. III, we
find the following asymmetry dependence of the Fano factor:
for large �L/�R , the Fano factor is F = 1 and, as we decrease
�L/�R , we see enhancement of the the Fano factor. Also, as
we discussed in Sec. III, the finite temperature suppresses the
Fano factor below some �L/�R � 1 toward the value F = 1
in the limit �L/�R → 0. The most interesting feature in Fig. 7
is the unexpected influence that the cotunneling processes have
on the Fano factor. At low temperatures (KBT � eVbias), the
cotunneling processes suppress the Fano factor significantly in
the asymmetric coupling regime �L � �R (the dashed lines in
Fig. 7 represent calculations without cotunneling processes).

The physics behind the reduction of the Fano factor in
the �L/�R � 1 limit can be explained by the simplified
picture of Sec. III. At zero temperature and taking into account
sequential tunneling only, as we reduce �L/�R the Fano
factor is enhanced toward the value F ≈ γ1/(2γ2) in the limit
�L/�R → 0 [see Eqs. (8) and (10)]. This suits the upper
(red) dashed line in Fig. 7. Finite temperature allows backward
tunneling- opposite to the voltage bias direction, which reduces
the number of current pulses through level 1 each time level 2
is occupied. The reason is that for �L � �R electrons tunnel
many times back and forth between the right lead and the
system before a tunneling event from the left lead to the system
takes place. Thus the quantity �1τ1 in Eq. (7) (see also Fig. 2)
is reduced and the Fano factor is suppressed.

Cotunneling processes, similar to the finite temperature,
allow backward tunneling. Virtual tunneling to the left is
possible as a part of a full two particle cotunneling process.
The important cotunneling processes which suppress the Fano
factor in the asymmetric limit are the inelastic processes than
change the system’s state between the states |1,0〉 ←→ |0,1〉.
In the asymmetric limit, the total rate of these processes
becomes larger than the rate of sequential tunneling from the
left lead into level 1. As a result, the occupation of level
2 changes faster than the time delay between consecutive
current pulses through level 1. The quantity �1τ1 is reduced
and the Fano factor is suppressed toward the value F = 1 in
the extremely asymmetric limit �L/�R → 0.

We want to mention the experimental work that was
reported in Ref. 26, where a super-Poisson noise with a strong
asymmetry dependence was measured in quantum dot that
was attached to two leads at strong magnetic field. One of the
suggested explanations for the enhancement of the noise in this
system was an additional level that is weakly coupled to the
leads. Indeed, the strong dependence of the Fano factor on the
asymmetry of the dot-leads coupling, which is very similar to
the asymmetry dependence of the Fano factor we have in Fig. 7,
indicates a possible two level system. We must emphasize
that although our results fits qualitatively the experimental
measurements,40 the rate equations formalism is not suitable
for quantitative analysis of the experimental results since
the quantum dot was attached relatively strong to the leads,
a situation that makes the rate equations approach invalid.
Nevertheless, qualitatively, we believe that the significant
asymmetry dependence of the Fano factor is a strong evidence

for the presence of a second interacting level that was weakly
attached to the leads in the experimental setup.

Spinful electrons. In order to avoid unnecessary com-
plexities, we have assumed that the electrons are spinless.
Physically, this situation can be realized by two-level quantum
dot at strong magnetic field or two single level quantum dots
at strong magnetic field. The spin degree of freedom can be
added to the problem in two ways: single spinful level with
spin-dependent couplings to the leads or two spinful levels with
different couplings to the leads. The single spinful level case is
very similar to the system that we analyze, the only difference
is the fact that processes with different spins cannot interfere.
Therefore some of the cotunneling rates are slightly different
(e.g., cotunneling of electron through an empty level). Never-
theless, we want to stress that the most important cotunneling
processes in the more physical situation of relatively strong
interactions, which are the inelastic processes |1,0〉 ↔ |0,1〉
(or |↑〉 ↔ |↓〉), have exactly the same rates as in our model.
Moreover, and this is the important point, the physics behind
the noise enhancement in the spinful and in the spinless cases is
the same. The noise is enhanced because of the blocking effect,
which is a result of the Coulomb interactions. Therefore the
same qualitative dependence on the asymmetry is expected.
This is true also in the two spinful levels case and, in fact,
also in multilevel systems with interactions. If the blocking
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FIG. 8. (Color online) The current and the Fano factor in the
small U (U < eVbias) region with the following parameters (� ≡
�R

1 + �L
1 + �R

2 + �L
2 ): U = 2h̄�, eVbias = 10h̄�, KBT = h̄�, E1 −

E2 = 0.5h̄�, and γ1 = 10000γ2. (a) The current as a function of E1

at the symmetric point, �L = �R . The dashed line is the current
including sequential tunneling only, and the solid line is the current
including also cotunneling processes. (b) The Fano factor at E1 = 0
as a function of the left-right asymmetry. The dashed line is the
sequential tunneling Fano factor and the solid line is the Fano factor
including cotunneling processes. The cotunneling processes enhance
the Fano factor significantly.
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(d) Cotunneling

Level 2 is occupied
Level 2 is empty

Level 2 is occupied
Level 2 is empty

FIG. 9. (Color online) The dependence of the tunneling rates through level 1 on the occupation of level 2 in the small U (U < eVbias) region
with the following parameters (� ≡ �R

1 + �L
1 + �R

2 + �L
2 ): U = 2h̄�, Vbias = 10h̄�, KBT = h̄�, E1 = 0, E2 = −0.5h̄�, and γ1 = 10000γ2.

Negative cotunneling rates mean that the cotunneling processes decrease the current (see for example Ref. 31). (a) The sequential tunneling
rate from the left lead through level 1 to the right lead; [(ω→

11,01)−1 + (ω→
01,11)−1]−1 when level 2 is occupied and [(ω→

10,00)−1 + (ω→
00,10)−1]−1 when

level 2 is empty. (b) The cotunneling rates from the left lead through level 1 to the right lead (ω→
11,11 + ω→

01,01 when level 2 is occupied and
ω→

10,10 + ω→
00,00 when level 2 is empty). (c) The difference between the sequential tunneling rates of the two stages (level 2 is empty and full).

(c) The difference between the cotunneling rates of the two stages (level 2 is empty and full).

effect enhances the noise, we expect similar dependence of
the Fano factor on �L/�R with similar suppression due to
finite temperature and cotunneling.

B. Weak interactions

While U is large, say U > eVbias, the current at the left
(right) peak, E1 ≈ −U (E1 ≈ 0) is changed dramatically when
an electron is tunneling into or out of level 2, since the strong
interaction blocks the tunneling through level 1. This is not
the case for small U . If U is small compared to Vbias, the
current alternates between two relatively close values, and
the effect on the noise is smaller. Yet, if the ratio between
the levels’ widths, γ1/γ2 is large enough, the enhancement of
the noise can be important. In Fig. 8, we depict the current
and the Fano factor for relatively small U (U = eVbias/5)
with the following parameters (� ≡ �R

1 + �L
1 + �R

2 + �L
2 ):

U = 2h̄�, eVbias = 10h̄�, KBT = h̄�, E1 − E2 = 0.5h̄�, and

γ1 = 10000γ2. We see again that the cotunneling processes
are important as they enhance the Fano factor significantly
(the cotunneling processes contribute less than 20% of the
current but almost double the Fano factor). Notice also that
unlike the Fano factor of the strong U case, the Fano factor
is maximal when the system is symmetrically coupled to the
leads, �L = �R .

To explain the enhancement of the noise in the small U

case, we use the intuitive picture that we studied in Sec. III;
a sequence of current pulses through level 1 and a random
telegraph signal describing the occupation of level 2. The
rate of the pulses depends on the occupation of level 2 and
we consider two different rates: �1 describes the tunneling
rate through level 1 while level 2 is full and �̃1 describes the
tunneling rate while level 2 is empty. The Fano factor is given
by Eq. (13):

F ≈ 1 + 2(	�1)2

�1�2
P 2

e (1 − Pe)2, (26)
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where the rate �2 = (τ0 + τ1)−1 is the tunneling rate through
level 2, 	�1 ≡ �̃1 − �1, Pe = τ0

τ0+τ1
, and we have used the

fact that �̃1 = �1 + 	�1 ≈ �1 for U < eVbias. We see that
although the Fano factor is usually reduced to one for 	�1

�1
� 1,

in the extreme case of �2
�1

< (	�1
�1

)2 the Fano factor can be
enhanced.

We can now understand why the Fano factor is enhanced
noticeably due to the cotunneling processes. For U < eVbias,
the rate of the sequential tunneling through level 1 barely
depends on the occupation of level 2 since the energies E1

and E1 + U are close to each other compared to Vbias. The
cotunneling processes, however, are much more sensitive
to U . In Fig. 9, we illustrate this point by comparing the
dependence of the sequential tunneling and the cotunneling
rates through level 1 on the occupation of level 2, with the same
parameters of Fig. 8(b). In Fig. 9(a), we plot the sequential
tunneling rates from the left lead through level 1 to the right
lead when level 2 is empty, [(ω→

10,00)−1 + (ω→
00,10)−1]−1, and

full, [(ω→
11,01)−1 + (ω→

01,11)−1]−1 (expressions for the rates are
given in Appendix A, see Fig. 3 to clarify the notations). In
Fig. 9(b), we plot the cotunneling rates from the left lead
through level 1 when level 2 is empty- ω→

10,10 + ω→
00,00, and

full- ω→
11,11 + ω→

01,01 (expressions for the rates are given in
appendix A, see Fig. 4 to clarify the notations). In Figs. 9(c)
and 9(d), we plot the difference between the values of the
tunneling rates through level 1 when level 2 is empty and
the values of the tunneling rates when level 2 is full [in
Fig. 9(c), the sequential tunneling rate and in Fig. 9(d),
the cotunneling rate]. We see that although the sequential
tunneling rate is order of magnitude larger than the cotunneling
rate, the cotunneling processes are much more sensitive to
the occupation of level 2, making the difference between the
two values of the cotunneling rate on the same order of the
difference between the two values of the sequential tunneling
rate. Thus even though the cotunneling processes have a small
contribution to the current, they contribute the same as the
sequential tunneling to 	�1 and therefore have an important
contribution to the Fano factor. We want to emphasize that the
Fano factor is enhanced in the weak interactions regime only
if level 2 is coupled to the leads extremely weaker than level
1, as we require �2

�1
< (	�1

�1
)2, where (	�1

�1
)2 is a very small

number.
Since Eq. (13) depends quadratically on the multiplication

of the probabilities of finding level 2 empty and full, Pe(1 −
Pe), the enhancement of the Fano factor due to 	�1 is maximal
where Pe(1 − Pe) is maximal. In the limit of small U , the
energy of the system, wether it is empty, singly occupied or
doubly occupies, is more or less the same for E1 = 0, therefore
Pe(1 − Pe) is maximal where the system is symmetrically
coupled to the leads.

VI. CONCLUSIONS

We have analyzed the transport through a two-level system
that is coupled to two leads with one level coupled much
stronger than the other. We showed that a simple intuitive
model that describes the transport through this system as
a sequence of current pulses that is stopped occasionally
captures well most of the transport properties of the system.

The current pulses in this model correspond to tunneling
events through the strongly coupled level, that are stopped
occasionally by tunneling events through the weakly coupled
level. As expected from this simple model, we find in the more
rigorous rate equations based calculation, a super-Poisson
noise, with Fano factor larger than one, indicating that the
electrons tunnel in bunches.

We showed, using rate equations calculation, a unique
dependence of the transport on the asymmetry of the coupling
to the leads, �L/�R , in the strong interaction limit (see Figs. 6
and 7). In particular, the Fano factor is enhanced at asymmetric
couplings and increases as we decrease �L/�R . Eventually,
the finite temperature suppresses the Fano factor in the limit
�L/�R → 0.

Interestingly, at eVbias � KBT , the cotunneling processes
affect dramatically the enhancement of the Fano factor. The
cotunneling processes that change the system’s state between
the states |1,0〉 and |0,1〉 (level 1 occupied and level 2
occupied) suppress the Fano factor even for KBT/eVbias � 1
and therefore they are essential for transport calculations
even though most of the current is carried by sequential
tunneling processes. Other cotunneling processes are less
critical in the strong interaction regime, they slightly improve
the approximation but don’t change the transport significantly.

At relatively weak interactions, we showed that the Fano
factor may also be enhanced noticeably if the difference
between the couplings of the two levels is extremely
large, namely γ2/γ1 � 1. In this limit, we find again that
the cotunneling processes are essential for the analysis of the
noise and the Fano factor. The reason is because the telegraphic
fluctuations of the sequential processes are of the same order
as the fluctuations of the cotunneling processes. Thus even
though the current is described by sequential tunneling quite
well, one must include the cotunneling processes in the noise
calculations.
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APPENDIX A: LIST OF TUNNELING RATES

In this Appendix, we give the expressions for all the
tunneling rates that enter the rate equations.

1. Sequential tunneling rates

To the lowest order in Ht, the transition rates can be
calculated using Fermi’s golden rule. We use the notation ω→

i,j

for the rate of a tunneling process that changes the system’s
state from i to j by tunneling an electron from the left to the
right direction (and similarly ω←

i,j for electron that moves from
right to left). For example, ω→

00,10 is the rate of tunneling from
the left lead into level 1 while level 2 is empty. The rates of
the sequential tunneling processes are

ω→
00,10 = �L

1 FFD(E1 − μL), (A1)

ω→
00,01 = �L

2 FFD(E2 − μL), (A2)

ω→
10,00 = �R

1 FFD(μR − E1), (A3)
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ω→
01,00 = �R

2 FFD(μR − E2), (A4)

ω→
01,11 = �L

1 FFD(E1 + U − μL), (A5)

ω→
10,11 = �L

2 FFD(E2 + U − μL), (A6)

ω→
11,01 = �R

1 FFD(μR − E1 − U ), (A7)

ω→
11,10 = �R

2 FFD(μR − E2 − U ). (A8)

We have defined

�L
i ≡ ν

2π

h̄

∣∣tLi ∣∣2
, �R

i ≡ ν
2π

h̄

∣∣tRi ∣∣2
, (A9)

and the Fermi’s function FFD(x) = (1 + eβx)−1 gives the
probability for the availability of an electron or a hole for

the tunneling process. The left moving rates ω←
i,j have similar

expressions with μL ↔ μR and �L
1,2 ↔ �R

1,2.

2. Elastic-cotunneling rates

Each elastic-cotunneling process has two possible inter-
mediate states. For example, electron can tunnel through an
empty system via level 1 or 2, thus cotunneling processes
of the form |0,0〉 −→ |0,0〉 have two possible intermediate
states: |1,0〉 and |0,1〉. The two possible paths interfere, and
we need to sum the amplitudes of the two possibilities rather
than their probabilities. We use the notation ω→

i,i (ω←
i,i ) for

elastic-cotunneling processes in which the electron tunnels to
the right (left) direction. The total elastic-cotunneling rates
are the sum of the rates of all the possible processes, namely,
integrating over all incoming electron’s energies.

ω→
00,00 = 2πν2

h̄

∫
dεFFD(ε − μL)[1 − FFD(ε − μR)]

∣∣∣∣ tL1 tR1

ε − E1
+ tL2 tR2

ε − E2

∣∣∣∣2

, (A10)

ω→
10,10 = 2πν2

h̄

∫
dεFFD(ε − μL)[1 − FFD(ε − μR)]

∣∣∣∣ tL1 tR1

ε − E1
+ tL2 tR2

ε − E2 − U

∣∣∣∣2

, (A11)

ω→
01,01 = 2πν2

h̄

∫
dεFFD(ε − μL)[1 − FFD(ε − μR)]

∣∣∣∣ tL1 tR1

ε − E1 − U
+ tL2 tR2

ε − E2

∣∣∣∣2

, (A12)

ω→
11,11 = 2πν2

h̄

∫
dεFFD(ε − μL)[1 − FFD(ε − μR)]

∣∣∣∣ tL1 tR1

ε − E1 − U
+ tL2 tR2

ε − E2 − U

∣∣∣∣2

. (A13)

The left moving elastic-cotunneling rates ω←
i,i have similar expressions with μL ↔ μR . Equations (A10)–(A13) are formal

expressions, and the actual rates, which we use as input for the rate equations, cannot be directly calculated from these integrals.
The reason is the divergence of these expressions due to the finite widths of the two levels (which we treat as two delta functions in
energy). We use a regularization scheme32,33 for the calculation of the cotunneling rates. The regularization scheme is summarized
in Appendix B.

3. Inelastic-cotunneling rates

We consider the inelastic-cotunneling processes that change the system’s state between |1,0〉 ←→ |0,1〉 and |0,0〉 ←→ |1,1〉.
We begin with the former; we use the notation ω

�
i,j for the rate of processes in which the system changes its state from |i〉 to

|j 〉 in the following way: the electron that enters or leaves level 1 tunnels to the right direction, while the electron that enters or
leaves level 2 tunnels to the left, and similarly, we define ω

�
i,j ,ω

⇒
i,j ,ω

⇔
i,j . For example, if the system’s initial state is |1,0〉 and the

electron in level 1 tunnels to the right lead, while another electron from the right lead tunnels to level 2, we denote the rate of
this process by ω

�
10,01. Again, there are two possible intermediate states for the processes |1,0〉 ←→ |0,1〉, and we need to sum

them properly. The formal expression for these rates are

ω
⇒
10,01 = 2πν2

h̄

∫
dεFFD(ε − μL){1 − FFD[ε + (E1 − E2) − μR]}

∣∣∣∣ tR1 tL2

ε − E2
− tR1 tL2

ε − E2 − U

∣∣∣∣2

, (A14)

ω
⇔
10,01 = 2πν2

h̄

∫
dεFFD(ε − μR){1 − FFD[ε + (E1 − E2) − μL]}

∣∣∣∣ tL1 tR2

ε − E2
− tL1 tR2

ε − E2 − U

∣∣∣∣2

, (A15)

ω
�
10,01 = 2πν2

h̄

∫
dεFFD(ε − μR){1 − FFD[ε + (E1 − E2) − μR]}

∣∣∣∣ tR1 tR2

ε − E2
− tR1 tR2

ε − E2 − U

∣∣∣∣2

, (A16)

ω
�
10,01 = 2πν2

h̄

∫
dεFFD(ε − μL){1 − FFD[ε + (E1 − E2) − μL]}

∣∣∣∣ tL1 tL2

ε − E2
− tL1 tL2

ε − E2 − U

∣∣∣∣2

. (A17)
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To get these integrals, we used the energy conservation: if the incoming electron (that enters level 2) has the energy ε, the
outgoing electron (that leaves level 1) must have the energy ε + E1 − E2. To get the rates ω

⇒
01,10, ω

⇔
01,10, ω

�
01,10, and ω

�
01,10, we

may write integrals like (A14)–(A17) and exchange t
L,R
1 ↔ t

L,R
2 and E1 ↔ E2. Once again, the formal expressions (A14)–(A17)

need to be regularized in order to extract the input terms for the rate equations calculation (see Appendix B). The last rates
that we discuss are the inelastic |0,0〉 ←→ |1,1〉 processes’ rates. These processes are somewhat more complex than the other
cotunneling processes as they have four possible intermediate states. We use the notation ω

⇒
00,11 (ω⇔

00,11) and ω
⇒
11,00 (ω⇔

11,00) for
processes in which two electrons enter or leave the two levels by tunneling to the right (left). We use the notation ω↔

00,11, ω↔
11,00

for processes in which the two electrons enter or leave the two levels by tunneling one to the right and the other to the left. The
rates for the |0,0〉 ←→ |1,1〉 inelastic cotunneling processes are

ω
⇒
00,11 = 2πν2

h̄

∫
dε

1

2
FFD(ε − μL)FFD[(−ε + E1 + E2 + U ) − μL]

∣∣∣∣ tL1 tL2

ε − E1
− tL1 tL2

ε − E1 − U
− tL1 tL2

ε − E2
+ tL1 tL2

ε − E2 − U

∣∣∣∣2

,

(A18)

ω
⇔
00,11 = 2πν2

h̄

∫
dε

1

2
FFD(ε − μR)FFD[(−ε + E1 + E2 + U ) − μR]

∣∣∣∣ tR1 tR2

ε − E1
− tR1 tR2

ε − E1 − U
− tR1 tR2

ε − E2
+ tR1 tR2

ε − E2 − U

∣∣∣∣2

,

(A19)

ω↔
00,11 = 2πν2

h̄

∫
dεFFD(ε − μL)FFD[(−ε + E1 + E2 + U ) − μR]

∣∣∣∣ tL1 tR2

ε − E1
− tL1 tR2

ε − E1 − U
− tR1 tL2

ε − E2
+ tR1 tL2

ε − E2 − U

∣∣∣∣2

,

(A20)

ω
⇒
11,00 = 2πν2

h̄

∫
dε

1

2
FFD(μL − ε)FFD[μL − (−ε + E1 + E2 + U )]

∣∣∣∣ tL1 tL2

ε − E1
− tL1 tL2

ε − E1 − U
− tL1 tL2

ε − E2
+ tL1 tL2

ε − E2 − U

∣∣∣∣2

,

(A21)

ω
⇔
11,00 = 2πν2

h̄

∫
dε

1

2
FFD(μR − ε)FFD[μR − (−ε + E1 + E2 + U )]

∣∣∣∣ tR1 tR2

ε − E1
− tR1 tR2

ε − E1 − U
− tR1 tR2

ε − E2
+ tR1 tR2

ε − E2 − U

∣∣∣∣2

,

(A22)

ω↔
11,00 = 2πν2

h̄

∫
dεFFD(μL − ε)FFD[μR − (−ε + E1 + E2 + U )]

∣∣∣∣ tL1 tR2

ε − E1
− tL1 tR2

ε − E1 − U
− tR1 tL2

ε − E2
+ tR1 tL2

ε − E2 − U

∣∣∣∣2

.

(A23)

The factor 1/2 that appears in Eqs. (A18), (A19), (A21), and (A22) is due to the double counting of processes: by integrating
over ε, we sum both ε = ε′ and ε = −ε′ + E1 + E2 + U , however these two processes are identical since in both cases when
the two levels are empty the two electrons are in the same lead with energies ε′ and −ε′ + E1 + E2 + U . Hence, as we double
count each process we insert a factor of 1/2. Notice also that for ω

⇒
00,11, ω

⇔
00,11, ω

⇒
11,00 and ω

⇔
11,00, by including the point

ε = (E1 + E2 + U )/2 in the integral, we include an impossible process, as the two electrons in the lead have the same energy
(E1 + E2 + U )/2. Nevertheless, this point contribute zero to the integrals, and therefore we have no problems with the formal
expressions (A18), (A19), (A21), and (A22). The integrals in (A18)–(A23) need a regularization in order to extract the rates that
we use in the rate equations, the regularization scheme appears in Appendix B.

APPENDIX B: REGULARIZATION SCHEME

In this Appendix, we summarize the regularization procedure for the cotunneling rates.32,33 All the cotunneling rates that appear
in Appendix A, excluding the |0,0〉 ←→ |1,1〉 rates, can be brought to the form

I (A,B,Ea,Eb,μ1,μ2) = 2πν2

h̄

∫
dεFFD(ε − μ1)[1 − FFD(ε − μ2)]

∣∣∣∣ A

ε − Ea

+ B

ε − Eb

∣∣∣∣2

, (B1)

where the amplitudes A,B are multiplications of two tunneling coefficients, and one might need to use the relation FFD(−ε) =
1 − FFD(ε) in order to bring the expression of a specific cotunneling rate to this form. The integral (B1) diverges due to the finite
widths of the energy levels.32,33 We first add by hand a width to the levels

I (A,B,Ea,Eb,μ1,μ2) = 2πν2

h̄

∫
dεFFD(ε − μ1)[1 − FFD(ε − μ2)]

∣∣∣∣ A

ε − Ea + iγ
+ B

ε − Eb + iγ

∣∣∣∣2

. (B2)

Next, we solve the integral (B2) and write the solution as a power series in γ . We extract the cotunneling rate by subtracting
the 1/γ term and taking the limit γ → 0. We should emphasize that, in general, each level has its own width and the sign
±iγ depends on the process; we associate different signs for incoming and outgoing electrons. If one adds the widths properly,
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the divergent term (1/γ ) has a physical meaning, and one can read the sequential tunneling rates from it. Nevertheless, these
details are not important for the regularization procedure, and the finite values of the cotunneling rates are independent of the
details of the regulator γ . We can write (B2) as

I (A,B,Ea,Eb,μ1,μ2) = 2πν2

h̄
[I1(A,Ea,μ1,μ2) + I1(B,Eb,μ1,μ2) + I2(A,B,Ea,Eb,μ1,μ2)],

where

I1(A,Ea,μ1,μ2) =
∫

dεFFD(ε − μ1)[1 − FFD(ε − μ2)]

∣∣∣∣ A

ε − Ea + iγ

∣∣∣∣2

,

I2(A,B,Ea,Eb,μ1,μ2) =
∫

dεFFD(ε − μ1)[1 − FFD(ε − μ2)]2Re

(
A

ε − Ea + iγ

B

ε − Eb − iγ

)
.

The solutions of I1 and I2 can be written using digamma functions with complex variables ψ(z). I1 contains a divergent part

I1(A,Ea,μ1,μ2) = |A|2NB(μ2 − μ1)

γ
Im

{
ψ

[
1

2
+ βγ

2π
+ iβ

2π
(μ2 − Ea)

]
− ψ

[
1

2
+ βγ

2π
+ iβ

2π
(μ1 − Ea)

]}
, (B3)

where β = 1/(KBT ) and NB(μ2 − μ1) = [eβ(μ2−μ1) − 1]−1. After the subtraction of the 1/γ term and taking the limit γ → 0,

I1(A,Ea,μ1,μ2) = |A|2NB(μ2 − μ1)
β

2π
Im

{
ψ ′

[
1

2
+ iβ

2π
(μ2 − Ea)

]
− ψ ′

[
1

2
+ iβ

2π
(μ1 − Ea)

]}
. (B4)

There is no divergence in I2, therefore we simply solve it and take the limit γ → 0 ,

I2(A,B,Ea,Eb,μ1,μ2) = AB
NB(μ2 − μ1)

Ea − Eb

Re

{
ψ

[
1

2
+ iβ

2π
(Ea − μ2)

]
− ψ

[
1

2
+ iβ

2π
(Eb − μ2)

]

−ψ

[
1

2
+ iβ

2π
(Ea − μ1)

]
+ ψ

[
1

2
+ iβ

2π
(Eb − μ1)

]}
. (B5)

We can use the solution of Eq. (B1) to solve the rates of the processes |0,0〉 ←→ |1,1〉. Notice that the formal expressions for
these rates [see Eqs. (A18)–(A23)] contain four terms inside the absolute value. We may use the trivial identity

|a + b + c + d|2 = |a + b|2 + |a + c|2 − |a − d|2 − |b − c|2 + |b + d|2 + |c + d|2,
to write Eqs. (A18)–(A23) as sums of six terms of the form of (B1).
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60, 12246 (1999).

8B. R. Bułka, Phys. Rev. B 62, 1186 (2000).
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