
Selected for a Viewpoint in Physics

PHYSICAL REVIEW B 85, 045314 (2012)

Mapping between quantum dot and quantum well lasers: From conventional to spin lasers
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We explore similarities between the quantum wells and quantum dots used as optical gain media in
semiconductor lasers. We formulate a mapping procedure which allows a simpler, often analytical, description
of quantum well lasers to study more complex lasers based on quantum dots. The key observation in relating
the two classes of laser is that the influence of a finite capture time on the operation of quantum dot lasers can
be approximated well by a suitable choice of the gain compression factor in quantum well lasers. Our findings
are applied to the rate equations for both conventional (spin-unpolarized) and spin lasers in which spin-polarized
carriers are injected optically or electrically. We distinguish two types of mapping that pertain to the steady-state
and dynamical operation respectively and elucidate their limitations.
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I. INTRODUCTION

The importance of lasers typically reflects two aspects:
their practical use in a wide range of applications and their
highly controllable nonlinear coherent optical response.1–5 In
addressing the first aspect there is a systematic effort to reduce
the required injection for the onset of lasing. In semiconductor
lasers, this can be realized by fabricating structures of reduced
dimensionality, such as quantum wells, wires, and dots,6–8 or
by considering physical mechanisms that enhance stimulated
emission, such as polaritons or introduction of spin-polarized
carriers.9–12 In the second aspect, lasers also present valuable
model systems to elucidate connections to other cooperative
phenomena.5,13 As the injection or pumping of the lasers is
increased, there is a transition from incoherent to coherent
emitted light that can be described by the Landau theory of
second-order phase transitions.5 Moreover, the instabilities
found in lasers directly resemble instabilities found in elec-
tronic devices.14 Since some lasers provide highly accurate
and tunable parameters, further insights can be achieved by
establishing mapping procedures between such lasers and
other cooperative phenomena, such as ferromagnetism.5,13,14

In this work we explore similarities between the quantum
wells (QWs) and quantum dots (QDs) used as the gain material
in semiconductor lasers. On one hand, QW lasers have a
very transparent description, readily available at the textbook
level.1,2 On the other hand, while QD-based active regions
require a more complicated description, they also lead to
desirable operation properties, such as low threshold for lasing,
robust temperature performance, low chirp, and narrow gain
spectra.15,16 Therefore a mapping between QD- and QW-based
lasers has the potential to yield a simple description (as
used in QW lasers) to investigate a more complex and yet
technologically interesting systems (involving QDs).

To establish such a mapping we focus on two cases:
(i) conventional (spin-unpolarized) lasers, and (ii) spin lasers
in which the spin-polarized carriers are injected by circularly
polarized light or by electrical injection (using a magnetic
contact). Spin lasers can be described as a generalization
of conventional lasers: with spin-unpolarized injection, spin
lasers must reduce to conventional lasers.10,17–19 A further mo-
tivation to consider spin lasers in the current context is provided
by the recent experiments showing significant improvements

in QD lasers20–22 (including 100 K higher operation than in
their electrically injected QW-based counterparts12), which
were analyzed as if they were QW lasers.

A schematic description of the QW and QD semiconductor
laser is depicted in Fig. 1, representing the conduction band
(CB) diagram and several characteristic processes included
in our rate equation (RE) approach.17–19 With the usually
employed assumption of charge neutrality, the underlying
picture is simplified since holes need not be explicitly
considered for conventional QW lasers.17 The injection of
spin-polarized carriers leads to circular polarization of the
emitted light.23–27 Depicted carrier recombination (in both
QWs and QDs) is either spontaneous or stimulated, and a
sufficiently high injection leads to the onset of lasing when the
optical gain can overcome losses in the resonant cavity.

A more complex description of QD lasers includes several
additional processes and a two-dimensional QW-like wetting
layer (WL), which acts as a reservoir of carriers.28–30 Carriers
from the WL are captured to the QD or, conversely, they can
escape from QD to WL. To correctly describe the small density
of QD states, as well as saturation of the WL states at high
injection, it is important to include the Pauli blocking18,28–31

which impedes carrier transfer to states close to saturation.
The Pauli blocking is responsible for additional nonlinear
contributions to the QD REs and for a dark current (i.e., a
current that is not accompanied by any emission of light),
both of which are absent in our simpler description of QW
lasers.

To provide an intuitive picture of changes arising from the
spin-polarized injection, we develop here a bucket model of
spin lasers, compared in Fig. 2 with the well-known model
for conventional lasers.2 A simple analogy with the pumped
bucket illustrates on and off regimes in conventional lasers,
where the outgoing water represents the emitted light. At low
injection or pumping J , there is only negligible output light.
The operation of a laser is similar to that of a light emitting
diode (LED); the spontaneous recombination is responsible
for the emitted light. At higher injection, when the water
starts to gush out of the large slit in Fig. 2(a), the lasing
threshold is reached. At the threshold injection JT , stimulated
emission starts and the emitted light intensity increases
significantly. J > JT corresponds to lasing operation in which

045314-11098-0121/2012/85(4)/045314(13) ©2012 American Physical Society

http://link.aps.org/viewpoint-for/10.1103/PhysRevB.85.045314
http://dx.doi.org/10.1103/PhysRevB.85.045314


JEONGSU LEE et al. PHYSICAL REVIEW B 85, 045314 (2012)
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FIG. 1. (Color online) Conduction band (CB) diagram and char-
acteristic processes in semiconductor lasers. (a) Quantum well (QW)
laser. A preferential spin alignment of the injected carriers, leads,
through electron-hole recombination, to circularly polarized emitted
light (S± are the emitted photons with positive and negative helicity,
respectively). (b) Quantum dot (QD) laser contains an additional level
arising from the wetting layer (WL) as well as several more processes,
not present in QW lasers.

the stimulated recombination is the dominant mechanism of
light emission.

We next turn to the pictorial representation of a simple spin
laser. To model different projections of carrier spin or helicities
of light, it is convenient to think of an analogy with hot and cold
water, as shown in Fig. 2(b). The bucket is partitioned into two
halves, representing two spin populations, which are separately
filled with hot and cold water, respectively. The openings in
the partition allow mixing of hot and cold water, intended to
model the spin relaxation.24 With an unequal injection of hot
and cold water, injection spin polarization is defined as32

PJ = (J+ − J−)/J, (1)

where J± are the injections of the two spin projections
which together comprise the total injection J = J+ + J−. The
difference in the hot and cold water levels, � [see Fig. 2(b)],
leads to the three operating regimes and two different lasing
thresholds JT 1,2.17

At low pumping (when both hot and cold water levels are
below the large slit), both spin-up and spin-down carriers
are in the off (LED) regime, thus with negligible emission.
At higher pumping, the hot water reaches the large slit and
it gushes out as depicted in Fig. 2(b), while the amount of
cold water coming out is still negligible. Such a scenario
represents a regime in which the majority spin is lasing, while
the minority spin is still in the LED regime; thus the stimulated
emission is from recombination of majority spin carriers. Two
important consequences of this regime are already confirmed
experimentally: (i) A spin laser will start to lase at a smaller
total injection than a corresponding conventional laser (only
a part of the bucket needs to be filled). This represents the

(a) (b)

FIG. 2. (Color online) Bucket model of lasers. (a) Conventional
laser. Pump (injection) fills the bucket with small leaks (correspond-
ing to spontaneous recombination and the off regime with negligible
light emission) and a large slit from which, above sufficiently strong
pumping, the water will gush out (corresponding to stimulated
emission and the onset of lasing in the on regime). An additional
increase in pumping will lead to little change in the water level
(representing carrier density in a laser), but the output will increase
rapidly, as compared to the off regime. (b) Spin laser. Two halves of
the bucket, representing two spin populations (hot and cold water) are
separately filled. The partition between them is not perfect: openings
in the partition model the spin relaxation which mixes the two
populations. The difference between uneven water levels, denoted
by �, represents the spin imbalance in the laser. Here, in addition to
the on and off regimes, one can infer a regime where only hot water
will gush out. This represents the spin-filtering regime between two
different lasing thresholds: even a modest polarization of injection
leads to complete polarization of emission.

threshold reduction in spin lasers,10,12,17,33–35 which can be
parametrized as

r = 1 − JT 1/JT , (2)

where JT 1 is the majority spin threshold (JT 1 < JT ). (ii) Even
a modest injection polarization PJ � 1 can lead to highly
circularly polarized light.19,22 The relative width of this “spin-
filtering regime” can be expressed as the interval18

d = (JT 2 − JT 1)/JT , (3)

where JT 2 is the minority spin threshold (JT 1 < JT < JT 2)
and the width of this interval increases with the injection spin
polarization. J > JT 2 gives rise to minority helicity photons
from minority spin carriers, and the spin polarization of light
converges to −PJ with increasing injection,17,32 analogous to
the situation where both hot and cold water gush out.

Based on the intuitive pictures that we describe here, we
present the rate equations for QD and QW lasers in the
following section. Solution of the REs in the steady-state
and dynamic-operation regimes gives two possible approaches
to the mapping. In Sec. III, we focus on the steady-state
mapping while Sec. IV is dedicated to the dynamic mapping of
conventional lasers. We analyze the differences between these
two mapping methods in Sec. V because the two mappings are
not equivalent to each other. In Secs. VI and VII, we expand
the mappings to spin lasers. Finally, we summarize our work
and suggest possible directions for further research.
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II. RATE EQUATIONS

In this work we consider rate equations which have been
successfully used to describe both conventional and spin
lasers.1,2,10–12,17,20–22,29,30,36–42 An advantage of this approach
is its simplicity. REs can provide a direct relation between
material characteristics and device parameters,29 as well as
often allowing analytical solutions and an effective method
to elucidate many trends in the operation of lasers.1–3,17,19

For conventional QW lasers, we employ the widely used REs
(Ref. 1) for carrier and photon density, n and S, respectively
(generalized REs for spin lasers are given in Appendix A):

dn/dt = J − g(n,S)S − Rsp, (4)

dS/dt = �g(n,S)S + �βRsp − S/τph, (5)

where the charge neutrality was used to eliminate the REs for
holes. To describe stimulated emission, the optical gain term
is usually modeled as1

g(n,S) = g0(n − ntran)/(1 + εS), (6)

where g0 is the gain coefficient,12 ntran is the transparency
density at which the optical gain becomes zero, and ε is the
gain compression factor.1,43 The spontaneous recombination
Rsp can have various density dependences; here we focus on the
quadratic form1,17,44 Bn2, where B is a temperature-dependent
constant. � is the optical confinement factor, arising from
different volumes of the resonant cavity and the active region
of the lasers;1 β is the spontaneous emission factor (β → 0 is
an accurate approximation since typical experimental values
β ∼ 10−5–10−4 do not alter laser behavior significantly, but
slightly complicate the definition of threshold).17,19,45The pho-
ton lifetime τph reflects optical losses such as absorption in the
boundary media, photon scattering, and loss at the mirrors.46

To describe QD lasers, it is more appropriate to use occu-
pancies, rather than carrier and photon densities.29,30 The REs
describing the QD-based lasers [Fig. 1(b)] are more complex
than Eqs. (4) and (5), used for QW lasers. REs for QD spin
lasers are given in Appendix A. Here we explain their limiting
case for conventional lasers written in an abbreviated form,

dfw/dt = I − C + 2

κ
E − Rw, (7)

dfq/dt = κ

2
C − E − Rq − G, (8)

dfS/dt = �QDG + �QDβRq − fS/τph, (9)

where the indices w and q represent the WL and QD
regions, while the index S pertains to photons. The electron
occupancies (those for holes were eliminated using charge
neutrality and the assumption that the capture and escape
times for the electrons and holes are equal) 0 � fw,q � 1
are related to the corresponding number of electrons n̄w,q,

as fw = n̄w/Nw and fq = n̄q/(2Nq), where Nw is the
number of states in the WL and Nq is the number of QDs
[each dot contains a twofold- (spin-) degenerate level],
related by the ratio κ = Nw/Nq . Here, we use an overbar to
distinguish numbers from the corresponding densities used in
Eqs. (4)–(6). The photon occupancy fS = S̄/(2Nq), where S̄

is the number of cavity photons, does not have an upper bound.
The carrier injection and the capture from the WL to

the QDs are I = j (1 − fw) and C = fw(1 − fq)/τc, where

j is the number of carriers (electrons) injected into the
laser per WL state and unit time, while τc is the capture
time. An opposite process to the carrier capture is their
escape E = fq(1 − fw)/τe, where τe is the escape time. These
processes have a characteristic Pauli blocking factor (1 − f ),
absent in the analysis of QW lasers, as shown in Eqs. (4)
and (5). It is instructive to note the nonlinear form (in the
carrier occupancies) of the escape and capture terms E,C in
QDs. The absence of such nonlinearities in QW laser REs
provides another simplification in understanding QD lasers
through the mapping procedure, which allows their more
transparent description. Other processes depicted in Fig. 1(b)
are the spontaneous radiative recombinations Rη = bηf

2
η ,

where η = w,q. The charge neutrality implies that f 2
η actually

corresponds to the product of electron and hole occupancies.18

Coupling of carriers and light in Eqs. (8) and (9) is responsible
for stimulated emission, which can be described by

G = g(2fq − 1)fS, (10)

where g is independent of photon occupancies and does not
contain the gain compression factor ε, used in the QW lasers.
By using occupancies, rather than densities, for QD REs,
different volume factors are eliminated and there is no need to
introduce the optical confinement factor (�QD = 1), required
in Eq. (5). Finally, τph is analogous to the quantity already used
in Eq. (5).

III. STEADY-STATE MAPPING

Based on the REs described in Sec. II, we explore the
feasibility of mapping between QD and QW lasers. Our goal
is to approximate the solutions for the more complicated QD
laser REs by the solutions we obtain from solving REs for QW
lasers. To achieve the mapping, there are two requirements for
the mapped QW laser REs. First, the REs should be able to
estimate steady-state properties such as threshold and light
intensity with a reasonable accuracy. At the same time, the
dynamic response of lasers should also be presented by the
REs through various numerical or analytical methods such
as large- or small-signal analyses. In this section, as the first
step, we focus on the steady-state operation for which the QW
mapping parameters are extracted from the QD parameters
by solving Eqs. (4), (5), and (7)–(9) analytically, while the
constants τph and β are kept the same for QD and QW lasers.
This mapping corresponds to the situation in which the active
region comprised of QDs and WLs is considered as QWs,
while retaining the remaining geometry of the laser. Ideally,
the following equations should hold:

J = κ(Nq/V )j, (11)

n(J ) = (Nq/V )[2fq(j ) + κfw(j )], (12)

S(J ) = 2�(Nq/V )fS(j ), (13)

where Nq and κ were previously defined, V is the volume of
the active region, and J (j ) represents injection in the QW
(QD) laser REs. While Eq. (11) holds by definition, Eqs. (12)
and (13) cannot be satisfied for all j ’s. Therefore we impose
four matching points where the two solutions from QW and
QD laser REs should coincide:
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FIG. 3. (Color online) Carrier (n) and photon densities (S) as
functions of injection J . n and J are normalized to their threshold
values nT 0 and JT 0 for capture time τc = 0 (QD lasers) or gain
compression factor εs = 0 (QW lasers), while S is normalized to
ST 0 ≡ S(2JT 0). For QD lasers, solid and broken lines represent τc = 0
and 2 ps, while they represent εs = 0 and 1.62 × 10−14cm3 for QW
lasers. Note that QW laser characteristics for εs = 0 are identical to
QD laser characteristics for τc = 0. The mapping parameters used
throughout this paper are given in Table I.

(i) Transparency carrier density ntran=(Nq/V )[2fq(jtran) +
κfw(jtran)], where ntran = n(Jtran), and Jtran and jtran are the
injection values at transparency satisfying fq(jtran) = 1/2 [see
Eqs. (6) and (10)].

(ii) Threshold carrier density nT = ntran + 1/(�g0τph) =
(Nq/V )[2fq(jT ) + κfw(jT )] determines g0 (for QW lasers),
where jT is the injection (for QD lasers) at threshold.

(iii) Threshold current density JT = Bn2
T = κ(Nq/V )jT

determines B (for QW lasers), where jT is the QD laser
threshold injection current.

(iv) Photon density S = 2�(Nq/V )fS determines εs , where
the subscript s denotes that it was obtained in the steady-state
(static) case. At a fixed injection (J = αJT or j = αjT ), the
photon densities obtained from QD and QW laser REs are
made to coincide. In this paper, α = 10 is used.

Results of the above mapping are shown in the Fig. 3,
comparing the light-injection and carrier-density-injection
characteristics for QD and QW lasers for different τc’s. The
corresponding mapping parameters are given in Table I. In
the limit of τc → 0, the wetting layer is “transparent” to
carriers, since injected carriers are immediately captured into
QDs; therefore, within the RE description for εs = 0, QD and
QW lasers behave identically. In both cases, when τc = 0 or
εs = 0, the carrier density (black solid) is pinned (fixed) above
the threshold and the photon density increases linearly, as
expected.1,22

For finite τc (2 ps in Fig. 3) the carrier density is enhanced
and the photon density is suppressed. For n > nT the increase
in carrier density can be mostly attributed to WL occupancy,
which increases for τc > 0. Without any gain term in Eq. (7),

TABLE I. Mapping parameters. The QD parameters are τph =
2 ps, bqτph = 0.01, bwτph = 2.33, gτph = 2, κ=100 and τe=1 ns
(Refs. 29 and 47–49).

QW param. τc = 0 τc = 2 ps Unit

εs 0 1.62 × 10−14 cm3

εd (Ref. 50) 0 6.39 × 10−15 cm3

g0 1.90 ×10−3 1.65 ×10−3 cm3 s−1

ntran 3.50 × 1016 3.58 × 1016 cm−3

B 1.43 × 10−7 1.28 × 10−7 cm3 s−1

τph 2 ps
� 0.03
β 0

we can infer that the WL occupancy does not contribute
to stimulated emission. However, since the active region is
considered as comprised of QDs and the WL, we take into
account this “inefficiency” of the WL for light emission by
introducing εs in the QW laser model. The typical range of ε

experimentally obtained in QW lasers10,12 is ε ∼ 10−19–10−17.
In contrast, in our mapping we employ (Table I) a much larger
εs ∼ 10−14, which captures well the behavior of QD lasers, as
can be seen by comparison of the upper and lower panels in
Fig. 3. The analysis of Fig. 3 reveals that in a QD laser the effect
of finite τc (i.e., to increase n and suppress S with injection) is
similar to the influence of a finite gain compression factor εs in
a QW laser. This suggests that, in the steady state, by finding εs

as a function of τc, QD laser REs can be accurately replaced by
QW laser REs. It is also instructive to note that as τc becomes
longer in QD lasers, parasitic effects such as spectral hole
burning or phonon bottleneck will arise, and these nonlinear
effects are taken into account by introducing ε in QW laser
REs.

IV. DYNAMIC-OPERATION MAPPING

The mapping between QD and QW lasers works well in
the steady state, and the influence of finite τc, as shown in
Fig. 3, on light-injection and even carrier-density-injection
characteristics is accurately modeled by introducing a large
εs in the QW laser. However, the most useful properties of
lasers typically pertain to their dynamic operation, and it is
important to understand if in this case the mapping proposed
above is still relevant. To address this, we consider the standard
approach of small-signal analysis (SSA),1 and apply it to both
QD and QW lasers. We decompose the quantities of interest,
X, into a steady-state X0 and a (small) modulated part δX(t),
X = X0 + δX(t), and focus on the harmonic modulation
δX(t) = Re[ δX(ω)e−iωt ], where ω is the (angular) modulation
frequency. The response function, which characterizes the
dynamic operation including the laser bandwidth, an important
figure of merit, is given by

R(ω) = |δS(ω)/δJ (ω)| . (14)

It is convenient to consider the normalized frequency response
function1

∣∣∣∣R(ω)

R(0)

∣∣∣∣
QW

= ω2
R[(

ω2
R − ω2

)2 + ω2γ 2
]1/2 , (15)
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where ω2
R ≈ g0S0/[τph(1 + εS0)] is the relaxation oscillation

frequency, and γ is a damping factor.51,52 The functional form
of Eq. (15) is the same as for amplitude of a harmonically
driven damped harmonic oscillator.51 It is useful to express
the damping factor as

γ ≈ 2BnT + K
[
ω2

R/(2π )
]2

, (16)

where the K factor

K ≈ 4π2(τph + ε/g0) (17)

is an important characteristic parameter that determines the
high-speed operation limit of lasers. In the above equations,
we assume ε � g0/(2BnT ); the exact forms are given in
Appendix B.

The bandwidth of the laser, ω3dB (see Appendix B), is the
frequency at which the square of |R(ω)/R(0)| in Eq. (15) is
reduced by 3 dB. ω3dB and ωR are functions of the steady-state
injection J0, and they coincide for the maximum bandwidth
ωmax

3dB . Commonly, the peak position ω2
peak = ω2

R − γ 2/2 in the
response function is approximated as ωR (when ωR � γ , i.e.,
weak damping), while the bandwidth in QW lasers can be
related to ωpeak and ωR ,3,53

ω2
3dB = ω2

peak + (
ω4

peak + ω4
R

)1/2
. (18)

The maximum bandwidth is attained for ω2
R = γ 2/2 to give a

monotonic decrease of response function defined in Eq. (15).
For QD lasers the response function can be related to its QW
counterpart in Eq. (15), under the assumption of ω′

r � 1/τ ′
c,

where ω′
r (γQD) for a QD laser corresponds to ωR (γ ) for a

QW laser, and τ ′
c ≈ τc/(1 − fq0) is the effective capture time.

In this regime, often realized experimentally, we obtain (more
general expressions are given in Appendix B)∣∣∣∣R(ω)

R(0)

∣∣∣∣
QD

≈ (
1 + ω2τ ′2

c

)−1/2
∣∣∣∣R(ω)

R(0)

∣∣∣∣
QW

. (19)

Analogously to QW lasers, the bandwidth for QD lasers can
be obtained from the equation(

1 + ω2
3dBτ ′2

c

)[(
ω′2

r − ω2
3dB

)2 + ω2
3dBγ 2

QD

] = 2ω′4
r , (20)

which in the limit of τc → 0 recovers the QW behavior,
determined by Eq. (18). Our REs for the QD laser resemble
those for separate confinement heterostructure (SCH) lasers,54

except that for QD lasers it is important to consider the Pauli
exclusion principle. The Pauli factor, which appears in the form
of 1 − fη, not only reduces the steady-state photon density,
but also significantly suppresses the modulation response.
Similarly to the corresponding capture in SCH lasers,1 the
contribution of τc to the QD modulation response function
is responsible for low-frequency roll-off (i.e., negative slope
of the response). When τc is so large that the roll-off is
dominant, the maximum bandwidth attained is ∼1/τ ′

c. Our
results imply that to maximize the QD laser dynamic response,
the capture time should be sufficiently short, τc < 10 ps,
consistent with a previous study of QDs.55–59 As mentioned in
Sec. III, it is required that the mapped QW laser REs recover the
dynamics of QD lasers. While our goal is not to fully recover a
detailed dynamic response of QD lasers, we do require that
the maximum bandwidth ωmax

3dB , as the key figure of merit
characterizing dynamical operation, coincides for QD and QW
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FIG. 4. (Color online) Small-signal analysis for QD and QW
lasers, given by the square of the normalized frequency response
function. The solid line represents QD laser response (τc = 2 ps; see
Table I), while for QW lasers, the dashed and dotted lines correspond
to static and dynamic gain compression factors εs = 1.62 × 10−14

cm3 and εd = 6.39 × 10−15 cm3, respectively. The response for ε = 0
(dot-dashed), identical to the response of the QD laser for τc = 0, is
shown for comparison.

lasers. This can be achieved through a K factor that defines
the maximum frequency for QW lasers and depends on ε.
The mapping is then realized by following the same matching
procedure and conditions (i)–(iii) described in Sec. III, while
the previous condition (iv) is now replaced by the expression
for εd which reflects the matching of the maximum bandwidth
from Eq. (17),

εd ≈ g0
(√

2/ωmax
3dB − τph

)
, (21)

where the subscript d refers to the dynamical response with
the corresponding value which does not need to coincide with
the value obtained in the steady-state mapping, i.e., εs . The
maximum bandwidth ωmax

3dB is obtained from the QD laser REs;
Eq. (21) is valid for ωmax

3dB � 2BnT and εd � g0/(2BnT ).
Equation (21) gives a less than 3% error with τc = 2 ps,
compared to exact calculation [see Eq. (B7) in Appendix B];
however, for mapping over a wide range of τc, we used the
general expressions presented in Appendix B.

To examine differences between the two mapping proce-
dures, in Fig. 4 we compare the response function of a QD
laser to response functions calculated for QW lasers from
both steady-state and dynamical-response mapping at a given
injection (J0 = 1.9JT ). In the limit τc = 0, REs for QD lasers
reduce to REs for QW lasers with ε = 0. We see qualitative
similarities for finite ε and τc which are both detrimental and
cause bandwidth suppression. In small-signal analysis, the
calculated QW laser response function shows a wider spread
and different slope in the tail than the one for QD lasers. As
can be seen from Fig. 4, use of the gain compression factor
obtained from the steady-state mapping, εs , provides a poor
approximation to the response function for a QD laser. The
agreement is considerably better when a much smaller gain
compression factor from dynamical-operation mapping, εd , is
used instead. We see that the QD and QW response functions
are nearly indistinguishable up to ∼10 GHz (the maximum
bandwidths are matched for higher currents).

To assess the quality of the dynamic-operation mapping,
in Fig. 5 we show the injection dependence of the bandwidth
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FIG. 5. (Color online) Injection dependence of characteristic
frequencies obtained from small-signal analysis: Gray (orange) and
black lines show bandwidth (ω3dB) and peak frequency (ωpeak),
respectively. Solid and dashed lines represent QW and QD lasers,
respectively. The dotted line is the bandwidth of a mapped QW laser
for ε = 0.

ω3dB and the peak position ωpeak for the QD and QW lasers.
It is remarkable that the mapping, only intended to match
the maximum bandwidth between the QD and QW lasers,
yields a very good agreement for the bandwidth dependence
on injection. Both QD and QW cases reveal a nonmonotonic
behavior up to J ∼ 6JT 0. While Fig. 4 shows a very similar
peak position for QD and QW lasers, from Fig. 5 we can infer
that this occurs typically only close to the threshold injection.
The discontinuity of ωpeak for the QD laser (black solid curve)
is due to low-frequency roll-off. As a result of the interplay
of τ ′

c and ω′
r , shown in Eq. (20), ωpeak = 0 (analogous to

an overdamped harmonic oscillator51) only above injection
J0 ∼ 5.7JT .

V. STEADY-STATE VS DYNAMIC-OPERATION
GAIN COMPRESSION

In the preceding two sections we have formulated steady-
state and dynamic-operation mapping and showed that, with
the corresponding change in ε, there are considerable differ-
ences when it comes to small-signal analysis. We now examine
if these differences, between choice of εs and εd , also persist
in the steady-state regime. In Fig. 6 we consider light-injection
and carrier density-injection characteristics. The light intensity
at J = 10JT for QW laser dynamic mapping (εd ) is about
10% higher than for QD and QW laser steady-state mapping
(εs). The light intensity at J = 10JT is set to be the same for
QD and QW lasers with εs chosen according to the matching
condition (iv) in Sec. III. The carrier density of the QW lasers
is noticeably different from that of the QD laser. Typically
the relative differences in carrier density are more pronounced
than in the light intensity (see Fig. 6 inset). Since, generally,
εs > εd , a higher light intensity is maintained for εd at the
same injection by consuming more carriers in the active region
through stimulated recombination. Therefore, at J = 10JT ,
the carrier density of QW lasers with εd (gray solid) is about
30% lower than that of QW lasers with εs (black solid).

Recognition of the correspondence between the increasing
capture time in QD lasers and the increasing gain compression
factor in QW lasers was the basis for both the steady-state and
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FIG. 6. (Color online) Deviations of QD laser photon (�S) and
carrier (�n) densities from those obtained by mapped QW lasers with
εs (dotted) and εd (dashed). Black [gray (orange)] lines are deviations
in carrier (photon) densities (same scale as for �n/nT 0). Note that
10JT ≈ 10.23JT 0. Inset: Carrier and photon densities for QD and
QW lasers with εs and εd are shown by solid, dotted, and dashed
lines, respectively. Note the different vertical scales.

dynamic mapping. In the previous plots (see Figs. 3 and 4) we
focused on a modest capture time (τc = 2 ps). In Fig. 7, εs and
εd of mapped QW lasers are plotted as functions of capture
time of QD lasers, for different gain coefficients. These results
show that, when the two mappings are compared, εs is always
greater than εd , which leads to an excessive suppression of
dynamic response when the steady-state mapping of QD lasers
is implemented. While εs shows a monotonic increase with τc,
there is a nonmonotonic variation of εd . In particular, εd has a
local maximum at τc ∼ 30 (43) ps for gτph = 2 (5) and starts to
decline for large τc. This unexpected behavior of εd reflects a
rapid decrease of the mapped QW laser gain g0. The maximum
bandwidth ωmax

3dB of a QD laser decreases with increasing τc,
and in maintaining the same value of ωmax

3dB within QW laser
REs, εd and g0 play an important role. As τc grows, g0 and B

respectively decline and increase according to the conditions
(ii) and (iii) in Sec. III. Beyond τc ∼ 30 (43) ps, ωmax

3dB tends to
saturate to 2BnT , while the decrease of gain retains its rate. As
a result, εd has to stop rising and even starts to decrease with
τc to compensate for the rapidly diminishing gain, leading to
the maximum of εd in Fig. 7.
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FIG. 7. (Color online) Gain compression factors εs (dotted) and
εd (dashed), obtained from two different mapping procedures. Thick
(black) and thin [gray (green)] lines represent gτph = 2 and 5,
respectively, for τph = 2 ps.
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VI. MAPPING OF SPIN LASERS

Our preceding analysis of mapping was limited to the
absence of injected spin polarization (PJ = 0). The more
general case of spin lasers (PJ 
= 0) adds complexity to REs,
requiring four equations for QW and ten for QD lasers (see
Appendix A). For QDs, the added complexity prevents ana-
lytical solutions even in the steady state, making any attempt
at directly implementing the mapping for spin lasers more
challenging. On the other hand, this same complexity implies
that the prospect of studying QD spin lasers by considering a
simpler description for QW spin lasers will be more valuable
than in the conventional lasers. Moreover, important recent
experiments on QD-based spin lasers20–22 are described within
the formalism of QW spin-laser REs and it is not a priori
clear how accurate is such a procedure. Typically, these spin
lasers are realized in a Faraday geometry24 as vertical-cavity
surface-emitting lasers (VCSELs).45 The main difference
from commercially available VCSELs is the presence of
spin-polarized carriers, provided by pumping with circularly
polarized light or using magnetic contacts for electrical spin
injection.10–12,40,41,60–65

In spin lasers we consider spin-resolved quantities to model
different spin projections or helicities of light. The total
electron or hole density can be written as the sum of the
spin-up (+) and the spin-down (−) electron or hole densities,
n = n+ + n− and p = p+ + p−. Analogously, we write the
total photon density as the sum of the positive (+) and negative
(−) helicities, S = S+ + S−. A generalization of the optical
gain term in Eq. (6) for QW spin lasers can be expressed as

g±(n±,S±) = g0(n± + p± − ntran)/(1 + ε±
+S+ + ε±

−S−)
(22)

where g± is the spin-dependent gain which couples to the cor-
responding spin of carriers n±. The superscript of ε represents
the spin of coupled carriers, while the subscript represents
the corresponding helicity of photons. Due to the symmetry,
ε−
+ = ε+

− = εcross and ε+
+ = ε−

− = εself . The index cross (self)
implies a cross- (self-) compression mechanism of gain. Later
in this section (Fig. 9), we compare the self-compression
limit (εself = 2ε, εcross = 0) to the even-compression limit
(εself = εcross = ε). Each case recovers the spin-unpolarized
laser REs for PJ = 0.

To establish a connection between QD and QW spin
lasers, we reconsider our mapping procedure discussed above
for PJ = 0. We focus on the regime of a strong electron-
hole spin asymmetry, shown to lead to maximum threshold
reduction17,33 and desirable dynamical properties of spin
lasers,19 in which the spin relaxation time of holes is much
shorter than for the electrons. For example, in bulk GaAs
at room temperature the measured spin relaxation time of
holes is ∼100 fs,24 and of electrons it is ∼0.1–1 ns.66 In
spin lasers it is therefore customary to consider that holes are
spin unpolarized. Here, for simplicity, we also focus mostly
on the infinitely long spin relation times for electrons (in the
QW, WL, and QD regions). This limiting case can accurately
describe recent experiments,67,68 in which the spin relaxation
time for electrons is not only much longer than for holes, but
also much longer than the other characteristic time scales for
the carriers.
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FIG. 8. (Color online) Photon densities of the spin laser are shown
for injection PJ = 0.5. Solid, dashed, and dotted lines represent QD
and QW lasers with εd and εs (given in Table I), while gray and
black lines represent left (S−) and right (S+) circular polarization,
respectively. S and J are normalized to the values ST 0 and JT 0

for PJ = 0 and τc = 0 (ε = 0). Vertical lines indicate thresholds for
majority (JT 1) and minority (JT 2) spin carriers.

The light-injection characteristics obtained for mapping of
QD to QW spin lasers with self-compression are shown in
Fig. 8. Several key features of spin lasers that can already
be inferred from the bucket model in Fig. 2(b) are clearly
present. With PJ 
= 0 the thresholds for majority and minority
spin (JT 1 and JT 2) are different. Since JT 1 < JT < JT 2 there
is a threshold reduction r [recall Eq. (2)], as compared to
conventional lasers. Furthermore, for injection JT 1 < J < JT 2

there will be a spin-filtering effect [Eq. (3)]; even a modest
injection leads to fully polarized emitted light.19,22 Even
though our results have been based on parameters identical
to the ones used for conventional lasers (supplemented by the
vanishing hole and infinite electron spin relaxation times),
we retain a good agreement between QD and QW lasers,
especially near the two thresholds. For example, in Fig. 8
within dynamical mapping determined by εd , the emitted right
circular polarization S+ [black(blue) dashed line] is almost
indistinguishable for QD and QW lasers.

We further explore the mapping of spin lasers in Fig. 9; the
inset shows the evolution of majority and minority thresholds
with injection polarization, for both even and self-compression
of gain. There is an excellent agreement of JT 1 for all PJ ’s (the
three curves overlap) and a good agreement of JT 2 up to PJ ∼
0.6, which implies that, within practical injection polarization
of spin lasers realized at room temperatures, the proposed
mapping works well. From the dependence of JT 2 on PJ in
QD lasers we see that their behavior falls between those of the
QW approximations using self-compression only and even-
compression. The same trend, i.e., JT 2 of a QD being bounded
by the two limiting cases for the gain compression of QW
lasers, is also shown in the main panel as a function of τc

at fixed PJ . The threshold JT 2 in QW lasers disappears for
the even-compression approximation, as can be seen both in
the inset (PJ ≈ 0.83) and in the main panel (τc ≈ 10 ps). In
contrast, there is no disappearance of JT 2 for QW lasers with
self-compression. The high accuracy of JT 1 mapping is not
limited to the specific approximation of gain compression (it
is independent of ε) and persists for a wide parameter range
(in both PJ and τc). As a consequence, the threshold reduction
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FIG. 9. (Color online) First [gray (red)] and second [black (blue)]
thresholds as functions of capture time τc for PJ = 0.5. Solid
lines represent the QD spin laser, while dotted and dashed lines
correspond to QW spin lasers with self- and even-compression of
gain, respectively. For comparison, the threshold of a conventional
QD laser (PJ = 0) is shown by the dot-dashed line. Inset: The
thresholds as functions of injection polarization PJ for τc = 2 ps.

[Eq. (2)] of QD lasers is well approximated by mapping to QW
lasers. The spin-filtering regime, given by Eq. (3), is present in
both QD and QW lasers, but its dependence on JT 2 implies less
accuracy at higher values of PJ and τc, while the latter range
is experimentally less relevant. We note that in Fig. 9 only
εs is used for the calculation since the results are insensitive
to the difference between εs and εd . As mentioned above,
JT 1 is independent of ε, and the difference in JT 2 due to the
discrepancy between εs and εd is less than 2%.

VII. SMALL-SIGNAL ANALYSIS FOR SPIN LASERS

Motivated by the early steady-state experiments on spin
lasers, it was predicted that the observed threshold reduction
could also lead to desirable dynamic operation and the
bandwidth enhancement.19,70 Recent advances in electrical
and optical spin injection22,67–69,71–76 suggest versatile oppor-
tunities for the modulation of spin lasers. In previous work
on QW spin lasers we considered amplitude and polarization
modulation (AM,PM).19

AM for a steady-state polarization implies J+ 
= J− (unless
PJ = 0 when AM recovers its standard form for conventional
lasers),

AM: J = J0 + Re[ δJ (ω)e−iωt ], PJ = PJ0. (23)

As in the steady-state analysis, PJ 
= 0 leads to unequal
threshold currents JT 1 and JT 2, apparent already from the
bucket model in Fig. 2(b). Such a modulation can be contrasted
with PM, which also has J+ 
= J−, but J remains constant:77

PM: J = J0, PJ = PJ0 + Re[ δPJ (ω)e−iωt ]. (24)

It was recently shown that a similar PM scheme could
enable high-performance spin-communication schemes with
an effective information transfer rate that exceeds currently
available realizations by several orders of magnitude.78

We generalize the small-signal analysis outlined in Sec. IV
and compare our results for conventional lasers with those
for spin lasers, using εd and self-compression. The response
function can be generalized as R±(ω) = |δS∓(ω)/δJ±(ω)|
for spin lasers and it reduces to R(ω) for PJ0 = 0 (AM).
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FIG. 10. (Color online) The square of the normalized frequency
response function of QD (upper) and QW (lower) spin lasers. Solid,
dashed, and dotted lines represent amplitude modulation (AM) for
PJ0 = 0 and 0.5 and polarization modulation (PM) for PJ0 = 0.5,
respectively. Injection J0 is fixed at 1.9JT . Gray (green) lines
represent finite electron spin relaxation time τs = 200 ps for AM
(dotted) and PM (dashed), respectively.

In Fig. 10, we consider both AM and PM, choosing PJ =
0.5 and the injection JT 1 < J0 = 1.9JT < JT 2, which lies
in the spin-filtering regime. As in the previous studies of
QW spin lasers, we see that both AM and PM can lead
to enhanced bandwidth (ω3dB), as compared to conventional
lasers (birefringence in spin lasers could provide additional
paths to enhanced bandwidths40,41). The shape of the frequency
response of spin lasers in Fig. 10 is significantly modified
from what was previously obtained in Ref. 19 due to the large
εd . This is particularly pronounced for PM, which shows a
low-frequency roll-off. Despite the fact that the maximum ω3dB

for a spin laser is enhanced, the useful frequency range for PM
may be reduced due to the low-frequency roll-off before the
response peak. From Fig. 10 we see that the dynamic mapping
of spin lasers preserves qualitative features of the frequency
response, and thus insight into the QD spin lasers can be sought
from the much simpler QW REs.

VIII. CONCLUSIONS

We have formulated a systematic approach which allows
mapping of QD to QW lasers and thus reduces the complexity
of the QD laser description based on rate equations. The key
observation to establish this mapping is that the influence of
finite τc on the operation of QD lasers can be approximated
well by a suitable choice of the gain compression factor ε in
the simpler QW lasers.

However, the choice of how τc should be related to ε

is not unique; we find noticeable differences between the
mappings of either steady-state or dynamic operation of lasers,
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FIG. 11. Schematic representation of the mapping.

corresponding to the respective values of the gain compression
factors εs and εd . The mapping procedure, schematically
outlined in the Fig. 11, can be realized either analytically
or numerically. The steady-state mapping preserves well the
behavior of a QD laser near its threshold, for both conventional
and spin lasers. In the latter case, for an arbitrary injection spin
polarization, the majority threshold is particularly accurate,
further justifying the use of QW spin-lasers REs for threshold
reduction.10,12,17,18,33 When the dynamic-range mapping is
considered, we focus on preserving the maximum bandwidth
of QD and QW lasers, since their detailed behavior can display
considerable differences, including low-frequency roll-off in
the modulation response.79 Additional motivation for this
approach is that the bandwidth itself depends on the injection
level and therefore it would not be as useful as a quantity to
be matched in the mapping.

The growing interest in QD lasers and the increasing
number of materials used for the active region [such as
colloidal QDs (Refs. 80–83)] provides a further motivation to
construct a mapping discussed in this work. Since the mapping
is not limited to conventional lasers, it can also be used to
guide further developments of QD spin lasers. The presence
of QDs in the active region leads to reduced influence of the
spin-orbit coupling,66 resulting in a longer spin relaxation time
which improves lasing properties,giving a lower threshold and
enhanced bandwidth. Detailed knowledge of the structures
used in recent experiments on QD spin lasers20–22 would allow
us to apply the mapping outlined above and examine how
it is related to a description based on densities rather than
occupancies.22

Several assumptions of the present mapping could be
relaxed. To allow a more general RE description of QD
lasers, it might be possible to include explicitly a finite
gain compression factor into QD laser REs.84 The expected
change in the mapping procedure would be an appropriately
rescaled (enhanced) ε for QW lasers, playing the combined
role of the ε of the QD lasers and the finite τc. With further
studies of self- and even-compression mechanisms, it would be

possible to more accurately model the gain compression with
appropriately weighted contributions of the two mechanisms
(reflected in the matrix structure of ε±

± ). Future generalizations
of the mapping procedure could also consider finite spin
relaxation times of holes. While the spins of holes in bulk
GaAs at 300 K can very accurately be treated as being lost
instantaneously (approximately 3–4 orders of magnitude faster
than the spin of electrons),24 in QDs the asymmetry of spin
relaxation times for electrons and holes should be reduced.66

In a future work it would also be interesting to explore other
forms of mapping procedures that could establish similarities
between spin lasers and phase transitions in magnetic systems.
Such a consideration would generalize what is already known
for conventional lasers, linked to Ising ferromagnets,13,14 and
explain how the spin imbalance inherent to spin lasers can,
through suitable mapping, be related to a more complex
magnetic behavior.
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APPENDIX A

For QW spin lasers, the REs given by Eqs. (4) and (5) are
generalized as

dn±/dt = J± − g±(n±,S∓)S∓ − R±
sp ∓ F,

(A1)
dS∓/dt = �g±(n±,S∓)S∓ + �βR±

sp − S∓/τph,

where the + (−) subscript (superscript) represents the cor-
responding electron spin (photon helicity). In Eq. (A1) an
additional term, vanishing for PJ = 0 in conventional lasers,
corresponds to spin relaxation F = (n± − n∓)/τs , where τs

represents the electron spin relaxation time τsn. Spontaneous
recombination is written as R±

sp = 2Bn±p±. The instantaneous
hole spin relaxation τsp → 0 allows us to write the hole
density in terms of electron densities as p+ = p− = p/2 =
(n+ + n−)/2, which results in R±

sp = Bn±(n+ + n−), with the
assumption of charge neutrality.

An important difference between QW and QD spin-laser
REs is that only QD spin-laser REs have explicit terms for hole
occupancies. In QW spin lasers, hole densities can be easily
replaced by electron densities as discussed above (τsp → 0).
However, for QDs, unlike QWs, the ultrafast spin relaxation
time for holes (τspw,τspq → 0) does not lift the explicit hole
density dependence of QD REs. This makes it more difficult
to analytically study QD spin lasers even in the steady state. A
generalization of the QD Eqs. (7)–(9) for spin lasers is

dfwα±/dt = Iα± − Cα± + 2

κα

Eα± − Rw± ∓ Fwα,

dfqα±/dt = κα

2
Cα± − Eα± − Rq± − G± ∓ Fqα, (A2)

dfS∓/dt = G± + βRq± − fS∓/τph,

where α = n,p denotes electrons and holes, respectively.
I , C, E, G, and R represent injection, capture, escape,
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FIG. 12. (Color online) Processes in QD spin lasers described
by Eqs. (A2). QD (WL) represents the level for the quantum dot
(wetting layer). The upper two levels are for electrons and the lower
levels represent levels for holes. The thick vertical arrows show the
carrier spin filled for electrons, empty for holes. The thin arrows
depict carrier injection I , capture C, escape E, spin relaxation F , and
stimulated G and spontaneous R recombination in QDs and QWs
(thickness indicates relative rates). The subscripts n and p represent
the electron and hole contributions, respectively. Wavy arrows depict
photon emission.

and stimulated and spontaneous emission, respectively, as
in unpolarized REs, while F represents spin relaxation. The
level scheme of a QD spin laser is shown in Fig. 12. Since
the occupancies satisfy 0 � f(w,q) � 1, the spin-polarized
occupancies are defined as fwα± = n̄wα±/(Nwα/2), fqα± =
n̄wα±/Nq , and fS± = S±/Nq , which are different by a factor
of 2 from Eqs. (7)–(9). The carrier injection, capture, and es-
cape are Iα± = jα±(1 − fwα±), Cα± = fwα±(1 − fqα±)/τcα ,
and Eα± = fqα±(1 − fwα±)/τeα , where the injection jα± =
(1 ± pjα)jα can be expressed via the corresponding spin
polarization pjα = (jα+ − jα−)/(jα+ + jα−). The stimulated
and spontaneous emission are G± = g(fqn± + fqp± − 1)fS±
and Rη± = bηfηn±fηp±, respectively, where η = w,q, and
bη is the recombination rate. The spin relaxation term is
Fηα = (fηα+ − fηα−)/τsαη, where τsαη is the spin relaxation
time. In this paper, we assume τcα = τc, τeα = τe, τspη = 0,
τsnη = τs , β = 0, jα = j , and pjα = PJ .

APPENDIX B

A linearization of the QW laser REs Eqs. (4) and (5), under
a small modulation, leads to the equations for small-signal
analysis,1 [

A1 − iω A2

−A3 A4 − iω

] [
δn

δS

]
=

[
δJ

0

]
, (B1)

where the positive matrix elements A1, A2, A3, and A4 are
defined as

A1 = 2Bn0 + g0

1 + εS0
S0, A2 = g0(n0 − ntran)

(1 + εS0)2
,

A3 = �g0(n0 − ntran)S0

(1 + εS0)
, A4 = 1

τph
− �g0(n0 − ntran)

(1 + εS0)2
,

(B2)

expressed in terms of the quantities introduced in discussion of
Eqs. (4) and (5), as well as their steady-state solutions n0 and S0

at J = J0. We can obtain the normalized frequency response
function as defined in Eq. (15) with relaxation oscillation
frequency ωR and damping factor γ , given by

ω2
R = g0S0

τph(1 + ε S0)
(1 + 2Bn0ε/g0) (B3)

and

γ = 2Bn0 + K
[
ω2

R/(2π )
]2

, (B4)

where K = (τph + ε/g0)/(1 + 2Bn0ε/g0) is the more precise
definition of K factor without approximations. A widely used
approximation above the threshold, 2Bn0 ≈ 2BnT ,1 can also
be accurately applied for our mapping [Eqs. (B2)–(B4)].
On the other hand, the term 2Bn0ε/g0 in Eq. (B3) is
often ignored,1 but has to be retained for our purposes of
implementing a mapping with εs,d , several orders of magnitude
greater than the typical compression factors in QW lasers. We
therefore use an exact expression for ωR and K with finite
ε (while considering β = 0 limit). The bandwidth ω3dB (a
function of injection through ωR) is defined as a frequency that
reduces the normalized response function to 1/

√
2, determined

by the equation

(
ω2

R − ω2
3dB

)2 + ω2
3dBγ 2 = 2 ω4

R, (B5)

which yields Eq. (18) as its the solution. ω3dB is a maximum
when the denominator of the normalized response function
[Eq. (15)] monotonically increases under the condition

ω2
R − γ 2/2 = 0. (B6)

The bandwidth coincides with ωR [Eq. (18)] when the
condition of Eq. (B6) is satisfied, which can be written as

ωmax
3dB =

[
2B n0 + K

(
ωmax

3dB

2π

)2 ]/√
2, (B7)

and we can find the K factor as a function of the maximum
bandwidth. For the dynamic mapping, we substitute for ωmax

3dB
the maximum bandwidth obtained from the QD laser REs.
Once the K factor is found, its definition leads us to εd . With the
approximations ωmax

3dB � 2Bn0 and 2Bn0ε/g0 � 1, Eq. (B7)
recovers Eq. (21).

One can implement a similar SSA for QD laser REs.
However, the Pauli blocking terms with the existence of the
WL increase the complexity so that the corresponding response
function has a less transparent form. For β = 0, the SSA
equations are

⎡
⎢⎣

a1 − iω −a2 0

−a3 a4 − iω a5

0 0 −a6 − iω

⎤
⎥⎦

⎡
⎢⎣

δfw

δfq

δfS

⎤
⎥⎦ =

⎡
⎢⎣

a7δj

0

0

⎤
⎥⎦ , (B8)
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where ai, i = 1, . . . ,7, are positive and defined as

a1 = j0 + 1 − fq0

τc

+ 2

κ

fq0

τe

+ 2bwfw0,

a2 = fw0

τc

+ 2

κ

1 − fw0

τe

,

a3 = κ

2

1 − fq0

τc

+ fq0

τe

, (B9)

a4 = κ

2

fw0

τc

+ 1 − fw0

τe

+ 2bqfq0 + 2gfS0,

a5 = 1

τph
, a6 = 2gfS0,

a7 = 1 − fw0,

in terms of various occupancies and time scales, already
introduced in the description of Eqs. (7)–(9). The subscript
0 represents steady-state solutions. By solving Eq. (B8), we
obtain the response function for QD lasers

∣∣∣∣R(ω)

R(0)

∣∣∣∣
QD

=
∣∣∣∣ a1a5a6

a1a5a6 − iω(a1a4 − a2a3 + a5a6) − ω2(a1 + a4) + iω3

∣∣∣∣
(B10)

=
∣∣∣∣∣

ω2
r

(1 − iωτ ′
c)

[
ω2

r − iω
(
c2 + c3

c4/c1

1−iωτ ′
c

) − ω2
(
1 + c4/c1

1−iωτ ′
c

)]
∣∣∣∣∣

(B11)

≈ ω′2
r(

1 + ω2τ ′2
c

)1/2[(
ω′2

r − ω2
)2 + ω2γ 2

QD

]1/2 , (B12)

where τ ′
c = 1/a1, ω2

r = a5a6, c1 = τca1, c2 = a4 − (κ/2)a2,
c3 = a1 − (2/κ)a3, and c4 = (κ/2)τca2. When τ ′

c � 1/ω′
r ,

we can approximate Eq. (B11) as Eq. (B12), where ω′2
r =

ω2
r /(1 + c4/c1) and γQD = (c2 + c3c4/c1)/(1 + c4/c1), anal-

ogous to the same approximation in separate confinement

heterostructure lasers.54 Then, bandwidth can be also easily
obtained from Eq. (20). However, since τc used in the mapping
lies in a wider range, we employed a more general form of
response function in Eq. (B11) to find the bandwidth and study
the dynamic response of QD lasers.

Within the parameter space used in this paper, several
parameters from Eq. (B9) can be approximated as

a1 ≈ 1 − fq0

τc

+ 2bwfw0,

a2 ≈ fw0

τc

, a3 ≈ κ

2

1 − fq0

τc

, (B13)

a4 ≈ κ

2

fw0

τe

+ 2bqfq0 + 2gfS0, a7 ≈ 1.

While in this work we have focused on quadratic recom-
bination (quadratic in the carrier density), this consideration
can be easily generalized.17 For linear recombination, the
recombination time τr in QW lasers is converted to a quadratic
recombination rate B such that the magnitude of the lasing
threshold is preserved,

JT = nT /τr = Bn2
T , (B14)

where nT = ntran + 1/�g0τph and the subscript T represents
threshold. Using the above equality, one can convert τr to B,
or vice versa.

Analogously to Eq. (14), the recombination rates bq and
bw that respectively arise in the WL and QD regions can be
calculated from the corresponding time constants τrq and τrw

for an unchanged threshold. We first find bq as a function of τrq

by assuming τrw = 0, and then bw is calculated from τrw 
= 0.
Therefore, the conversion equations in QD lasers are obtained
that preserve the threshold:

bqτrq = 2gτph

1 + gτph
,

(B15)

bw τrw = τrq[2τc(1 + gτph) + κτe(gτph − 1)]

2τc(gτph + 1)(τe + τrq)
.
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