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The conductance of domain wall structures consisting of either stripes or cylindrical domains in multiaxial
ferroelectric-semiconductors is analyzed. The effects of the flexoelectric coupling, domain size, wall tilt, and
curvature on charge accumulation are analyzed using the Landau-Ginsburg Devonshire theory for polarization
vector combined with the Poisson equation for charge distributions. The proximity and size effect of the electron
and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast
to thick domain stripes and wider cylindrical domains, in which the carrier accumulation (and so the static
conductivity) sharply increases at the domain walls only, small nanodomains of radii less than 5–10 correlation
lengths appeared conducting across the entire cross-section. Implications of such conductive nanosized channels
may be promising for nanoelectronics.
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I. INTRODUCTION

Ferroelectric domain walls (DW) were recently shown
to act as conductive channels in ferroelectric-dielectrics
and ferroelectric-semiconductors even at room temperature,
providing experimental counterparts to decade-old theoreti-
cal predictions.1 Experimental results in materials such as
BiFeO3,2,3 Pb(Zr,Ti)O3,4 SbSI,5 and LiNbO3 doped with
MgO,6 all enabled by the development of scanning probe
microscopy techniques capable of probing the conductance
on the nanoscale, suggest the universality of this behavior.
These results present an obvious interest for fundamental
studies of ferroics and low-dimensional systems, as well
as offer new possibilities for oxide nanoelectronics due to
nanoscale dimensions of conducting entities and the possibility
to control their spatial location by external fields.4 However,
for a given ferroelectric material, the wall conductivity should
depend on the wall tilt, local strains (due to electrostriction),
and proximity effects. These factors, in turn, determine the
possibility for multilevel storage, device size, and integration
into solid-state devices. Thus the understanding of the role
of these effects on wall conductivity is a required first
step in analyzing the feasibility of a controllable rewritable
conductive nanosized channel design in otherwise insulating
ferroelectrics.

A. Historical overview

Below we summarize the existing literature on the DW
conductance in uniaxial ferroelectrics, wall structure in mul-
tiaxial ferroics, and mechanisms of coupling between order
parameters and strain, which are relevant to the analysis of the
wall conductance.

1. Wall conductance in uniaxial ferroelectrics

Recent reviews of up-to-date theoretical achievements in
the field of domain structures in ferroics could be found in
many textbooks (see e.g., Refs. 7 and 8). Briefly, the consistent
studies of ferroelectric DW began with the seminal papers of
Zhirnov,9 and Cao and Cross,10 who considered 180 and 90◦

DWs, taking into account electrostriction coupling between
the spontaneous polarization and strain but considering only
electroneutral DW. The case of rhombohedral symmetry is
considered in Ref. 11. Note that the orientation of 180◦ DW is
determined by electrostatics, although orientation of 90◦ twin
DW is mainly governed by the strain compatibility.9,10,12

Earlier results on domains in uniaxial ferroelectric-
semiconductors are summarized in Ref. 13, and recent studies
in Refs. 14 and 15 are devoted to the perpendicular (or
“counter”) and inclined DW, respectively. The static conduc-
tivity of DWs with different incline angle with respect to the
spontaneous polarization vector was calculated numerically
in the uniaxial ferroelectrics-semiconductors of n-type.15

Unexpectedly, the static conductivity drastically increases at
the inclined head-to-head wall by an order of magnitude
for small incline angles and by three orders of magnitude
for the perpendicular DW due to strong accumulation of
compensating free charges.

At the same time the study of DW structure and conductance
in multiaxial ferroelectrics is much more complicated, because
there are several components of the order parameter, which
should be mixed at the DW through strain, biquadratic
coupling term, and flexoelectric effect as discussed below.

2. Wall structure in multiaxial ferroics

For multiaxial ferroics with multicomponent order param-
eters, analysis of polarization structure at the DW necessitates
taking into account the relevant coupling between order
parameter components (e.g., for the boundary between 90◦
DWs or some type of 180◦ DWs in incipient ferroelectrics16),
mediated by stress accommodation or gradient coupling. For
instance, the biquadratic coupling term for two order pa-
rameters, also known as Houchmandzadeh-Lajzerowicz-Salje
coupling,17 was introduced to describe the coupling between
polarization and a structural order parameter [see Ref. 18
for typical case of PbZr0.2Ti0.8O3 (PZT)]. This coupling
can lead to the appearance of polarization on structural
domains (twins); however, the conditions of such manifes-
tations are usually very strict.16 The situation is similar for
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ferromagnetics-ferroelectrics, where a local magnetic moment
is possible at the ferroelectric DW due to either biquadratic19

or inhomogeneous coupling.20,21

Despite the very early attempts to describe polarization
behavior in multicomponent ferroics,9,10,22 the progress toward
the understanding of their DW structure appears to be very
limited. Only recently Hlinka and Márton23 calculated numer-
ically the structure of twin boundaries in tetragonal perovskite
crystal BaTiO3 in the framework of the phenomenological
Landau-Ginsburg Devonshire (LGD) model. They found that
the polarization component normal to the DW demonstrates a
weak deviation from constant distribution, in contrast to the
previous studies of Zhirnov9 and Cao and Cross.10 This leads
to the appearance of an internal electric field and thus to a
potential step near the DW, which is consistent with ab initio
calculations.24 Ferroelectric DWs resembling Neel walls in
ferromagnetics were predicted in thin ferroelectric films25 and
incipient ferroelectrics.16,26

3. Flexoelectric effect on DW structure

It should be noted that none of the previous theoretical
studies predict the normal component of polarization at the
nominally neutral 180◦ DWs in the bulk ferroelectrics. At
the same time the flexoelectric coupling can break the wall
symmetry and induce the normal component of polarization
along 180◦ DW.4 Flexoelectric effect describes the coupling
of polarization with strain gradient and polarization gradient
with the strain.27–29 It was first predicted by Mashkevich and
Tolpygo.30 Subsequently, a number of theoretical studies of the
flexoelectric effect in conventional31–38 and incipient39 ferro-
electrics have been performed. Experimental measurements of
the flexoelectric tensor components were recently carried out
by Ma and Cross40–42 and Zubko et al.43 Recently a very high
value of flexoelectric coupling coefficient was reported44 for a
polar phase of polyvinylidene fluoride films.

It is generally believed that the main consequence of the
flexoelectric coupling is the renormalization of the polarization
gradient energy (see e.g., Refs. 16, 31, and 37). In addition,
some unusual coupling terms originated from the flexoelectric
effect in nanosystems.37,45 Notably, the flexoelectric coupling
could not be ignored in the presence of inhomogeneous strains
and stress and hence becomes relevant in the vicinity of the
surfaces, interfaces and DWs.

Here we explore the polarization structure and transport
behavior at the DWs in the multiaxial ferroelectrics like
BiFeO3 and Pb(Zr,Ti)O3 determined by the interplay of the
strong flexoelectric coupling between polarization compo-
nents and inhomogeneous elastic strains along the walls.
The paper is organized as follows. Basic equations are listed
and discussed in Sec. II. The impact of flexoelectric coupling
and tilt angle on the polarization vector, potential, electric
field, and carrier redistribution across the stripe domains

is analyzed in Sec. III A. The impact of the flexoelectric
coupling, proximity, and finite size effect on the polarization
vector, potential, electric field, and carrier redistribution across
the thin stripes and cylindrical nanodomains is analyzed in
Secs. III B and III C, correspondingly. Sec. IV is a brief
summary.

II. BASIC EQUATIONS

Here we analyze the space charge accumulation by various
ferroelectric DWs using LGD formalism. The free-energy
density is

G = �Gb + �Gelast + �Gstrict + �Gflexo − Pi

Ed
i

2

+ gijkl

2

∂Pi

∂xj

∂Pk

∂xl

. (1)

Pi (i = 1-3) are the ferroelectric polarization vector com-
ponents. Ed

i = −∂ϕ/∂xi are the components of the depo-
larization field that is caused by imperfect screening of
the inhomogeneous polarization distribution with div(P) �= 0.
Note that only the symmetrical part of the matrix (∂Pi/∂xj )
contributes to the gradient energy of the bulk system.23

Below we consider the systems with parent high-
temperature phase of m3m symmetry (e.g., for tetragonal,
orthorhombic, and rhombohedral low-temperature ferroic
phases). The Voigt notations will be used hereinafter for
all those pairs of tensorial indexes, for which the tensor is
symmetric with respect to their permutation. In Voigt notations
1 = 11, 2 = 22, 3 = 33, 4 = 23, 5 = 13, and 6 = 12. In particular,
only the components g11, g12, and g44 matter for the systems
with m3m symmetry.23

The polarization-dependent density �Gb can be written as a
Taylor series expansion of the polarization components Pi as10
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(
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(
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)
. (2)

Here ai ,aij , and aijk are the dielectric stiffness and
higher-order stiffness coefficients at constant stress written in
the Voigt notations. The elastic energy in Eq. (1) is

�Gelast =− 1
2 s11

(
σ 2

1 + σ 2
2 + σ 2

3

) − s12(σ1σ2 + σ2σ3 + σ3σ1)

− 1
2 s44

(
σ 2

4 + σ 2
5 + σ 2

6

)
. (3)

Here σi are the stress tensor components; sij are the elastic
compliances at constant polarization written in the Voigt
notations.

The coupling energy between polarization and strain
�Gstrict is proportional to electrostriction coefficients

�Gstrict =
(

−Q11
(
σ1P1

2 + σ2P2
2 + σ3P3

2
) − Q44(σ4P2P3 + σ5P3P1 + σ6P1P2)

−Q12
(
σ1

(
P 2

2 + P 2
3

) + σ2
(
P 2

3 + P 2
1

) + σ3
(
P 2

1 + P 2
2

))
)

, (4)

where Qij is the electrostriction strain tensor written in the Voigt notations.
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The short form of the flexoelectric coupling contribution for a bulk material is16

�Gflexo = F11

(
σ1

∂P1
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+ σ2
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∂x3

)
+ F12
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∂x3
+ σ3

∂P2
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(
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+ σ4

∂P2

∂x3
+ σ5

∂P1

∂x3
+ σ5

∂P3

∂x1
+ σ6

∂P2

∂x1
+ σ6

∂P1

∂x2

)
. (5)

The flexoelectric effect tensor is denoted as Fik . The full form
of Eq. (5) valid for both finite systems and bulk materials
is rather cumbersome [see Eq. (A1) in Appendix A of
Supplemental Material.46]

The electrostatic potential, ϕ, satisfies the Poisson equation

ε0εb�ϕ = div(P) − e(N+
d (ϕ) + p(ϕ) − n(ϕ) − N−

a ). (6)

Here � is the Laplace operator; the charges are in the units
of electron charge e = 1.60 × 10−19 C, ε0 = 8.850 ×
10−12 F/m is the universal dielectric constant, and εb is the
background dielectric permittivity of the material (unrelated
with the soft mode) that is typically much smaller than the
ferroelectric permittivity ε

f

ij related with the soft mode. Note
that the ferroelectric permittivity is already included in Eq. (6)
from the term div(P), when ferroelectric polarization can be
approximated as expansion Pi = P S

i + ε
f

ijEj + ....
Ionized deep acceptors with field-independent concentra-

tion N−
a play the role of a background charge. The equilibrium

concentrations of ionized shallow donors N+
d (e.g., vacancies)

and free electrons n and holes p are

N+
d (ϕ) = Nd0(1 − f (Ed − EF − eϕ)), (7a)

p (ϕ) =
∫ ∞

0
dε · gp(ε)f (ε − EV + EF + eϕ), (7b)

n (ϕ) =
∫ ∞

0
dε · gn(ε)f (ε + EC − EF − eϕ). (7c)

Where Nd0 is the concentration of donors, f (x) =
{1 + exp(x/kBT )}−1 is the Fermi-Dirac distribution function,
kB = 1.38070 × 10−23 J/K, and T is the absolute temperature.
EF is the Fermi level, Ed is the donor level, EC is the bottom
of conductive band, and EV is the top of the valence band
(all energies are defined with respect to the vacuum level).
The electron and hole densities of states in the effective

mass approximation are gn(ε) ≈
√

2m3
nε

2π2h̄3 and gp(ε) ≈
√

2m3
pε

2π2h̄3 ,
respectively. Typically the condition mn � mp is satisfied.

Assuming that a single-domain ferroelectric material is
electroneutral at zero potential ϕ = 0, the condition N−

a =
N+

d0 + p0 − n0 should be valid. The equilibrium concentration
of donors is N+

d0 = Nd0(1 − f (Ed − EF )) ≡ Nd0f (EF − Ed );
equilibrium densities of holes p0 = ∫ ∞

0 dε · gp(ε)f (ε +
EF − FV ) and electrons n0 = ∫ ∞

0 dε · gn(ε)f (ε + EC − FF )
are defined for the case ϕ = 0.

Because the quasi-one-dimensional distribution of polar-
ization and stresses depend only on the distance from the wall
plane in the vicinity of the DWs, it is convenient to go to a
new coordinate system, with x̃1 axis normal to the DW plane
{x̃2,x̃3} instead of the coordinate system {x1, x2, x3} with
axes along the cubic symmetry axes [Fig. 1(a)]. Rotations
of crystallographic reference frame to the coordinate system,

associated with the DW, are defined by the angles {θ,φ}.
Components of any vector (e.g., polarization, field) and tensor
(e.g., stress) in the new coordinate system could be written

as P̃ = AP, Ẽd = AEd and ˆ̃X = AX̂AT in the matrix form,
where the transformation matrix

A =

⎛
⎜⎝

cos θ cos φ cos θ sin φ sin θ

− sin φ cos φ 0

− sin θ cos φ − sin θ sin φ cos θ

⎞
⎟⎠ . (8)

Here the transposed matrix AT is inverse to the matrix A.
Inverse transformations are P = ATP̃, Ed = ATẼd and X̂ =
AT ˆ̃XA. Contribution of the inhomogeneous strains ũi to the
free energy can be evaluated as

G̃ = G + σ̃i ũi . (9)

Corresponding equations of state are ∂G̃

∂P̃i
= 0 and ∂G̃

∂σ̃i
= 0.

Additional constraints on the system are given by mechani-
cal equilibrium conditions, ∂σ̃1(x̃1)/∂xi = 0, ∂σ̃5(x̃1)/∂xi = 0,
and ∂σ̃6(x̃1)/∂xi = 0, as well as compatibility relations be-
tween the strain components.47 Elastic stresses should vanish
far from the DWs, where the system is mechanically free. Other
boundary conditions are determined by the configuration of
the domain structure in a straightforward way. In particular,
the potential ϕ(x̃1) vanishes far from the DWs and reaches
maximum at the walls, so the depolarization field component
Ẽ1 normal to the DW plane is zero at the wall: Ẽ1(x̃1 = 0) = 0.
Polarization components P̃i are zero at the wall plane.

In the next sections we analyze the cases of tilted do-
main stripes [Fig. 1(b)], parallel domain stripes [Fig. 1(c)],
and a single cylindrical domain [Fig. 1(d)], assuming the

P1=

x1

Wall plane

P

P

P

P

(a)

(b)

(d)

x2

(c)

x1x2

h

h

2R

z

z

FIG. 1. (Color online) One dimensional distribution of polariza-
tion in the vicinity of a single DW (a), tilted (b), and parallel (c)
domain stripes with half period h; (d) cylindrical domain of radius
R. Arrows in plots (b)–(d) indicate the polarization direction in the
center of domains.
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TABLE I. Free-energy coefficients for bulk ferroelectric PbZr0.2Ti0.8O3 (from Refs. 50 and 51).a

a1 aij aijk Qij s11 g11

(×107C−2·m2N) (×108C−4·m6N) (×108C−6·m10N) (C−2·m4) (×10−12 Pa−1) (×10−10C−2 m4N)

−14.84 at 25◦C a11 = −0.305 a111 = 2.475 Q11 = 0.0814 s11 = 8.2 g11 = 2.0
a12 = 6.32 a112 = 9.68 Q12 = −0.0245 s12 = −2.6 g44 = 1.0

a123 = −49.01 Q44 = 0.0642 s44 = 14.4

aCorrelation length rc = √−g44/2a1 ≈ 0.5 nm, mn = 0.05me, mp = 5me, where me is the mass of the free electron and εb = 5, band gap
Eg = 3 eV, Nd0 = 1025 m−3, Ed = 0.1 eV.

one-dimensional distribution of polarization in the vicinity of
the DWs.

We note that zigzag instabilities can appear at the charged
wall plane in order to minimize its electrostatic energy.48

However, here we consider only the cases for the quasi-
one-dimensional distribution of polarization (periodic domain
stripes, cylindrical domains, etc.) and leave the question of
wall stability to further studies.49

III. RESULTS AND DISCUSSION

A. Carrier accumulation on 180◦ domain stripes

Here we consider the effect of the flexoelectric coupling
on the carrier redistribution in a tilted stripe domain structure,
consisting of thin 180◦ domains with half period h that is
much higher than a correlation length, rc = √−g44/2a1. The
planes ξ = nh (n = 0, ± 1, ± 2,...) correspond to the DWs
between two neighboring stripes [see Fig. 1(b)]. In the section
we regard that h = 100rc. The condition h 	 rc allows us to
focus on the impact of the wall tilt and flexoelectric coupling,
while proximity effects, which are dominant for thin stripes,
will be considered in the next section.

Equations of state ∂G̃

∂P̃i
= 0, ∂G̃

∂σ̃i
= 0 and the Poisson equa-

tion [Eq. (6)] were rewritten in dimensionless variables (see
Appendix B in supplementary material46) and then analyzed
numerically for PZT material parameters. Material parameters
for PZT used in the calculations are listed in the Table I.

Estimations based on Ma and Cross52 results give the
flexoelectric effect coefficient |Fij | ≈ (0.5 − 1) × 10−10 m3/C
and F12 is likely negative. Below we consider the flexoelectric
tensor Fij in the isotropic approximation (F44 = F11 − F12).
Using the elastic solution σ̃1 = σ̃5 = σ̃6 = 0 and isotropic
approximation for Fij leads to the simple form of the

flexoelectric energy (5), �Gflexo = F12(σ̃2
∂P̃1
∂x̃1

+ σ̃3
∂P̃1
∂x̃1

), which
depends on the F12 component only. Correlation length rc ≈
0.5 nm, coordinate ξ ≡ x̃1, spontaneous polarization PS , and
thermodynamic coercive field Ecoer are introduced.

Dependences of the polarization component perpendicular
P̃1(ξ ) ≡ P⊥(ξ ) and parallel P̃↑↑(ξ ) to the wall plane, electric
potential ϕ(ξ ), ionized donors N+

d (ξ ), and electrons n(ξ ) on
the distance ξ from the DW plane between the neighboring
stripes are shown in Figs. 2 and 3. The dependencies were
calculated for the domain stripes with different tilt angles
θ = π/2,π/30,0 (red, blue, and black curves, respectively),
negative, zero, and positive flexoelectric coupling coefficient
F12 (solid, dashed, and dotted curves, respectively).

Without flexoelectric coupling, only electrostriction cou-
ples polarization and elastic strains. To the best of our

knowledge, the effect of the flexoelectric coupling on the
ferroelectric wall charge state was not studied theoretically
before. Here we show that the flexoelectric coupling leads
to the nontrivial physical responses, including appearance
of P⊥(ξ ) and its strong gradient across the “nominally
uncharged” and weakly charged head-to-head (h-t-h) and
tail-to-tail (t-t-t) DWs (see curves calculated for θ = 0
and θ = π/30). Actually, the flexoelectric coupling term
F12P̃⊥∂(σ̃2 + σ̃3)/∂x̃1 in the free energy causes the “flexo-
electric” field F12∂(σ̃2 + σ̃3)/∂x̃1 that, in turn, induces the
component P⊥(ξ ). It is seen from the Figs. 2(b) and 2(c) that
P⊥(ξ ) = 0 for F12 = 0 and θ = 0. Polarization component
P↑↑(ξ ) is rather weakly affected by the presence of the
flexoelectric coupling [curves calculated for F12 = 0 and
F12 �= 0 almost coincide in Fig. 2(d)].

At zero or a small tilt angle, additional features on the
potential, electron, and ionized donor distributions appear in
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FIG. 2. (Color online) Dependencies of the polarization compo-
nents P̃⊥(ξ )/PS (a), (c), and (d) and P̃↑↑(ξ )/PS (b) on the distance ξ

from the wall plane between the neighboring stripes with different
tilt angle θ = π/2,π/30,0 (see figures near the curves). Flexoelectric
coupling coefficient F12 = (−0.5, 0, 0.5) × 10−10 m3/C (solid, dotted,
and dashed curves, respectively). Material parameters correspond to
PbTi0.8Zr0.2O3 (listed in Table I), stripe half period h = 100rc.
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FIG. 3. (Color online) Dependencies of potential ϕ(ξ ) (a) and
(b), concentration of ionized donors N+

d (ξ ) (c) and (d) and density of
electrons n(ξ ) (e) and (f) on the distance ξ from the wall plane between
the neighboring stripes with different tilt angle θ = π/2,π/30,0
(see figures near the curves). Flexoelectric coupling coefficient
F12 =(−0.5, 0, 0.5) × 10−10 m3/C (solid, dotted, and dashed curves,
respectively). Panels (b), (d), and (f) represent the region near the
head-to-head wall. Parameters are the same as in Fig. 2.

vicinity of DWs due to the nonzero flexoelectric coupling
[see Figs. 3(b), 3(d), and 3(f)]. In particular the flexoelectric
coupling leads to the appearance of additional electrostatic
potential well-barrier, depending on the sign of the flexoelec-
tric coefficient F12 [see Fig. 3(b)]. The depth of the potential
barrier well and height appeared at the wall due to P⊥(ξ )-effect,
as derived in Appendix D of supplementary material,46 is
proportional to the flexoelectric coupling coefficient F12.
Note that the flexoelectric coupling and tilt influence on
the wall charge state are not additive. In particular the
spatial localization of the features induced by the flexoelectric
coupling is independent on wall tilt angle, but the width
increases with decreasing angle.

The flexoelectric field leads to the carrier redistribution
and thus to conductivity changes even across the nominally
uncharged parallel DWs.4 It is seen from Figs. 3(e) and
3(f) that head-to-head and tail-to-tail DWs have different
electronic properties: head-to-head walls appeared electron
accumulating, while tail-to-tail walls appeared donor (e.g.,

vacancies) accumulating, similar to the one-component polar-
ization in uniaxial ferroelectrics considered in Ref. 15. The
potential barrier created by the bound charges and screening
carriers are the highest for the perpendicular wall (θ = π/2)
with the maximal bound charge 2PS . Because the angular
dependence of the bound charge is proportional to 2PS sin θ ,
the barrier decreases with decreasing θ . The compensating
electron density is highest for the head-to-head perpendicular
wall (θ = π/2) and decreases with decreasing bound charge
(i.e., with decreasing θ ). The electron accumulation leads
to the strong increase of the static conductivity across the
charged domain stripes up three orders of magnitude for
the perpendicular DWs in PZT. Hole density appears less
than 10−40 m−3, i.e., free holes are almost absent near the
head-to-head DWs between the neighboring stripes.

Note that the static electronic and ionic conductivity
can be estimated as λe(ξ ) = e(ηen(ξ ) + ηpp(ξ )) and λi(ξ ) =
eηdN

+
d (ξ ), where ηe,p,d are corresponding mobilities, which

are regarded as constant. Because the strength of carrier
accumulation and depletion at the wall plane is determined
by the behavior of electric potential ϕ(0) at the wall, the
conductivity should be controlled by the field effect. The
profile of the latter across the wall, in turn, depends on
the wall tilt, stripe domain size, etc. Figure 4(a) shows the
dependence of potential ϕ(0) on the tilt angle θ calculated for
head-to-head and tail-to-tail walls. The potential ϕ(0) increases
with increasing θ . Dependences of the electronic and ionic
conductivity on the wall tilt angle θ are shown in Figs. 4(b)
and 4(c) for negative, zero, and positive flexoelectric coupling

0 /4 /2

-3

-2

-1

0

1

2

Tilt angle   (rad)

(a)P
ot

en
ti

al
(V

)

t-t-t

h-t-h

F12= 1
F12= 0
F12= +1

10
-2

10
-1 1

10
-6

10
-4

10
-2

10
0

10
2

E
le

ct
ro

ni
c 

co
nd

uc
ti

vi
ty

e/

Tilt angle (rad)

(b)
t-t-t

h-t-h

10
-2

10
-1 1

10
-6

10
-4

10
-2

10
0

10
2

Io
ni

c 
co

nd
uc

tiv
it

y
i/

(c)

Tilt angle (rad)

t-t-t

h-t-h

FIG. 4. (Color online) Dependence of potential ϕ(ξ = 0) (a),
electronic (b), and ionic (c) conductivity on the DW tilt angle θ

between the neighboring head-to-head (h-t-h) and tail-to-tail (t-t-t)
stripes and calculated for negative, zero, and positive flexoelectric
coupling coefficient F12 = (−0.5, 0, 0.5) × 10−10 m3/C (solid, dotted,
and dashed curves, respectively). Material parameters are the same
as in Fig. 2.
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TABLE II. Wall conductivity peculiarities in the n-type ferroelectric-semiconductors.

Conductivity of parallel and Conductivity of tilted head-to-head Conductivity of tilted tail-to-tail
Flexoelectric slightly tilted 180◦ DWs 180◦ walls 180◦ walls

Coupling coefficient F12 (tilt angle 0 � θ�6◦) (tilt angle θ > 6◦) (tilt angle θ > 6◦)
Positive Up to 50–100 times Gradually increases up to 102–103 ∼10 times

higher than the bulk one times with the tilt angle increase higher than the bulk one
due to the electron due to the strong accumulation of due to the donor accumulation
accumulation electrons and saturation

Zero The same as in the bulk Gradually increases up to 102–103 ∼10 times higher than the
times with the tilt angle increase due bulk one due to the donor
to the strong accumulation of accumulation
electrons and saturation

Negative Increases up to Gradually increases up to 102–103 ∼10 times higher than
10 times due to times with the tilt angle increase the bulk one due
the donors accumulation due to the strong accumulation the donor accumulation
and saturation of electrons and saturation

coefficient. It is seen from the figure that the electronic
conductivity increases and ionic conductivity decreases with
θ increase for head-to-head DWs. The electronic conductivity
decreases and ionic conductivity increases and saturates with
θ increase for tail-to-tail DWs.

To summarize the section, the free carrier accumulation
leads to the strong increase of compensating charge density
and thus the static conductivity across the tilted walls between
stripe domains in multiaxial ferroelectrics-semiconductors
of n-type: from one order for the parallel domain stripes
due to the flexoelectric coupling and up three orders of
magnitude for perpendicular DWs (even without flexoelectric
coupling impact). Table II lists some peculiarities of the DWs
conductivity in the n-type ferroelectric-semiconductors with
special attention to the flexoelectric coupling. Note that the
static electronic conductivity increase should exist in the p-
type ferroelectric-semiconductors across the tail-to-tail walls.

B. Proximity effects on carrier accumulation
by 180◦ stripe domains

In this section we consider thin 180◦ periodic domains
of half period h. The DWs are parallel (θ = 0) and located
close enough to induce proximity effects on the system
static conductivity. The DWs are considered as “nominally
neutral,” i.e., their polarization vector is parallel to the wall
plane in the center of the domain stripe. The planes ξ = nh

(n = 0, ± 1, ± 2,...) correspond to the DW between two
neighboring stripes [see Fig. 1(c)]. Our calculations show
that the polarization component P̃⊥(ξ ) is induced by the
flexoelectric coupling. The bound charge related with P̃⊥(ξ )
leads to the appearance of lateral depolarization electric field
Ẽ⊥(ξ ) and carrier redistribution in the vicinity of DWs.

Distributions of polarization components P̃↑↑(ξ ) and
P̃⊥(ξ ), depolarization electric field Ẽ⊥(ξ ), electrostatic po-
tential ϕ(ξ ), and screening charges (electrons and donors) are
shown in Figs. 5 and 6 for two periods of domain stripes,
assuming negative, zero, and positive flexoelectric coefficient
F12 (solid, dashed, and dotted curves, correspondingly). Note
that the stripe domains with a half period below minimal value
hcr ∼ 2rc are thermodynamically unstable due to proximity

effects, which make the DW energy too high. So the curves in
Figs. 5 and 6 are plotted for h � hcr .

P̃⊥(ξ ) and Ẽ⊥(ξ ) are maximal in the vicinity of DWs (i.e.,
at ξ = nh ± √

2rc) and equal to zero at the walls and in the
center of domain stripe (i.e., at ξ = nh and ξ = nh ± h/2).
The maximal value of the polarization component is

P̃ max
⊥ ≈ ±F12ε0εb

(Q11 + Q12) P 2
S

(s11 + s12)
√

2rc

(
1 − hcr

h

)
. (10)

The maximal value of electric field is

Ẽmax
⊥ ≈ ∓F12

(Q11 + Q12) P 2
S

(s11 + s12)
√

2rc

(
1 − hcr

h

)
. (11)

The maximal values Ẽmax
⊥ are reached in the points ξ = nh ±√

2rc (n = 0, ± 1, ± 2,...) corresponding to the distance
√

2rc

from the DW plane.
Here, hcr is the minimal half period of the stable domain

stripe (corresponding to the critical size originating from
the proximity effect). The minimal half period is related to
correlation length rc as hcr ≈ πrc/2 for F12 = 0 and θ = 0.

Electric potential reaches the maximal value

ϕmax ≈ F12
(Q11 + Q12) P 2

S

(s11 + s12)

(
1 − hcr

h

)
(12)

at the wall planes ξ = nh. Note that the expressions for
P̃ max

⊥ , Ẽmax
⊥ , and ϕmax differ from the expressions listed in

Ref. 4 by the factor (1 − hcr

h
) originated from the proximity

effect. As anticipated, P̃↑↑(ξ ) is maximal in the center of
the domain stripes ξ = nh ± h/2 and zero at the wall planes
ξ = nh. Electrons and donors distributions have sharp extrema
(minimum or maximum, depending on the sign of F12) at the
wall planes ξ = nh.

It is seen from the Figs. 5 and 6 that the decrease of
the half period h leads to the gradual suppression of the
maximum values of the polarization components as well as
to the decrease of the modulation depth of the potential and
screening charges profiles. Polarization, potential, field, and
carrier density profiles have quasisinusoidal shapes for thin
stripes (Fig. 5). Anharmonicity appears and strongly increases
with h increase (Fig. 6).
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FIG. 5. (Color online) Dependencies of the polarization com-
ponents P̃⊥(ξ )/PS (a) and P̃↑↑(ξ )/PS(b), potential ϕ(ξ ) (c), field
Ẽ⊥(ξ )/Ecoer (d), electrons n(ξ ) (e), and ionized donors N+

d (ξ ) (f)
distributions on the distance ξ across the “nominally uncharged”
180◦ domain stripes (only one period is shown) calculated for the
half period h = 3rc and flexoelectric coupling coefficients F12 =
−1 × 10−10 m3/C (solid curves), F12 = 0 (dotted curves), and
F12 = +1 × 10−10 m3/C (dashed curves). Other parameters are
same as for Fig. 2.

The sign of compensating carriers is determined by the
sigh of the flexoelectric coefficient: positive F12 leads to the
accumulation of negative charges (electrons or acceptors),
negative F12 leads to the accumulation of positive charges
(holes, donors, or vacancies) at the walls [see Figs. 5(e) and 5(f)
and Figs. 6(e) and 6(f)]. The higher the F12 value, the stronger
the carrier accumulation effect is. Note that the experimental
results40–42 show that the coefficient F12 is likely negative for
PZT.

The possibility of the electron and donor accumulation and
depletion in the vicinity of the domain stripes is demonstrated
in Fig. 7. Carrier accumulation in the DW region is caused
by the potential barrier ϕ(ξ ), that is, in turn, caused by the
uncompensated bound charge div(P⊥(ξ )). Dependence of the
potential barrier on the stripes half period h is shown in
Fig. 7(a) for positive, zero, and negative flexoelectric coupling
coefficients. Potential barrier at the DW, ϕ(0), monotonically
increases with the increasing of the stripe size h and then
saturates. Potential in the middle of the stripe, ϕ(±h/2), first
increases with h increase, reaches maximum at h ∼ 5rc, and
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FIG. 6. (Color online) Dependencies of polarization components
P̃⊥(ξ )/PS (a) and P̃↑↑(ξ )/PS(b), potential ϕ(ξ ) (c), field Ẽ⊥(ξ )/Ecoer

(d), electrons n(ξ ) (e), and ionized donors N+
d (ξ ) (f) distributions on

the distance ξ across the “nominally uncharged” 180◦ domain stripes
(only one period is shown) calculated for the half period h = 10rc

and flexoelectric coupling coefficients F12 = −1 × 10−10 m3/C (solid
curves), F12 = 0 (dotted curves), and F12 = +1 × 10−10 m3/C (dashed
curves). Other parameters are same as for Fig. 2.

then decreases with further h increase. For thick stripes with
half period h 	 100rc, the potential vanishes in the central
region of each stripe.

To estimate the observable conductivity, local densities of
electrons n(ξ ) and donors N+

d (ξ ) were averaged across over
the DW apparent thickness, e.g., for distance ξ ∈ {−rc,rc}
(solid curves) as well as the entire domain stripe ξ ∈ {−h,h}
(dashed curves). Note that 〈n(ξ )〉/n(∞) ≈ 〈λe(ξ )〉/λe(∞) and
〈N+

d (ξ )〉/N+
d (∞) ≈ 〈λi(ξ )〉/λi(∞) in the framework of the

model adopted here. For positive flexoelectric coupling,
the electronic conductivity of DWs monotonically increases
[up to 30 times in saturation in comparison with a bulk
electronic conductivity λe(∞)] and then saturates with the
domain stripe period increase [see Figs. 7(b) and 7(c)]. For
negative flexoelectric coupling, the ionic conductivity of DWs
monotonically increases and then saturates [up to 15 times
in saturation in comparison with a bulk ionic conductivity
λi(∞)] with the stripe period increase. Without flexoelectric
coupling, the conductivity is the same as for the homogeneous
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FIG. 7. (Color online) Dependence of the electric potential ϕ(0)
and ϕ(h/2) (a), relative electron density 〈n(ξ )〉/n(∞) (b), and donor
concentration 〈N+

d (ξ )〉/N+
d (∞) (c) on the domain stripes half period

h calculated for flexoelectric coupling coefficients F12 = −1 ×
10−10 m3/C (solid curves with labels “−1”), F12 = 0 (dotted curves
with labels “0”) and F12 = +1 × 10−10 m3/C (dashed curves
with labels “+1”). Potential (a) is plotted at the DW (ϕ(0)) and
in the middle of the stripe (ϕ(h/2)). Electron density n(ξ ) and donor
concentration N+

d (ξ ) were averaged across the range ξ ∈ {−rc,rc,}
(solid and dashed curves with labels “±1”) as well as entire the
domain cross-section ξ ∈ {−h,h} (dash-dotted curves with labels
“±1”). Material parameters are the same as in Fig. 2.

monodoman region λe,i(∞) (see horizontal lines marked with
“0”).

Averaging over the entire domain stripe smears the impact
of flexoelectric coupling sign: the dash-dotted curves are rela-
tively close for positive F12 = +1 × 10−10 m3/C and negative
F12 = −1 × 10−10 m3/C, in contrast to very different solid and
dashed curves. Independent of the F12 sign, the conductivity
averaged over the entire domain stripe first increase with the
increasing of the stripes half period h for very small half
periods hcr < h < 5rc, then reaches a diffuse maximum [∼5
times in comparison with homogeneous λe,i(∞)] and then
decreases with further h increase. The principal difference in
the behavior of solid, dashed, and dash-dotted curves can be
explained by the following considerations. For positive F12

free electrons are accumulated in the immediate vicinity of
the DWs, and the central regions of the stripes are depleted
with electrons. For negative F12 the immediate vicinity of
the DWs are depleted with electrons, and the central regions
of the stripes accumulate electrons [see Figs. 5(e) and 6(e)].
The situation with ionized donors is visa versa: their accumu-
lation takes place in the vicinity of DWs for negative F12,
while the central regions of the stripes are depleted with
donors [see Fig. 5(f) and 6(f)]. The averaging on the entire
the domain stripe ξ ∈ {−h,h} gives information only about
resulting depletion+accumulation effect. As anticipated, the

total charge of “electrons+ionized donors” is exactly zero
(i.e., the sum of the solid and dashed curves “+1” or “−1”)
due to the total electroneutrality in the domain structure. Due
to the flexoelectric coupling, the average static conductivity of
domain stripes with period h ∼ 5rc is significantly higher then
the conductivity of monodomain region.

C. Carrier accumulation at the cylindrical DW

Cylindrical DWs always appear at the initial stages of
local polarization reversal caused by a charged probe of
scanning microscope53,54 in ferroelectric films. In this section
we consider the finite size effect of carrier accumulation
and static conductivity of radially-symmetric cylindrical DW
with a curvature radius R [see Fig. 1(d)]. Polar radius ρ =√

x2 + y2 is introduced. We assume that the cylinder axis z

is pointed along one of the possible directions of spontaneous
polarization. Note that for other orientations of polarization,
the problem could not be considered as quasi-one-dimensional.
Furthermore, only the case of small radii R � 10rc is of
interest, because for larger radii the behavior is very similar to
those obtained in the Sec. III A for the thick domain stripes.

Our numerical analysis shows that the polarization com-
ponent P̃⊥(ρ) and depolarization electric field Ẽ⊥(ρ) are
induced due to the flexoelectric coupling. The bound charge
div(P̃⊥(ρ)) leads to the Ẽ⊥(ρ) appearance, which causes car-
rier redistribution across the cylindrical DW. The distributions
of polarization components P̃z(ρ) and P̃⊥(ρ), electric field
Ẽ⊥(ρ), electrostatic potential ϕ(ρ), and screening charges
are shown in Fig. 8 for two domain radii (R = 1.5rc and
R = 5rc) and positive, zero, and negative flexoelectric
coupling coefficient F12. Note that the cylindrical domain with
radius below critical value Rcr ∼ 1.2rc is thermodynamically
unstable due to finite size effect, so the curves in Fig. 8 are
plotted for the values R � Rcr .

P̃⊥(ρ) and Ẽ⊥(ρ) are maximal in the vicinity of DWs (i.e.,
at ρ = R − √

2rc) and zero at the walls and in the center
of cylindrical domain. The maximal value of the component
P̃⊥(ρ) is

P̃ max
⊥ ≈ ±F12ε0εb

(Q11 + Q12) P 2
S

(s11 + s12)
√

2rc

(
1 − Rcr

R

)
. (13)

The maximal value of electric field is

Ẽmax
⊥ ≈ ∓F12

(Q11 + Q12) P 2
S

(s11 + s12)
√

2rc

(
1 − Rcr

R

)
. (14)

Electric potential reaches the maximal value

ϕmax ≈ F12
(Q11 + Q12) P 2

S

(s11 + s12)

(
1 − Rcr

R

)
(15)

in the center of domain for small domains (e.g., nanodomains).
Note that the expressions for P̃ max

⊥ , Ẽmax
⊥ and ϕmax differ

from the expressions listed in Ref. 4 by the factor (1 − Rcr

R
)

originated from the finite size effect. As anticipated, P̃z is
maximal in the center of cylindrical domain and zero at its
boundary ρ = R.

It is seen from Figs. 8(a) and 8(b) that the decrease
of the domain radius R leads to the suppression of the
polarization component maxima as well as to the decrease
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FIG. 8. (Color online) Distributions of the polarization com-
ponents Px(x)/PS (a) and Pz(x)/PS (b), potential ϕ(x) (c), field
Ex(x)/Ecoer (d), electron density n(x) (e), and ionized donor con-
centration N+

d (x) (f) along the cross-section of cylindrical domains
with radii R = 1.5rc (magenta and green curves) and R = 5rc (red
and blue curves) calculated for flexoelectric coupling coefficients
F12 = −1 × 10−10 m3/C (solid curves), F12 = 0 (dotted curves), and
F12 = +1 × 10−10 m3/C (dashed curves). Other parameters are same
as for Fig. 2.

of the modulation depth of the potential and screening
charges profiles along the domain cross-section. Polarization,
potential, field, and carrier density profiles have sinusoidal
shape for small domains with R = 1.5rc (see Figs. 8(a)–8(f).
Deviation from the sinusoidal shape appears at R > 2rc and
strongly increases with increasing R. It is seen from Figs. 8(e)
and 8(f) that either electron or donor accumulation takes place
in the nanodomain, depending on the F12 sign and spontaneous
polarization direction. In contrast to thick domain stripes and
thicker cylindrical domains, in which the carrier accumulation
(and so the static conductivity) sharply increases at the DWs
only, thin nanodomains of radius R � 5rc can be conducting
across their entire cross-section.

The carrier accumulation in the DW region is caused by
the potential barrier ϕ(ρ) that is, in turn, caused by the un-
compensated bound charge ∼ div(P⊥(ρ)). The corresponding
potential barrier is plotted in Fig. 9(a) for positive, zero, and
negative flexoelectric coupling coefficient F12.

The potential barrier at the curved DW monotonically
increases with the domain radius R increase and then saturates
(see ϕ(R)-curves). The potential barrier in the center of the
domain first increases with R increase, reaches maximum
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FIG. 9. (Color online) Dependence of the potential ϕ (a), rel-
ative electron density 〈n(ξ )〉/n(∞) (b), and donor concentration
〈N+

d (ξ )〉/N+
d (∞) (c) on the radius R of the cylindrical domain

calculated for flexoelectric coupling coefficients F12 = −1 ×
10−10 m3/C, F12 = 0 and F12 = +1 × 10−10 m3/C (numbers “−1,”
“+1” and “0” near the curves). Potential ϕ (c) was calculated at the
cylindrical DW [ϕ(R), solid curves), and in the middle of the domain
(ϕ(0), dotted curves]. Electron density n(ρ) and donor concentration
N+

d (ρ) were averaged across the DW (solid and dashed curves) as
well as entire the domain cross-section (dash-dotted curves). Material
parameters are the same as in Fig. 2.

at R ∼ 3rc, and then decreases with further increase of R

(see ϕ(0)-curves). For submicro and microdomains with radius
R 	 100rc, the potential vanishes in the central region of the
domain as anticipated.

The size effect of the electron and donor accumulation and
depletion by cylindrical DWs is demonstrated in Figs. 9(b)
and 9(c) for positive, zero, and negative flexoelectric coupling
coefficient F12. Similar to the case of domain stripes, the
electronic conductivity of cylindrical DW monotonically
increases (up to 30 times in comparison with a bulk value) and
then saturates with the nanodomain radius increase for positive
flexoelectric coupling [see solid curves in Fig. 9(b)]. The ionic
conductivity of cylindrical DW monotonically increases (up to
20 times in comparison with a bulk value) and then saturates
with nanodomain radius increase for negative flexoelectric
coupling [see dashed curves in Fig. 9(c)].

Similar to the case of domain stripe, averaging of concen-
tration on the entire domain cross-section smears the impact of
flexoelectric coupling sign [see dash-dotted curves in Figs. 9(b)
and 9(c)]. Average densities first increase with radius R

increase for radii Rcr < R < 5rc, then reach a maximum at
R ∼ 5rc, and then decrease with further R increase. Electron
and ionized donor accumulation by cylindrical domain are
similar to the ones discussed in the previous subsection for
the case of domain stripes. Average static conductivity of
cylindrical nanodomains with radius rc � R < 10rc appeared
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essentially higher than the conductivity of the monodomain
region due to the flexoelectric coupling.

IV. DISCUSSION AND SUMMARY

Using LGD theory, we performed analyses of the car-
rier accumulation by 180◦ DW in multiaxial ferroelectric-
semiconductors with mobile donors. Along with coupled
LGD equations for the polarization components, we solved
the Poisson equation for the electrostatic potential. Spatial
distributions of the ionized shallow donors (e.g., intrinsic
oxygen vacancies), free electrons, and holes were found self-
consistently using the effective mass approximation for their
energy density of states. Performed theoretical analyses show
that we meet with several scenarios of the DW conduction
in stripe and cylindrical domains, depending on the wall
geometry (tilt angle, domain shape, and size), wall type
(head-to-head or tail-to-tail) and the sign and value of the
flexoelectric coupling coefficient.

In contrast to uniaxial ferroelectrics, the polarization
component perpendicular to the wall plane originates inside
the wall region. Similar to the case of uniaxial ferroelectric-
semiconductors,15 the tilted wall is charged in the multiaxial
ferroelectric-semiconductors, and hence the electric field of
the bound charge attracts free carriers of definite sign and
repels the carriers of the opposite sign from the wall region.
The carrier accumulation is highest when the wall plane is
perpendicular to the spontaneous polarization direction at
the wall (perpendicular DW); it decreases with the bound
charge decrease and reaches minimum for the parallel DW.
Carrier accumulation leads to the strong increase of the
static conductivity across the charged DWs in multiaxial
ferroelectric-semiconductors, up three orders of magnitude for
the perpendicular DWs in Pb(Zr,Ti)O3.

Flexoelectric coupling, which is rather high for ferroelectric
perovskites,40–43 leads to the appearance of polarization com-
ponents perpendicular to the wall plane and its strong gradient
across the wall even for nominally uncharged walls. Note that
the perpendicular component appeared in the first-principles
calculations [see Fig. (12) in Ref. 55]. At the same time, the po-

larization component parallel to the wall plane is indifferent to
the presence of the flexoelectric coupling, and electrostriction
coupling induces the narrowing of the DW. The polarization
component perpendicular to the wall plane is directly related
to the bound charge, in turn, leading to a strong electric
field at the wall and then to accumulation of free screening
carriers across the wall. The carrier accumulation effect by
the nominally uncharged domain stripes and cylindrical walls
appears to be significant and increases up to 10–30 times for
domain stripes and cylindrical nanodomains in Pb(Zr,Ti)O3

for the typical range of flexoelectric coefficients. The charge
of accumulated carriers is determined by the sign of the
flexoelectric coefficient: a positive coefficient leads to the
accumulation of negative carriers (electrons or acceptors), and
a negative coefficient leads to the accumulation of positive
carriers (holes, donors, or vacancies).

The size effect of the electron and donor accumulation by
thin stripe domains and cylindrical nanodomains is revealed.
In contrast to thick domain stripes and thicker cylindrical
domains, in which the carrier accumulation (and so the static
conductivity) sharply increases at the DWs only, nanodomains
of radii less than 5–10 correlation lengths appeared conducting
across their entire cross-section. Such conductive nanosized
channels may be promising for nanoelectronic concepts due
to the possibility to control their spatial location by external
stimulus (e.g., by nanomanipulation with the charged probe).

Note added in proof. Recently Meier et al.56 have found
anisotropic conductance at improper ferroelectric domain
walls in ErMnO3.
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