
PHYSICAL REVIEW B 85, 045318 (2012)

Competing hyperfine and spin-orbit couplings: Spin relaxation in a quantum Hall ferromagnet
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Spin relaxation in a quantum Hall ferromagnet, where filling is ν = 1,1/3,1/5, . . . , can be considered in terms
of spin-wave annihilation/creation processes. Hyperfine coupling with the nuclei of the GaAs matrix provides
spin nonconservation in the two-dimensional electron gas and determines spin relaxation in the quantum Hall
system. This mechanism competes with spin-orbit coupling channels of spin-wave decay and can even dominate
in a low-temperature regime where T is much smaller than the Zeeman gap. In this case the spin-wave relaxation
process occurs nonexponentially with time and does not depend on the temperature. The competition of different
relaxation channels results in crossovers in the dominant mechanism, leading to nonmonotonic behavior of the
characteristic relaxation time with the magnetic field. We predict that the relaxation times should reach maxima
at B � 18 T in the ν = 1 quantum Hall system and at B � 12 T for that of ν = 1/3. We estimate these times as
∼10–30 μs and ∼2–5 μs, respectively.
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I. INTRODUCTION

Two-dimensional (2D) electron gas has been intensively
studied for several decades. The interest is stimulated by the
clear manifestations of strong electron correlations, including
quantum phase transitions (like Wigner crystallization1) and,
in the presence of a strong perpendicular magnetic field, to
various features in electron transport gathered under the name
“fractional quantum Hall effect”.2 Transport phenomena,
although of paramount significance for applications, provide
only indirect information on such fundamental character-
istics as quantum states and the energy spectrum, where
optical techniques give much more immediate information.
In particular, Raman scattering, starting from the pioneering
works of A. Pinczuk et al.,3 has been successfully used to
study collective excitations in two-dimensional electron gas
created in semiconductor heterostructures and quantum wells
(see also Ref. 4 and references therein). The position and
intensities of corresponding Raman or luminescence lines can
yield information on the energy and oscillator strengths of
the excited states. Meanwhile an important characteristic of
such excitations is also the lifetime. This may be estimated
by observation of the resonance linewidths: for example, the
spin-wave lifetime was deduced from the observed width of
the electron spin resonance lines.5 Microwave and optical
linewidths are not, however, directly related to the lifetime
and usually provide only a very rough lower bound for this
quantity. In consequence, one is forced to use combined
experimental methods, including a time-resolved technique
(see, e.g., Ref. 6). Despite these experimental difficulties,
growing interest in the problem of excitation lifetimes in a two-
dimensional electron gas has been observed in recent years.
One should mention, for example, recent experimental works
on the observation of the spin relaxation in a polarized two-
dimensional electron gas based on the Kerr rotation effect.7

We study in this work the so-called quantum Hall fer-
romagnet where all two-dimensional electron gas electrons
of the upper, partially filled Landau level, are in the ground
state, with spins aligned along the magnetic field. This state
obviously arises at odd integer fillings: ν = 1,3, . . ..8 In

addition, experiments and semiphenomenological theories
show that at some fractional fillings, namely at ν =
1/3,1/5, . . . , electrons in the ground state occupy only
one spin sublevel, and thereby the fractional quantum Hall
ferromagnet state is also realized.9–13 The quantum Hall
ferromagnet possesses a macroscopically large spin �S oriented
in the direction of the field �B due to negative g factor in GaAs
structures. The spin wave in the quantum Hall ferromagnet
may be defined as a purely electronic collective excitation
within the Landau level which corresponds to a change of the
spin numbers by 1,

δS = δSz = −1, (1.1)

and does not alter the spin orientation of the system. (Another
possible excitation in the quantum Hall ferromagnet is a
Goldstone mode representing a deviation of �S from the
�B direction which does not change the S number;14 the
microscopic excitation then would be a “zero spin-exciton”
corresponding to the spin change δSz = −1, but δS = 0.) This
spin wave is also called the spin exciton, because this excitation
promotes an electron to another spin sublevel of the same
Landau level and, thus, an effective hole appears in the initial
sublevel. Every spin exciton possesses energy8,10

Ex = εZ + Eq, (1.2)

where εZ = |g|μBB is the Zeeman gap (g ≈ −0.44 in a GaAs
structure) and Eq is the spin-exciton Coulomb correlation
energy depending on the 2D wave-vector modulus q. For the
rest of the paper it will be sufficient to consider only long-wave
excitations, q � 1/lB (lB is the magnetic length), for which
the spectrum is quadratic:

Eq ≈ q2l2
B

/
2Mx. (1.3)

Here the spin-exciton mass Mx has the dimensionality of
inverse energy.8,10 This quantity has recently been measured
experimentally for ν = 115,16 and ν = 1/3 fillings.11

If there are an excessive number of spin excitons compared
with equilibrium, then the spin relaxation reduces to an
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elementary process of spin-exciton annihilation. The spin
numbers are changed in accordance with Eq. (1.1), where
the energy of the annihilated excitation can be transferred
to the emitted acoustic phonon or to another exciton due
to the spin-exciton–spin-exciton scattering. Any spin-exciton
relaxation channel is, thus, determined by two necessary
conditions: by the availability of an interaction that does not
conserve the spin of the electron gas and by a mechanism of
energy dissipation making the relaxation process irreversible.
Until now, spin-orbit coupling has been assumed to be the
cause of the spin nonconservation (see, e.g., Refs. 14 and 17
and the works cited therein). Indeed, these spin-orbit relaxation
channels are certainly dominant under the usual experimental
conditions, where T ∼ 1 K and 1 < B < 10 T. The corre-
sponding calculations are in satisfactory agreement with the
available experimental data. Here we shall extend the study of
spin relaxation channels to include spin nonconservation by
the hyperfine coupling to nuclei of the GaAs matrix. This has
been considered previously18 only for the case of the Goldstone
mode q ≡ 0; here we consider nonzero, but small, q. Our
analysis shows that one mechanism in particular, relating to the
spin-exciton–spin-exciton scattering process, should be taken
into account, if T � 0.1 K and magnetic fields B � 10 T.18

(Specifically, the necessary condition is T � εZ .) To see this
clearly we will analyze the spin-orbit relaxation channels; two
of them can compete with the hyperfine coupling relaxation in
the same region of temperature and magnetic fields.

It should also be noted that the spin relaxation processes
proceed much more slowly than other two-dimensional elec-
tron gas plasma relaxations unrelated to a spin change. This
means that, in any case, an elementary spin-exciton annihila-
tion/creation process may be studied as a transition (induced by
a perturbation) from an initial eigenstate |i〉 to a final eigenstate
|f 〉; i.e., the hyperfine coupling relaxation mechanisms are
governed, like the spin-orbit coupling relaxation,14,17,19–21 by
the Fermi golden rule probability

wf i = (2π/h̄)|Mf i |2δ(Ef − Ei), (1.4)

where Mf i is a relevant matrix element.
In principle, the hyperfine coupling effects are weak.

The spin-orbit coupling and the hyperfine coupling both
have relativistic origins: the former is of the first order, but
the latter represents the second-order relativistic correction to
the Hamiltonian. However, the hyperfine interaction has some
essential properties differenting from those of the spin-orbit
coupling. These substantially change kinematic conditions of
the spin-exciton scattering and the dissipation mechanisms
where one of the spin excitons annihilates. We shall see that,
(i) first, the hyperfine coupling does not conserve total
momentum of the electron system, and this feature leads
to extension of the phase volume for the spin-exciton–spin-
exciton and spin-exciton–phonon scatterings; and (ii) second,
the spin-flip process governed be the hyperfine interaction
does not require a virtual promotion of an electron to another
Landau level (this promotion with simultaneous spin flip is
a characteristic feature of the spin-orbit coupling and means
a virtual conversion of the spin exciton into the cyclotron
magnetoplasmon). As a result, a new annihilation channel of
the spin-exciton scattering appears: two spin excitons can be
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FIG. 1. Three diagrams illustrating the main elementary pro-
cesses contributing to the spin relaxation rate. Spin excitons are de-
picted by bold arrows. (a) Scattering via hyperfine coupling to nuclei.
(b) Scattering via spin-orbit coupling and coupling to an external
disorder field modelled by a smooth random potential. (c) Scattering
via spin-orbit coupling and coupling to phonons. Outlined arrows
denote a virtual magnetoplasmon. For more details; see the text.

scattered by each other, within the same Landau level, directly
due to the hyperfine interaction and one finally gets a single-
spin-exciton state possessing the combined energy. This kind
of scattering, as in the case of scattering caused by disorder,14,17

is kinematic: The transition matrix element does not contain
the Coulomb constant between bra and ket vectors. The
scattering is possible because the spin excitons are not actually
elementary Bose particles but possess an internal degree of
freedom and, thus, have a “memory” of the Pauli principle
for the primary electron system. Thus, in spite of the small
hyperfine coupling constant, the hyperfine coupling channel
competes with the spin-orbit ones and can even dominate.

The diagrams in Fig. 1 illustrate the main elementary
processes that compete with one another and contribute to
a combined spin-exciton relaxation rate. All three represent a
two-spin-exciton scattering. The necessity of having two spin
excitons in the initial state (and a single one in the final state)
is determined by the energy conservation law for scattering by
nuclei [Fig. 1(a) or via an external smooth random potential
[Fig. 1(b)]. In the case of scattering via the electron-phonon
(e-ph) coupling, a single-spin-exciton annihilation would also
be possible.17,20 However, this elementary process, where the
energy and momentum of the spin exciton would be transferred
to the generated phonon, would have a very small phase
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volume, as compared with the two-spin-exciton scattering,
for conditions where there is an appreciable density of
optically excited spin excitons. So the third diagram [Fig. 1(c)]
represents the most intense process where irreversibility occurs
due to the electron-phonon coupling. The diagram in Fig. 1(a)
shows the scattering by nuclei provided only by a single
vertex corresponding to the hyperfine (HF) coupling. This
diagram describes both kinematic and dynamic scatterings of
spin excitons, where in the final state one has a single spin
exciton with combined energy and a nuclear spin rotation, with
change of the nuclear spin by δIz = 1. Scattering processes
in the diagrams of Figs. 1(b) and 1(c) are governed by
two vertices, the first of which represents the spin-orbit
(SO) coupling and provides a virtual transformation of one
initial spin exciton into a purely orbital cyclotron exciton
(magnetoplasmon) with the same wave vector. The second
vertex is the coupling to the smooth random potential [“SRP”
in Fig. 1(b)] or to phonons. (The latter is renormalized as a spin-
exciton–phonon interaction.) In the case of scattering with
participation of phonons [Fig. 1(c)], the combined energy of
the two scattering spin excitons is passed to a final spin exciton
and the generated phonon. Momentum conservation requires
q1 + q2 = q + qph, where qph is the component of the phonon
momentum in the (x,y) plane and q1, q2, and q are momenta
of the spin excitons. In the case of scattering by a smooth
random potential, the total combined energy is transferred to
the final spin exciton, but there is no momentum conservation:
q1 + q2 	= q. Similarly, momentum is not conserved for the
case of scattering by nuclei [Fig. 1(a)].

The next section of the paper is devoted to formal descrip-
tion of the system where we present the Hamiltonian and the
basis of exciton states (excitonic representation). In Sec. III
we study the hyperfine coupling relaxation mechanisms when
the spin-exciton annihilation/creation is determined by the
spin-exciton–spin-exciton scattering, including the kinematic
and dynamic scattering channels [Fig. 1(a)]. For this process
the relaxation rate is proportional to the spin-exciton number
squared, and, therefore, the relaxation is nonexponential with
time. (In principle, it becomes exponential when the spin-
exciton number approaches its equilibrium value, but the
final exponential stage cannot, in fact, be observed under the
condition T � εZ .) We discuss also in Sec. III possible relax-
ation processes related to the hyperfine coupling and phonon
emission/absorption, comparing them with other relaxation
mechanisms. Section IV is devoted to the spin-orbit relaxation
channels relevant to the considered region of strong magnetic
fields and low temperatures. These spin-orbit mechanisms are
also related to the spin-exciton–spin-exciton scattering but
are determined by two different dissipation processes:- via
coupling to a smooth random potential [Fig. 1(b)] or coupling
to phonons [Fig. 1(c)].

In Sec. V we discuss the results of our study. The main result
consists of the interplay of different relaxation processes. We
compare those due to the hyperfine coupling and spin-orbit
interactions and, summing all relaxation channels, calculate
the total characteristic inverse time. In this “interplay regime,”
where the spin-exciton–spin-exciton channels dominate, the
relaxation occurs nonexponentially, and the effective relax-
ation time reaches its maximum ∼1–5 μs depending on the
Landau level fillings. Nevertheless, the relevant region of

parameters T and B is not too extreme and experimentally
quite accessible.

Note that in this paper we do not study the situation where
the Goldstone condensate of “zero spin excitons” arises,14,18

i.e., where there would be a rotation of the direction but not
a reduction in the magnitude of the total spin of the system.
Here we consider instead relaxation where there are, at low
temperatures, a bulk number of spin excitons arising from an
intensive external (e.g., optical) excitation. The initial state
at low temperatures should be described as a (metastable)
“thermodynamic condensate” of spin waves with nonzero, but
small, wave vectors limited by the uncertainty determined by
disorder.14 We think that such situation, where most of the
spin-exciton annihilation/creation events happen within the
thermodynamic condensate, is realizable experimentally.

II. FORMAL STATEMENT OF THE PROBLEM: THE
HAMILTONIAN AND THE BASIS OF EXCITON STATES

Our system consists of two components: electrons belong-
ing to the two-dimensional electron gas and nuclei of Ga and
As atoms. In addition, we consider piezo- and deformation
couplings of the 2D electron gas electrons to the lattice,
which are reduced to electron-phonon interaction. So, the
Hamiltonian used is as follows:

Ĥ = Ĥ1 + εZŜz + Ĥint +
∑

j

Ĥ
(j )
hf +

∑
j

Ĥ
(j )
e−ph, (2.1)

where Ĥ1 = ∑
j [q̂2

j /2m∗
e + H

(j )
so ] is a single-electron

Hamiltonian, including the spin-orbit coupling part (q̂ =
−i∇ + eA/ch̄); Ŝz = ∑

j σ̂
(j )
z /2 ; subscript j labels the elec-

trons. The third term describes Coulomb energy of the e-e
interaction, the fourth is the hyperfine interaction of electrons
with nuclei, and the fifth is the operator of the electron-
phonon interaction. If one holds Hso = 0, we can omit the
orbital single-electron energy terms—all states relevant to our
problem belong to the same Landau level and, therefore, have
the same orbital energy equal to h̄ωcνNφ (ωc is the cyclotron
frequency and Nφ is the Landau level degeneracy). We ignore
also the energy of nuclei which consists of the contribution
due to their interaction independent of the electrons and of the
nuclear Zeeman energy. Variations of both, associated with
change of nuclear spins, are negligibly small due to the tiny
nuclear magnetic momentum.

In the following three sections (II A, II B, and II C) we ne-
glect the spin-orbit coupling. The spin-orbit Hamiltonian and
spin-orbit corrections, written in terms of the representation
used, will be given in the Sec. II D.

A. Electron system: Excitonic representation

We now present the basis set of states diagonalizing the
first three terms of the Hamiltonian (2.1) to leading order in
parameter rc = (αe2/κlB)/h̄ωc considered to be small (α < 1
is the averaged form factor arising due to finiteness of the
2D layer thickness; κ is the dielectric constant). We do this
by analogy with previous works,14,17,19–21 defining the spin-
exciton creation operator22

Q†
ab q = 1√

Nφ

∑
p

e−iqxpb
†
p+ qy

2
ap− qy

2
, (2.2)
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where ap and bp are the Fermi annihilation operators cor-
responding to electron states on the upper Landau level
with spin up (a = ↑) and spin down (b =↓), respectively.
Index p marks intrinsic Landau level states which have wave
functions ψnp(r) = (2πNφ)−1/4eipyϕn(p + x) in the Landau
gauge. [ϕn(x) is the oscillator function, where n is number
of the upper partially filled Landau level; in Eq. (2.2) and
everywhere below we measure length in the lB units wave
vectors in the 1/lB ones.] In the odd-integer quantum Hall
regime, operator (2.2) acting on the ground state yields the
eigenstate of the first two terms of Eq. (2.1), namely[

εZŜz + Ĥint,Q†
ab q

]|0〉 = (εZ + Eq)Q†
ab q|0〉, (2.3)

where |0〉 = |
Nφ︷ ︸︸ ︷

↑,↑, . . . ↑〉. This basic property of the exciton
state, Q†

ab q|0〉, is asymptotically exact to first order in rc. After

the introduction of intrasublevel operators A†
q = N−1/2

φ Q†
aaq

and B†
q = N−1/2

φ Q†
bbq, we obtain a closed Lie algebra for these

exciton operators.23–25 The commutation identities needed in
our case are [

Qq1 ,Q+
q2

] = ei(q1×q2)z/2Aq1−q2

− e−i(q1×q2)z/2Bq1−q2 ,

e−i(q1×q2)z/2
[
A†

q1
,Q†

q2

] = −ei(q1×q2)z/2
[
B†

q1
,Q†

q2

]
= −N−1

φ Q†
q1+q2

. (2.4)

(Here and below we omit the subscript ab at the Q operators.)
Note that the commutation algebra [Eq. (2.4)] is neither purely
fermionic nor bosonic.

The interaction Hamiltonian Ĥint =
1
2

∫
dr1dr2 ̂†(r2)̂†(r1)U (r1 − r2)̂(r1)̂(r2) may be

expressed in terms of the exciton operators.24,25 If we keep
in Ĥint only the terms relevant to our problem, it takes a very
simple form,

Ĥint = Nφ

2

∑
q

W (q)(A†
qAq + 2A†

qBq + B†
qBq), (2.5)

where W (q) = U (q)[f (q)]2, where f = e−q2/4 if ν �
1, or f = e−q2/4[Ln(q2/2)] if ν = 2n + 1 (Ln is the
Laguerre polynomial). U (q) is the Fourier compo-
nent of the 2D Coulomb interaction function: U (q) =
(e2/κlBq)

∫∫
dz1dz2e

−q|z1−z2||χ (z1)|2|χ (z2)|2, where χ (z) is
the dimensionally quantized wave function of an electron sized
in the z direction.

In contrast to integer quantum Hall ferromagnet, the use of
the excitonic basisQ†

q|0〉 presents only a model approach in the
case of fractional quantum Hall regime. Generally, at fractional
filling, spin-flip excitations within the same Landau level might
have a many-particle rather than two-particle nature because
the same change in the spin numbers [Eq. (1.1)] may be
achieved with participation of arbitrary number of intra-spin-
sublevel excitations (charge-density waves). These waves are
generated by the operator A†

q acting on the ground state |0〉 =

|
νNφ︷ ︸︸ ︷

↑, . . . ↑, . . . ↑ 〉.9 The result is trivial in the case of integer
ν (A†

q|0〉 = δq, 0|0〉); however, states of the Q†
q1A

†
q2A

†
q3 . . . |0〉

type might constitute a basis set if one studies the spin-flip
process at fractional ν. On the other hand, a comprehensive
phenomenological analysis9,10 suggests that even the spin-flip
basis reduced to single-mode (single-exciton) states would be
quite appropriate, at least for the lowest-energy excitations
in the case of fractional quantum Hall ferromagnet. This
single-mode approach is indirectly substantiated by the fact
that the charge-density wave has a Coulomb gap9 which is
substantially larger than the Zeeman gap εZ . Hence, for a
fractional quantum Hall ferromagnet, just as in Ref. 10, we
will consider the simple state Q†

q|0〉 to describe the spin-flip
excitation. However, the calculation of 〈0|AqA†

q′ |0〉 is required
for the following. Now this expectation is not simply equal
to δq, 0δq′, 0 but is expressed in terms of the two-particle
correlation function g(r) calculated for the ground state

〈0|AqA†
q′ |0〉 = ν

Nφ

[
2πνg(q)eq2/2 + 1

]
δq′, q (ν � 1), (2.6)

where g(q) = 1
(2π)2

∫
g(r)e−iqrd2r is the Fourier component.

The function g(r) is known, e.g., in the case of Laughlin’s
state.9,26 If the ground state is described by the Hartree-Fock
approximation, we have simply 2πg = (Nφδq, 0 − e−q2/2),
which does not depend on ν. Furthermore, at odd-integer
filling factors this Hartree-Fock expression becomes a Fourier
component of the exact correlation function. In the latter case
one should also formally set ν = 1 in Eq. (2.6). Note also
that the exact equation 〈0|A†

q|0〉 = ν ′δq,0 holds, where we set
ν ′ = ν if ν � 1 but ν ′ = 1 if ν = 3,5, . . ..

With the help of Eqs. (2.4) and (2.5) one can check Eq. (2.3)
in the case of odd-integer ν. If ν is fractional, the Coulomb
exciton energy within the single-mode approximation is
defined as Eq = 〈0|Qq[Ĥint,Q†

q]|0〉/〈0|QqQ†
q|0〉.10 As a result

in both cases of integer or fractional ν < 1 one obtains for
small q the quadratic dispersion law (1.3) with the spin-exciton
mass

1/Mx = 1

2

∫ ∞

0
W (q)q3

(
1 − Nφ

ν ′ 〈0|AqA†
q|0〉

)
dq. (2.7)

We have employed the rule for change from summation to inte-
gration over the 2D vector q:

∑
q . . . = Nφ

∫
. . . qdqdφ/2π .

B. Hyperfine coupling

The general expression of the hyperfine coupling
Hamiltonian27 is simplified in the case of interaction with
nuclei in a semiconductor matrix.28–30 As this simplification
is valid in the 2D channel of a quantum well we may directly
start from the well-known expression for contact interactions
of electrons with nuclei

Ĥhf = v0

2

∑
n

An
∗(Rn)( Î

(n)· σ̂ )(Rn), (2.8)

(see, for example, Ref. 29 and references therein), where Î
(n)

and Rn are spin and position of the nth nucleus and (R) is
the envelope function of electron [R = (r,z) is the 3D vector].
Both Ga and As nuclei have the same total spin: IGa = IAs =
3/2. In Eq. (2.8) v0 is the volume of the unit cell. The parameter
An, being inversely proportional to v0, really depends only on
position of the Ga/As nucleus within the unit cell. For the final
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calculation we need the sum A2
Ga + A2

As. If v0 is volume of
the two atom unit cell, then A2

Ga + A2
As � 4 × 10−3 meV2 (see

Appendix A).

We now rewrite Î
(n) · σ̂ as Îzσ̂z + Î+σ̂− + Î−σ̂+. Then,

omitting the Îzσ̂z term due to its irrelevance to any spin-flip
process and substituting in Eq. (2.8) the Schrödinger operators
̂†(R) = χ (z)

∑
p(a†

p + b
†
p)ψ∗

p(r) and ̂(R) = (̂†)† instead
of ∗ and , we come to

Ĥhf = v0

2

∑
p1,p2

b†p2
ap1

∑
n

|χ (Zn)|2ψ∗
p2

(Xn,Yn)

×ψp1 (Xn,Yn)AnÎ
(n)
+ + H.c.. (2.9)

Substitution of the equation

b†p2
ap1 =

∑
q

eiqx (p2−qy/2)√
Nφ

δqy,p2−p1Q†
q, (2.10)

which is simply inverse to Eq. (2.2), yields, after summation
over p1 and p2, the hyperfine coupling Hamiltonian in the
excitonic representation:

Ĥhf = v0

4πl2
B

√
Nφ

∑
q

f (q)Qq

∑
n

An|χ (Zn)|2

× eiqRn Î
(n)
− + H.c.. (2.11)

A set of the Iz spin numbers {M} = (M1,M2, . . . Mn, . . .),
where every Mn may take on values −3/2, − 1/2,1/2,3/2,
completely determines the state of the nuclear system. The
state where 2D electrons are in the ground state and nuclei
in the state {M} we denote as |{M},0〉. By applying the
lowering/raising operator I

(n)
∓ to this state, we obtain

Î
(n)
∓ |{M},0〉 =

√(
5

2
∓ Mn

) (
3

2
± Mn

)
|{M}∓n ,0〉, (2.12)

where {M}∓n = (M1,M2, . . . Mn ∓ 1, . . .). Let us find the
hyperfine coupling correction to the normalized spin-exciton
state Q†|{M},0〉/√ν ′. Considering operator (2.11) as a pertur-
bation we obtain with the help of Eqs. (2.4) and (2.12):

|SE,q〉 = Q†
q|{M},0〉/

√
ν ′

+ v0

√
ν ′f (q)

4π
√
Nφl2

BEx(q)

∑
n

An|χ (Zn)|2eiqRn

×
√(

5

2
− Mn

) (
3

2
+ Mn

)
|{M}−n ,0〉. (2.13)

In the same way we find the corrected nuclear “spin-turned”
(NST) state

|NST,n〉
= |{M}−n ,0〉 − v0

4π
√
Nφl2

B

∑
q,n′

f (q)

Ex(q)
An′ |χ (Zn′)|2e−iqRn′

×
√(

5

2
+Mn′ − δn′,n

)(
3

2
− Mn′ + δn′,n

)
Q†

q|{M}−+
nn′ ,0〉,

(2.14)

where we consider Mn > −3/2, and use notation {M}−+
nn′ =

(M1, . . . Mn − 1, . . . Mn′ + 1, . . .) meaning by that {M}−+
nn ≡

{M}. [The n′ = n term in the sum of Eq. (2.14) contributes
to the transition matrix element relevant to some spin-exciton
relaxation processes.]

The hybridized states (2.13) and (2.14) diagonalize the
first three terms of the Hamiltonian (2.1) to the first order
in hyperfine coupling. Correspondingly, these have energies
Ex(q) and 0 (counted from the energy of the |{M},0〉 state)
within the approximation neglecting energy corrections of the
second order in hyperfine coupling and small magnetic energy
corrections related to changes of Mn momenta.

C. Electron-phonon interaction in the exciton representation

The Hamiltonian of the interaction of electrons with 3D
acoustic phonons is written as31

Ĥe−ph = h̄1/2

LL
1/2
z

∑
q,kz,s

U ′
s(k) P̂k,sHe−ph(q) + H.c., (2.15)

where L2 = 2πNφl2
B is the 2D area and Lz is the dimension

of the sample along ẑ,

He−ph(q) =
∫

eiqr̂†(r)̂(r) d2r, k = (q,kz); (2.16)

where P̂k,s is the phonon annihilation operator (index s denotes
possible phonon polarizations: the longitudinal l or one of
the two transverse polarizations t1 or t2), and U ′

s(k) is the
renormalized vertex which includes the fields of deformation
(DA) and piezoelectric (PA) interactions. The integration with
respect to z has been already performed and leads to the
renormalization U ′

s(k) = Us(k)
∫

χ∗(z)eikzzχ (z) dz.
The isotropic model for the phonon field 32 enables us to

take into account the deformation and piezoelectric couplings
independently. We further use the approximation where we
take no difference between longitudinal and transverse sound
velocities. For the three-dimensional (3D) vertex one needs
only the expressions for the squares,31,32

|Us |2 = πεph(k)/p3
0τs(k), (2.17)

where the phonon energy is εph = h̄c
√

k2
z + q2/lB (we recall

that kz and q are dimensionless), p0 = 2.52 × 106 cm−1 is the
material parameter of GaAs (see Ref. 32). The longitudinal
τl(k) and transverse τt (k) times are the 3D acoustic phonon
lifetimes (see Appendix A). These quantities are expressed in
terms of nominal times τD and τP characterizing, respectively,
DA and PA phonon scattering in three-dimensional GaAs
crystal (see Appendix A and Ref. 20 and cf. Ref. 32).

The dimensionless operator He−ph in terms of the excitonic
representation has the following simple form (cf. Ref. 33):

He−ph(q) = f (q)Nφ(Aq + Bq). (2.18)

D. The spin-orbit coupling in the excitonic representation

If considering the spin-orbit coupling, we will ignore the
hyperfine coupling but take into account the Hso operator in
the single-electron part Ĥ1 of the Hamiltonian [Eq. (2.1)]:

Ĥso = α(q̂ × σ̂ )z + β(q̂y σ̂y − q̂x σ̂x), q̂ = −i∇ + eA/ch̄.

(2.19)
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This operator, specified for the (001) GaAs plane represents
a combination of the Rashba term (∼α) and the crystalline
anisotropy term (∼β)34 and does not violate translational
symmetry.35

Now it is convenient to use a bare single-electron basis di-
agonalizing Hamiltonian q̂2/2m∗

e + Hso. To within the leading
order in the Hso terms we obtain

pa =
(

ψnp

v
√

n + 1ψn+1 p + iu
√

nψn−1 p

)
and

(2.20)

pb =
(

−v
√

nψn−1 p + iu
√

n + 1ψn+1 p

ψnp

)
,

where u and v are small dimensionless parameters: u =
β
√

2/lBh̄ωc and v = α
√

2/lBh̄ωc. Thus the single-electron
states acquire a chirality a or b instead of spin quantum
number, and the spin flip corresponds to the a → b process.
The definition of the spin-exciton creation operator formally
remains the same [Eq. (2.2)]; however, the ap and bp operators
describe annihilation in the states (2.20) now.

When being presented in terms of basis states (2.20),
spin operators

∫
†Ŝ2d2r and

∫
†Ŝzd2r [where  =∑

p(appa + bppb)] are invariant up to the second order
of u and v. However, in the excitonic representation the
interaction Hamiltonian Ĥint and the electron-phonon coupling
operator acquire terms proportional to u and v, which are
additional to Eqs. (2.5) and (2.18), respectively.19–21,33 These
terms correspond to creation and annihilation of spin excitons
in the system:

Ĥ ′
int = N 1/2

φ

∑
q

(iuq+ − vq−)W (q)(A†
q + B†

q)Qq + H.c.

(2.21)

and

H′
e−ph(q) = N 1/2

φ f (q)(iuq+ − vq−)Qq + H.c. (2.22)

[q± = ∓i(qx ± iqy)/
√

2].
We can also take into account the presence of an external

smooth random potential ϕ(r). This is assumed to be Gaussian
and defined by a correlator K(r) = 〈ϕ(r)ϕ(0)〉. By choosing
〈ϕ(r)〉 = 0, the correlator is K(r) = �2 exp (−r2/�2), in
terms of the correlation length � and the amplitude �.
The smooth random potential can act as the rate-limiting
process in the energy dissipation which makes the spin-flip
process irreversible. ϕ(r) formally is analogous to frozen
field of phonons having zero frequency. A static potential
cannot cause dissipation alone: physically the random potential
(mixed with the spin-orbit term) causes spin-flip and breaks
momentum conservation. The actual dissipation comes from
other interactions that do not change the spin: electron-electron
and electron-phonon interactions that occur on a faster time
scale and render the process irreversible. Therefore, using
again the Eq. (2.20) basis set and Eq. (2.10), we obtain the
ϕ̂ operator in terms of the excitonic representation. The part
responsible for a spin flip is 14,17

ϕ̂′ = N 1/2
φ

∑
q

f (q)ϕ(q)(iuq+ − vq−)Qq + H.c., (2.23)

where ϕ is the Fourier component [ϕ(r) = ∑
q ϕ(q)eiqr].

III. THE SPIN-EXCITON–SPIN-EXCITON SCATTERING
RELAXATION CHANNELS GOVERNED BY THE

HYPERFINE COUPLING

The δSz = −1 hybridized states [Eqs. (2.13) and (2.14)]
diagonalize the Hamiltonian Ĥint + Ĥhf , but the δSz = −2
statesQ†

q1 |SE,q2〉 andQ†
q|NST,n〉 do not. (Here by Sz we mean

the total spin number of the combined nuclear and electron sys-
tem.) The problem may be formulated in terms of a scattering
where the double-exciton state Q†

q1 |SE,q2〉 transforms to the
single-exciton one Q†

q|NST,n〉. Since the hyperfine coupling
energy is neglected, the energy conservation law takes the form

Ex(q1) + Ex(q2) = Ex(q). (3.1)

It determines the modulus of the spin-exciton momentum q in
the final state and, in particular, means that q cannot be equal
to q1 or q2.

A. Kinematic scattering

The transition matrix element Mif in Eq. (1.4) has to be
found to first order in the hyperfine coupling. Therefore, in
the case of the kinematic scattering, where Mif represents
an expectation value 〈bra|Ĥhf|ket〉 calculated directly for the
hyperfine coupling operator, the ket and bra vectors are deter-
mined only by the main components of the Q†

q1 |SE,q2〉 and
Q†

q|NST,n〉 states without any hyperfine coupling corrections.
Namely, taking into account that the initial double-exciton
state and the final single-exciton one have to be normalized,
we should calculate the kinematic scattering matrix element

Mkin
if (q1,q2,q,n) = 〈0,{M}−n |QqĤhfQ†

q1
Q†

q2
|{M},0〉/ν ′3/2

.

(3.2)

After substitution of Eqs. (2.11) and (2.12), this is reduced to
calculation of the four-operator expectation value [Eq. (C1)]
(see Appendix C). Note that were the Q operators usual
Bose operators, the expectation [Eq. (C1)] would simply be
equal to δq′, q1δq, q2 + δq′, q2δq, q1 , the conservation condition
(3.1) could not be satisfied, and, therefore, the kinematic
scattering channel would not exist. Therefore, only due to the
non-Bose nature of the spin-exciton states does this relaxation
mechanism take place.

We should keep in Mkin
if only the main terms contributing

to the final result, namely to the relaxation rate calculated on
the basis of the Fermi golden rule [Eq. (1.4)] and subsequent
summation over the q1, q2, and q statistical distributions. These
are terms to the lowest power of q1, q2, and q. They give the
exact result to leading order in the small parameter T Mx .
(T is the temperature, characteristic values of the momenta
are q1,q2,q ∼ √

T Mx � 1.) In particular, one finds that the
∼ν/Nφ terms in Eq. (C1) give the strongest contribution, and
the ∼〈0|A...A†

...|0〉 terms may be neglected.36 In addition, the
terms where q = q1 or q = q2 are omitted due to the “selection
rule” determined by Eq. (3.1). As a result, we obtain

Mkin
if (q1,q2,q,n) = −v0An|χ (Zn)|2

2πl2
B

√√√√(
3
2 + Mn

)(
5
2 − Mn

)
N 3

φ ν ′

× ei(q1+q2−q)Rn . (3.3)
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HF

rotated
nuclear spin

Initial state and electron transitions
due to the hyperfine coupling:

Final state is a single spin exciton +
a rotated nuclear spin:

FIG. 2. (Color online) Transitions relevant to calculation of the
kinematic scattering matrix element [Eqs. (3.2) and (3.3)]. The
initial state is shown in the inset (see text). The magnetic field
is assumed to be directed downward (direction of the ẑ axis).
The hyperfine (HF) vertex is depicted as the gray circle. The
dotted line arrow shows the mediated electron transition. Another
arrow beginning from the HF vertex marks the transition in the
nuclear spin system (change by δIz = 1). The final spin-exciton
state is shown at the bottom of the figure, where the conventionally
annihilated electron and “hole” are also depicted. Background
electrons occupying the lowest spin sublevel are drawn only in
the inset.

Figure 2 indicates schematically electron transitions rel-
evant to the calculated kinematic scattering matrix element.
The convention is that horizontal direction in the diagrams
represents the conjugate space for states of the degenerate
Landau level. The vertical direction is used to indicate the
energy of excited states with respect to the ground-state
level. The inset represents an initial two-spin-exciton state.
(In the figure, as in the following Figs. 3–5, one supposes for
simplicity that the filling is ν = 1.) Bold arrows indicate spin
excitons, where an electron is promoted from the occupied
spin sublevel upward to another spin sublevel of the same
Landau level. “Holes” in the occupied sublevel are shown by
empty circles. The convention is that excitonic momentum
corresponds to distance (along the horizontal axis) from the
hole to the excited electron forming the spin exciton. Excited
electrons are pictured higher than the Zeeman gap. This reflects
the presence of the Coulomb correlation term in the spin-
exciton energy [Eq. (1.2)]. To the left of the inset is the diagram
for the electron transition in the case of kinematic scattering:
due to the hyperfine interaction, an electron annihilates with a
hole belonging to another exciton, therefore, one is left with
an excited electron and a hole forming the final spin-exciton
state depicted by the dashed-line arrow. This single spin
exciton has momentum q (see the final state in Fig. 2),
where q must be larger than q1 and q2 due to energy
conservation [Eq. (3.1)]. {We, again, note that annihilation
of the excited electron with its “own” hole, i.e., belonging
to the same spin exciton, would result in final exciton with
momentum q1 or q2, but this forbidden by the same condition
[Eq. (3.1)].}

B. Dynamic scattering

If studying the dynamic scattering, one should take into
account that the Coulomb interaction operator [Eq. (2.5)],
acting on a certain state, does not change the number of the
spin-exciton operators determining this state, i.e., this number
must be the same in the bra and ket states contributing to
Mif = 〈bra|Ĥint|ket〉. Furthermore, the Coulomb interaction
does not change the total momentum of the electron gas; it,
too, must be the same in the bra and ket states. Therefore, again
only the ∼Q†

q1Q
†
q2 |{M},0〉 component should be kept in the

initial state Q†
q1 |SE,q2〉. [The hyperfine coupling correction

component can contribute only to the transition where q = q1,
which is forbidden due to Eq. (3.1)].

The single-exciton state Q†
q|0〉 diagonalizes the

Hamiltonian Ĥint, but the double-exciton state Q†
q1Q

†
q2 |0〉

does not. The latter is in fact an “almost” eigenstate. Indeed,
even at odd-integer ν we have [cf. Eq. (2.3)][

Ĥint,Q†
q1
Q†

q2

]|0〉
= (Eq1 + Eq2 )Q†

q1
Q†

q2
|0〉 + [[

Ĥint,Q†
q1

]
,Q†

q2

]|0〉, (3.4)

where the double-commutation term arises due to the
interaction between the spin excitons. It can be rou-
tinely calculated with the help of Eqs. (2.4) and (2.5);
see Eq. (C2) in Appendix C. The norm of this term
and the averaged spin-exciton–spin-exciton interaction en-
ergy 〈0|Qq2Qq1 |[[Ĥint,Q†

q1 ],Q†
q2 ]|0〉, both vanishing if q1 =

0 or q2 = 0, are, respectively, �(αe2/κlB)N−1/2
φ and

�(αe2/κlB)/Nφ if q1q2 	= 0. The latter estimation quite
corresponds to an effective mean dipole-dipole interaction of
two spin excitons sized within the area 2πl2

BNφ . [We recall that
each magneto-exciton possesses a dipole momentum equal to
e(q × ẑ)l2

B (in common units).37]
It follows from the above that for the dynamic scattering

process we choose the ket and bra vectors as

|ket〉 = Q†
q1
Q†

q2
|{M},0〉/ν ′, and 〈bra| = 〈n,q|

= − v0

4π
√

ν ′Nφl2
B

An|χ (Zn)|2
√(

3

2
+ Mn

) (
5

2
− Mn

)

×〈0,{M}|Qq

∑
q′

Qq′
f (q ′)
Ex(q ′)

eiq′ Rn , (3.5)

implying that only the hyperfine coupling correction term is
relevant in the final normalized state Q†

q|NST,n〉/ν ′1/2. The
matrix element meant to be calculated is

Mdyn
if (q1,q2,q,n) = 〈n,q|[[Ĥint,Q†

q1

]
,Q†

q2

]|{M},0〉/ν ′. (3.6)

Diagrams for the dynamic scattering (Fig. 3) includes ver-
tices of two types: the Coulomb interaction and the hyperfine
coupling. In the upper part of Fig. 3 we show schematically
an electron transition mediated by the Coulomb interaction
and virtually converting an initial two-spin-exciton state into
another two-spin-exciton state {in accordance with the double-
commutation calculation [Eq. (C2)]}. Due to the hyperfine
coupling the virtual two-spin-exciton state converts into a
single spin exciton via annihilation of an excited electron with
an effective hole. Now, in contrast to the kinematic scattering,
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Initial two-exciton state and
virtual transition due to the

e-e interaction
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q
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nuclear spin+ rotated 

nuclear spin

Final states

Transitions due
To the HF coupling

Hint

HF

HF

FIG. 3. Diagrams illustrating the dynamic scattering transitions.
The initial state and virtual transitions due to the e-e Coulomb
interaction are shown in the upper part of the figure. Possible
annihilation processes are shown in the middle row. The final states
are shown in the lower row. (See the text for full details.)

both annihilation processes are allowed: (i) annihilation of an
electron with its “own” hole (left diagram in the middle row
of Fig. 3) and (ii) with a hole of another spin exciton, similar
to the kinematic scattering (right diagram in the middle row).
Either transition finally yields a single-spin-exciton state and a
change δIz = 1 in the nuclear spin system. However, under our
conditions, where q1, q2, and q are small, contributions of these
annihilation transitions to the matrix element [Eq. (3.6)] differ
strongly. Indeed, when calculating the matrix element, a key
quantity is the expectation value 〈0|QqQq′Q†

q1−q′′Q†
q2+q′′ | 0〉,

with subsequent summation over q′′ and q′ in accordance
with Eqs. (C2) and (3.5), respectively. This expectation
value at ν = 1 and small q1, q2, and q consists of two
terms: The first is δq′, q1−q′′δq, q2+q′′ + δq′, q2+q′′δq, q1−q′′ , and
the second is −2Nφ

−1δq+q′, q1+q2 [see Eq. (C1)].38 The term
with two Kronecker deltas, which restricts both summations,
contributes to the result with a factor [W (|q1 − q|) + W (|q2 −
q|)](q × q1) · (q × q2) ∼ q3/Mx , arising due to the action of
the two commutation terms in Eq. (3.6) [W (q) ∼ e2/κlBq, see
also Eq. (2.7) for definition of the exciton mass]. The second
term, independent of q′′, maintains a summation over q′′, and
instead we find Nφ

−1 ∑
q′′ W (q ′′)(q′′ × q1)(q′′ × q2), giving

a factor ∼q2/Mx . Therefore, the contribution to the matrix
element of the first transition is smaller by the multiplicative
factor ∼q ∼ √

T Mx .
Therefore, by analogy with the kinematic scattering, we

keep in Mdyn
if only terms to the lowest power of q1, q2, and q.

Using sequentially Eqs. (C2), (C1), (2.7), and (3.1), we find

Mdyn
if (q1,q2,q,n) = − q1q2 Mkin

if (q1,q2,q,n)

q2 + q1q2 − q(q1 + q2)
. (3.7)

Both matrix elements Eqs. (3.3) and (3.7) are pertinent to the
scattering process shown in Fig. 1(a).

C. The relaxation rate

To calculate the spin-wave relaxation rate, one should know
the distribution Nq of spin excitons over the q wave numbers.
Although the exciton operators of Eq. (2.2) are nonbosonic,
the spin-excitons obey Bose statistics, because their number
in any state determined by a certain q may, in principle,
be macroscopically large. At any moment the spin-exciton
distribution is in quasiequilibrium and characterized by a
chemical potential μ < εZ. (The thermodynamic equilibrium
is established much faster than spin-flip processes occur.)
Initially, the total number of spin excitons Nx = ν ′Nφ/2 − S

is actually determined by a short external optical impulse, and
its value might be even more than the critical value

Nxc = Nφ

∫ ∞

q0

qdq

exp (Eq/T ) − 1

= NφMxT
[
q2

0

/
2MxT − ln

(
eq2

0 /2MxT − 1
)]

, (3.8)

where we have used the quadratic approximation of Eq. (1.3)
and designated as q0 a lowest limit of possible nonzero values
of q. Any violation of the translation symmetry contributes to
the estimation of q0. For example, in the ideally clean case
q0 ∼ 1/L, where L ∼ √

Nφ is the linear dimension of the 2D
system. A more realistic estimation can be made if one takes
into account the presence of a smooth random potential, then
q0 ∼ MxlB�/�, where � is the potential amplitude (� �
1/Mx), and � is the correlation length (� � lB).14 In practice
q0 � 0.01. IfNx > Nxc, then the bulk number of spin excitons
with nonzero but momenta |q| � q0 form a thermodynamic
condensate. The specific q distribution of excitons within the
condensate plays no role; however, we may write

Nq =
{

N
{0}
q , if q ∈ {0}

1/[exp (Eq/T ) − 1], if q /∈ {0} (3.9)

(q ∈ {0} means belonging to the thermodynamic condensate).
The number of the condensate excitons is, thus, Nx − Nxc =∑

q∈{0} N
{0}
q . During the spin-exciton relaxation process the

condensate is depleted, and when Nx < Nxc we have

Nq = 1/[exp (Eq + εZ − μ)/T − 1], (3.10)

with chemical potential equal to

μ = εZ + T ln

[
1 − exp

(
− Nx

NφMxT

)]
. (3.11)

[In the vicinity of εZ the value μ is determined with an
accuracy: |μ − εZ| � min(q2

0/2Mx, T ).] The μ = 0 equation
determines the equilibrium spin-exciton number: N (0)

x =
−NφMxT ln (1 − e−εZ/T ).

The spin-wave relaxation rate is defined as the difference
between the fluxes of annihilating and created spin excitons in
the phase space:

−dNx

dt
= 1

2

∑
q1,q2

S(q1,q2)
[
Nq1Nq2 (1 + N12)

−N12
(
1 + Nq1

)(
1 + Nq2

)]
, (3.12)

where N12 = 1/[e(Eq1 +Eq2 +εZ)/T − 1] if Nx > Nxc or N12 =
1/[e(Eq1 +Eq2 +2εZ−μ)/T − 1] if Nx < Nxc, and the summation
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over final-state values q is performed by calculating

S(q1,q2) = 2π

h̄

∑
n

∑
q

∣∣Mkin
if (q1,q2,q,n) + Mdyn

if (q1,q2,q,n)
∣∣2

δ(Eq − Eq1 − Eq2 − εZ)

= v2
0Mx

[
1 + F

(
q2

1 ,q2
2 ,φ,2MxεZ

)]
2πN 2

φh̄ν ′l4
B

∑
n

(
3

2
+ Mn

)(
5

2
− Mn

)
A2

n|χ (Zn)|4 = [
1 + F

(
q2

1 ,q2
2 ,φ,2Mxεx

)]
/Nφτhf,

(3.13)

where φ is the angle between q1 and q2,

F(x,y,φ,β) = xy cos2 φ (β + x + y)

[β2 + β(x + y) + xy cos2 φ]3/2
and

(3.14)

1

τhf
= 5v0Mx

(
A2

Ga + A2
As

)
2dh̄ν ′l2

B

(3.15)

[we have kept in F only terms nonvanishing after averaging
over the q1 and q2 directions when in Eq. (3.12)]. The
summation over n in Eq. (3.12) has been performed for the case
of unpolarized nuclei. In addition, the correlation length of the
spatial nuclear momenta distribution has been considered to be
smaller than the magnetic length lB and conventional width of
the two-dimensional electron gas: d = (

∫ |χ (z)|4dz)−1. (This
value is certainly not equal to the quantum well width dQW but
constitutes a fraction of it, e.g., d/dQW � 1/3.)

The rate −dNx/dt is completely determined by Eqs. (3.9)–
(3.15). In the following calculations we use the following: (i)
the kinematic and dynamic scattering fluxes simply add, as
independent contributions to the total rate; (ii) in the case
of T � εZ , the contribution to the rate due to the dynamic
scattering relaxation flux is negligibly small; the same result is
found if one of spin excitons in the initial state belongs to the
thermodynamic condensate (i.e., q1 or/and q2 ∈ {0}); and (iii)
S(q1,q2) does not depend on q1 and q2 for kinematic scattering
and the summation in Eq. (3.12) reduces to∑

q1,q2

[· · ·] = N 2
x −

∑
q1,q2

N12
(
1 + Nq1 + Nq2

)
. (3.16)

In the T � εZ region the spin-orbit relaxation chan-
nels are much more intense than the considered hyperfine
coupling channel (see the next sections), and both spin-
orbit and hyperfine coupling relaxation mechanisms com-
pete with each other only in the T � εZ case. There-
fore, we specifically study this situation. The dynamic
spin-exciton–spin-exciton scattering then is neglected, and
the spin-exciton creation term in Eq. (3.16) may be
presented as −∑

q1,q2
N12(· · ·) ≈ −e−μ/T

∑
q1,q2

Nq1Nq2 (1 +
Nq1 + Nq2 )/(1 + Nq1 )(1 + Nq2 ). In the μ � T case this term
is a negligible quantity compared toN 2

x . If we consider μ � T ,
then the term is equal to −NxN (0)

x . So, if T � εZ , then for any
relation between μ and T one finds that Eq. (3.12) reduces to

−dnx/dt = nx

[
nx − n(0)

x

]/
2τhf (T � εZ) (3.17)

[nx(t) = Nx(t)/Nφ and n(0)
x = N (0)

x /Nφ to note the spin-
exciton concentrations]. In fact, under the conditions consid-
ered, the observable relaxation process is completed while still

n(0)
x t/2τhf � 1, then

nx(t) = nx(0)

1 + nx(0)t/2τhf
. (3.18)

This law is independent of the temperature but depends on the
magnitude of the initial spin excitation nx(0). The effective
relaxation rate is ∼nx(0)/2τhf � 0.1/τhf (if one assumes that
nx(0) � 0.1).

D. Role of the interaction of spin excitons with acoustic phonons

In principle, the spin-exciton–phonon coupling mechanism
participates both in the spin-exciton–spin-exciton annihilation
scattering and in the single-spin-exciton one. However, in the
case of spin-exciton–spin-exciton scattering this relaxation
channel represents only a small correction to those studied
in the previous subsections, proportional to electron-lattice
coupling constants. Let us estimate the spin-exciton–phonon
relaxation governed by the single-exciton annihilation mech-
anism. We need to calculate the transition matrix element
Mx−ph between the state |ket〉 = |SE,q1〉 and some of final
states |bra〉 = P̂

†
k,s |NST,n〉 for the exciton-phonon operator

determined by Eqs. (2.15) and (2.18). Now the energy conser-
vation law reads Ex(q1) = h̄ck/ lB , where k = (kz,q). Mean-
while, the q = 0 phonons do not contribute to the relaxation
process, because action of the He−ph(0) operator in Eq. (2.18)
on the |SE,0〉 state is reduced to multiplication by a constant—
hence, Mx−ph ≡ 0 due to orthogonality of the |SE,q1〉 and
|NST,n〉 states. If q 	= 0, then the contribution to Mx−ph is
determined only by the first component of the ket state |SE,q1〉,
namely by commutators [He−ph(q),Q†

q1 ]|{M},0〉/√ν ′. The
latter according to Eq. (2.16) and commutation rules [Eq. (2.4)]
vanish in case q1 = 0 being proportional to q × q1 at small
q1. This issue is a key point: The matrix element squared
|Mx−ph(q1)|2 is proportional not only to the small constants of
the hyperfine coupling and electron-phonon coupling but also
to the temperature (more exactly, to the small dimensionless
parameter MxT ). As a result, making computations similar to
those made above, we finally obtain a relaxation rate linear
in nx : −d�nx/dt = �nx/τhf−ph [�nx to note the difference
nx − n(0)

x ], with the characteristic inverse time

1

τhf−ph
∼ ν ′v0M

3
x

(
A2

Ga + A2
As

)
εZT

h̄cl4
Bdp3

0τD

. (3.19)

(under the considered conditions predominantly the deforma-
tion part of the e-phonon coupling contributes to the result).
This value is much smaller than the inverse time given by the
formula in Eq. (3.15). Much more important is comparison
with another value governing also the single-spin-exciton
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relaxation process related to phonon emission: namely a
certain characteristic inverse time 1/τso−ph can be calculated in
the case where spin nonconservation instead of the hyperfine
coupling is determined by the spin-orbit coupling.20,21 It is
found that at any parameters 1/τso−ph is much larger than
1/τhf−ph (by two or three orders of magnitude). We conclude
that spin-exciton relaxation channels appearing due to the
hyperfine coupling together with electron-phonon coupling
are very slow and may always be neglected.

IV. THE SPIN-ORBIT RELAXATION CHANNELS

The spin-orbit relaxation channels, similarly to the hyper-
fine coupling mechanisms, may be subdivided into the two
spin-exciton scattering channels and the single-spin-exciton
ones. Among them there is a strong spin-exciton–spin-exciton
scattering process actually responsible for the spin-exciton
relaxation under the conditions of published experimental
studies,6,7 namely at T ∼ 1 K and B < 10 T. This is the
spin-exciton–spin-exciton dynamic scattering where the spin
flip is determined by the transition matrix element 〈fin|Ĥ ′

int|ini〉
calculated for the operator in Eq. (2.21) and states |ini〉 =
Q†

q1Q
†
q2 |0〉/ν ′ and |fin〉 = Q†

q|0〉/√ν ′. Being constrained by
energy E(q1) + E(q2) = E(q) and momentum conservation
q1 + q2 = q, this process occurs if q1q2 = εZMx ; i.e., the
phase volume of the scattered spin excitons is essentially
restricted. In particular, if the scattering spin excitons belong to
the thermodynamic condensate, this relaxation mechanism is
switched off. In fact, the dynamic relaxation channel works
well only when T � εZ , giving the relaxation time ∼ 10
ns.17,21,39 However, if T � εZ , the characteristic time is dras-
tically extended, as it is proportional to the double exponent
∼e2εZ/T (see Ref. 21). Therefore, studying exactly the T � εZ

case where the spin-orbit and hyperfine coupling relaxations
are competing, we consider that the spin-exciton–spin-exciton
kinematic processes provide more intense relaxation. In the
excitonic representation these are determined by operators of
Eqs. (2.22) and (2.23) that do not conserve the number of spin
excitons.

A. Relaxation via a smooth random potential

The spin-orbit relaxation channel in presence of a smooth
random potential is, again, governed by the kinetic equation
(3.12) with S(q1,q2) = (2π/h̄)

∑
q |Msrp

if (q1,q2,q)|2δ(Eq −
Eq1 − Eq2 − εZ), where Msrp

if = 〈fin|ϕ̂′|ini〉 and the initial and

final states are |ini〉 = Q†
q1Q

†
q2 |0〉/ν ′ and |fin〉 = Q†

q|0〉/√ν ′,
respectively. This matrix element corresponds to the elemen-
tary process shown in Fig. 1(b). Diagrams illustrating the
electron transitions are presented in Fig. 4. In the upper part of
the figure a vertical dotted arrow shows virtual promotion of
the electron from the initial state to the next Landau level with
spin flip. This vertical transition, mediated by the spin-orbit
coupling that conserves the spin-exciton momentum,35 forms
a virtual cyclotron magnetoplasmon [see the outlined arrow in
Fig. 1(b)]. Another transition occurs due to the smooth random
potential and results in annihilation of the virtually promoted
electron with hole of another exciton. The result is shown by
the dashed line arrow and in the lower part of the figure.

Ω

q
1

q
2

q

SRP

SO

Final state:

Initial state and transitions
due to the SO and SRP couplings:

FIG. 4. Diagrams illustrating transitions in the case of the
kinematic scattering mediated by the the spin-orbit (SO) couplings
and a smooth random potential (SRP). The final state is shown in the
lower part of the figure. (See the text for details.)

Taking into account that Eq1 ,Eq2 � εZ , the argument of
the δ function may be set by Eq − εZ , and, using Eq. (C1),
we obtain the squared matrix element |Msrp

if |2 = 2(u2 +
v2)|q∗ϕ(q∗)|2/ν ′N2

φ , where q∗ = √
2MxεZ , and the scattering

probability independent of q1 and q2: S = 1/Nφτ
srp
so .

The characteristic inverse relaxation time is

1/τ srp
so = 16π2(u2 + v2)M2

x εZK(q∗)/ν ′h̄ . (4.1)

Here K(q) stands for the Fourier component of the correlator.
If the latter represents a Gaussian function (see Sec. II D),
then K(q∗) = π�2 exp (−MxεZ�2/2l2

B).40 We note that it
depends exponentially on the magnetic field squared: ∼e−γB2

(the spin-exciton mass is assumed to be independent of B).
As mentioned earlier, this time is assumed to be much longer
than the times of thermalization and, therefore, determines
the relaxation while the irreversibility occurs due to the fast
thermalization. The relaxation rate can then be calculated as
in Sec. III C. Independently of whether the thermodynamic
condensate exists or not, the rate is governed by equation

−dnx/dt = nx

[
nx − n(0)

x

]/
2τ srp

so , (4.2)

differing from Eq. (3.17) only by the replacement of τhf with
τ

srp
so . Likewise, one obtains Eq. (3.18) by use of the same

substitution.

B. Electron-phonon coupling mechanism of the dissipation

We study in this subsection the spin-exciton–spin-exciton
scattering process, where there are two spin excitons in
the initial state and a single spin exciton plus an emitted
phonon in the final state. (For a discussion of single-spin-
exciton annihilation due to phonon emission; see comments
at the end of Sec. III D). In this case, the conservation laws
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read

q1 + q2 = q + qph and
(4.3)

E(q1) + E(q2) = E(q) + h̄c

√
k2
z + q2

ph.

Now the kinetic equation for annihilated and created spin
excitons is

−dNx

dt
= 1

2

∑
q1,q2,q

S(q1,q2,q)
[
Nq1Nq2 (1 + Nq + Nph)

−NqNph
(
1 + Nq1 + Nq2

)]
. (4.4)

Due to the T � εZ condition we can neglect values Eq1 and Eq2

in the E(q1) + E(q2) − E(q) − εph argument of the δ function
when calculating the scattering probability; therefore,

S(q1,q2,q) = 2π

h̄

∑
kz,qph,s

|Mx−ph(q1,q2,q,kz,qph,s)|2

× δ
(
εZ − Eq − h̄c

√
k2
z + q2

ph

)
. (4.5)

The matrix element is Mx−ph = 〈fin|Ĥe−ph|ini〉, where the
electron-phonon Hamiltonian is presented by Eqs. (2.15)–
(2.17) [with change from He−ph to H′

e−ph; see Eq. (2.22)]
and the bra and ket vectors are |fin〉 = P̂

†
kz,qph,s

Q†
q|0〉/√ν ′ and

|ini〉 = Q†
q1Q

†
q2 |0〉/ν ′, respectively.

Electron transitions for the Mx−ph matrix element are
illustrated in Fig. 5. As in Fig. 4, a vertical transition (vertical
dotted arrow) occurs due to the spin-orbit (SO) coupling,
resulting in a virtual cyclotron magnetoplasmon [see also
Fig. 1(c)]. Now the transition to a spin-exciton state (the
dashed-line arrow) is via the electron-phonon (e-ph) coupling
(the sloping dotted line). In the calculation we use Eq. (C1)
and, again, keep only terms ∼ν ′/Nφ contributing to the result

q

q
1

q
2

Ω

Initial state and transitions
due to the SO and e-ph 
couplings:

Final state:

phonon

phonon q
ph

SO

e-ph

FIG. 5. Electron transitions of the spin-orbit (SO) and electron-
phonon (e-ph) scattering. The e-ph coupling plays the same role as
the smooth random potential in Fig. 4. The emitted phonon is depicted
by a wavy arrow. Now conservation takes place for both energy and
momenta: see Eq. (4.3) of the text.

in the leading approximation. Finally, in the same spirit as
before, we obtain the relaxation rate (4.4) in the form

−dnx/dt = nx

[
nx − n(0)

x

]/
2τ e−ph

so , (4.6)

similarly to Eqs. (3.17) and (4.2). Now the temperature-
independent constant characterizing the rate is 41

1/τ e−ph
so = 4(u2 + v2)M2

x ε3
ZG

(
Mxc

2h̄2/εZl2
B

)
ν ′ch̄l2

Bp3
0τD

, (4.7)

where

G(ξ ) =
∫ x0(ξ )

0
dxx

√
(1 − x)2 − 2ξx

[x0 = 1 + ξ −
√

ξ 2 + 2ξ ]. In the derivation we have set
1/τA ≈ 1/τD , because estimates show that the contribution
of the deformation coupling dominates that of polarization
under the applicable conditions (cf. Sec. III D). Unlike the
characteristic value (4.1), which decreases exponentially with
the magnetic field, the inverse time (4.7) grows with B with
the power law ∼B3. This increase comes from the ε3

Z factor
in Eq. (4.7), which reflects the increased phase space available
from the emission of phonons at high fields.20

V. COMPARISON OF THE HYPERFINE COUPLING
AND SPIN-ORBIT RELAXATION CHANNELS

Summing up the right-hand sides of Eqs. (3.17), (4.2), and
(4.6), we find the total relaxation flux,

−dnx/dt = (
nx − n(0)

x

) [
nx

2

(
1

τhf
+ 1

τ
srp
so

+ 1

τ
e−ph
so

)]
. (5.1)

As the inverse relaxation time is, in fact, proportional to nx ,
we characterize the relaxation process at a substantial initial
excitation nx(0). The latter value experimentally is ∼0.1 and,
under the assumed conditions T � 0.1 K and B > 10 T (where
the equilibrium concentration n(0)

x < 10−4), one finds the law
nx(t) = nx(0)/[1 + nx(0)t/2τtot], where

1

τtot
= 1

τhf
+ 1

τ
srp
so

+ 1

τ
e−ph
so

. (5.2)

Estimates of the τ ...
... values are possible if we specify

material parameters included in formulas (3.15), (4.1), and
(4.7). Some of them have been already given in Secs. II B
and II C and in Appendixes A and B. In addition, we consider
c = 5 × 105 cm/s and εZ = 0.0255B meV. Other parameters
related to modern wide quantum-well structures could be
chosen as u2 + v2 = 10−3/B, � = 50 nm, � = 0.3 meV, and
d = 8.1 nm (here B is assumed to be measured in Teslas;
see also estimates in Ref. 17). However, the estimate of the
effective spin-exciton mass Mx strongly depends on the finite
thickness form factor. There are experimental data where Mx

is found at comparatively low magnetic fields: (i) 1/Mx ≈
1.2 meV at B = 2.27 T and ν = 1 in the 33-nm quantum
well16; (ii) 1/Mx ≈ 1.51 meV at B = 2.69 T and ν = 1 in
the 23-nm quantum well15; and (iii) 1/Mx ≈ 0.44 meV at
B = 2.9 T and ν = 1/3 in the 25-nm quantum well.11 For
these fields characterized by the inequality lB > d, the B

dependence should be approximately 1/Mx ∼ B1/2, but in
the lB < d strong-field regime the inverse mass grows much
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FIG. 6. Calculated inverse relaxation times as a function of
magnetic field B from formulas (3.15), (4.1), and (4.7) corresponding
to hyperfine, 1/τhf (solid line); spin-orbit with random potential,
1/τ

srp
so (dashed line); and spin-orbit with phonon emission, 1/τ

ph
so

(dash-dotted line), respectively. Specific material parameters are
given in the text. The bold solid line is the calculated combined
inverse time (5.2).

more weakly with B. Based on these data, the semiempiri-
cal analysis using characteristic GaAs/AlGaAs form factors
allows us to consider values 1/Mx � 2 meV at ν = 1 and
1/Mx � 0.7 meV at ν = 1/3 as the characteristic ones for
the 10T < B < 25 T range. (Note that at a given field B

the estimate M−1
x |ν<1 � ν ′M−1

x |ν=1 holds according to the
semiphenomenological theory.10)

Numerical values of the characteristic inverse relaxation
times are plotted in Fig. 6 as a function of the magnetic field.
We remark that actual times should be longer by a factor of
∼2/nx(0) ∼ 20–50 because of the nonexponential solution
of Eq. (5.2). The B dependence of the relaxation rate is
nonmonotonic. In the region 10 T < B < 30 T the relaxation
regime switches twice between the spin-orbit and hyperfine
coupling dominance, taking maxima �18 T and �12 T in the
ν = 1 and ν = 1/3 cases, respectively. The reason that the
hyperfine interaction becomes dominant is that for increasing
magnetic field the nuclei remain disordered, while the random
potential is effectively smoothed by the cyclotron motion. At

very high fields the spin-orbit interaction again dominates
because of the increasing phase space for the emission of
phonons. On the basis of these estimates we conclude that
the hyperfine coupling relaxation channel should be dominant
approximately from 16 to 29 T in the ν = 1 quantum Hall
ferromagnet and from 11 to 24 T for ν = 1/3. The latter case
would seem to be more accessible to the experimental study
of the hyperfine coupling relaxation mechanism, because the
usual electron concentrations in GaAs structures do not allow
one to attain fields stronger 10 T in the ν = 1 quantum Hall
system. We note a feature of the hyperfine coupling relaxation:
Its rate is vanishing in the case of spin-polarized nuclei. This
should distinguish the hyperfine coupling mechanism from
that of the spin orbit and provide a test of the theory. If the
nuclear spins could be fully polarized, then only spin-orbit
relaxation would be important and there should be crossover
between the regime limited by the random potential and the
very high field regime of phonon emission. We emphasize
also that our results should be valid in immediate vicinity of
1 or 1/3 fillings. Recent experiments show that if ν differs by
more than about 0.1 from these special values, one observes a
two-mode spectrum of spin excitations—above and below the
Zeeman gap.42 Interaction of these two types of spin waves
could considerably accelerate the relaxation.

In conclusion, we have reported on a new spin relax-
ation mechanism in a spin-polarized strongly correlated two-
dimensional electron gas that appears at low temperatures and
in strong magnetic fields. This mechanism is related only to the
hyperfine coupling with GaAs nuclei and no other interactions
are needed for this relaxation channel. The full calculation of
relaxation displays a competition of the hyperfine coupling and
spin-orbit relaxation processes, which can be summarized by
Eqs. (3.15), (4.1), and (4.7). Under the assumed conditions the
relaxation process occurs nonexponentially with time. The rate
does not depend on temperature but depends on the magnetic
field nonmonotonically as can be seen in Fig. 6, which is
plotted using estimated material and device parameters taken
from experiment. The estimate of the hyperfine relaxation
depends on the assumed randomness of the nuclear spins and
a test of the theory would be to polarize the nuclear spins.
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APPENDIX A: CALCULATION OF THE HYPERFINE
COUPLING PARAMETERS AGa AND AAs

We proceed from formula An = (16πμBμn/

3In)|u(Rn)|2,29,30 where μn is the nuclear magnetic
moment and u(Rn) is the conduction electron Bloch function
at the nucleus. u(R) is assumed to be normalized as∫ |u(R)|2d3R = 1, where the integration is performed within
the GaAs two atom unit cell having volume v0 = 45.2 Å3. It
seems to be the only estimations of |u(RGa)|2 and |u(RAs)|2
were done in Ref. 28 and subsequently cited by other authors
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(cf. Ref. 29). Using these and the μn values for As and, for
the Ga69 and Ga71 stable isotopes μAs = 1.44, μGa69 = 2.017,
and μGa71 = 2.56 (in units of the nuclear magneton
μN = 3.15 × 10−9 meV/G),43 we find AGa69 � 0.038 meV,
AGa71 � 0.049 meV, and AAs � 0.046 meV. The ratio of the
Ga69 and Ga71 amounts in the semiconductor is considered to
be equal to 3:2; therefore, the result is∑

within unit cell

A2
n = 0.6(AGa69 )2 + 0.4(AGa71 )2 + (AAs71 )2

≈ 4 × 10−3 meV2. (A1)

APPENDIX B: ACOUSTIC PHONON LIFE
TIMES τ l AND τ t

If we take x̂, ŷ, ẑ to be the directions of the principal crystal
axes, then for longitudinal phonons we obtain20,33

1

τl(k)
= 1

τD

+ 45p2
0

k8τP

q2
xq

2
yk

2
z , (B1)

where

τ−1
D = �2p3

0

2πh̄ρc2
, τ−1

P =
(

ee14

κ

)2 8πp0

5h̄ρc2
(B2)

(q and kz in this appendix are considered to have a common
dimension.) Transverse phonons in a cubic crystal do not
induce a deformation field.32 Actually, we need only the
inverse time 1/τt averaged over all directions of the transverse
phonon polarization. If the transverse phonon distribution
satisfies the condition that their polarizations are equiprob-
able, then for either of the two polarization the averaging
yields20,33

τt
−1 = 5p2

0

2k6τP

(
q2

xq
2
y + q2k2

z − 9q2
xq

2
yk

2
z

k2

)
. (B3)

We have used in Eqs. (B2) and (B3) common notations as
follows: � � 17.5 eV and e14 � −0.16 C/m2 are the relevant
deformation potential and piezoelectric constant of the GaAs
crystal, ρ ≈ 5.3 g/cm2 is the GaAs density, and κ ≈ 12.85 is
the dielectric constant. As a result, we find τD � 0.8 ps and
τP � 35 ps.

APPENDIX C

The four-Q-operator expectation value is calculated with
the help of Eq. (2.4),

〈0|Qq2
′Qq1

′Q†
q1
Q†

q2
| 0〉

= δq1+q2, q1
′+q2

′

[
eiφ

(
〈0|Aq2

′−q2A
†
q1−q1

′ |0〉 − ν ′

Nφ

)

+ e−iφ

(
〈0|Aq2

′−q1A
†
q2−q1

′ |0〉 − ν ′

Nφ

)]
, (C1)

where φ = (q1
′ × q1 + q2

′ × q2)z/2 and ν ′ is considered to
be equal to ν if ν � 1 or 1 if the filling factor is an integer.
In the important case of integer ν: 〈0|AqA†

q|0〉 = δq,0. Then,
if calculating the matrix element (3.2), the 〈0|A...A†

...|0〉 terms
do not contribute to the probability transition (1.4) due to
the energy conservation condition (3.1). This means that the
kinematic scattering would be determined only by the double-
commutation expectation value 〈fin|[[Ĥhf,Q†

q1 ],Q†
q2 ]|0〉, sim-

ilarly to the case of the dynamic scattering, cf. Eq. (3.6).
In Eq. (3.4) the action of the double-commutation term

leads to the state[[
Ĥint,Q†

q1

]
,Q†

q2

]|0〉 = 4

Nφ

∑
q′′

W (q ′′) sin

(
q′′ × q1

2

)

× sin

(
q′′ × q2

2

)
Qq1−q′′†Q†

q2+q′′ |0〉.
(C2)
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