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Energy spectra of three electrons in Si/SiGe single and vertically coupled double quantum dots
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We study three-electron energy spectra in Si/SiGe single and vertically coupled double quantum dots where
all the relevant effects, such as, the Zeeman splitting, spin-orbit coupling, valley coupling and electron-electron
Coulomb interaction are explicitly included. In the absence of magnetic field, our results in single quantum dots
agree well with the experiment by Borselli et al. [Appl. Phys. Lett. 98, 123118 (2011)]. We identify the spin and
valley configurations of the ground state in the experimental cases and give a complete phase-diagram-like picture
of the ground-state configuration with respect to the dot size and valley splitting. We also explicitly investigate
the three-electron energy spectra of the pure and mixed valley configurations with magnetic fields in both Faraday
and Voigt configurations. We find that the ground state can be switched between doublet and quartet by tuning
the magnetic field and/or dot size. The three-electron energy spectra present many anticrossing points between
different spin states due to the spin-orbit coupling, which are expected to benefit the spin manipulation. We show
that the negligibly small intervalley Coulomb interaction can result in magnetic-field independent doublet-quartet
degeneracy in the three-electron energy spectrum of the mixed valley configuration. Furthermore, we study the
barrier-width and barrier-height dependencies in vertically coupled double quantum dots with both pure and
mixed valley configurations. Similar to the single quantum dot case, anticrossing behavior and doublet-quartet
degeneracy are observed.
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I. INTRODUCTION

Silicon quantum dots (QDs) are proposed to be promi-
nent candidates for spin qubits1–3 owing to the long spin-
decoherence time,4–11 which is of great importance for
coherent manipulation,11 information storage,12 quantum error
correction,13–15 and information transmission.16 The long
spin-decoherence time in Si-based devices11,16–19 results from
the weak hyperfine interaction,7 small spin-orbit coupling
(SOC)20–26 and weak electron-phonon interaction.27 As an
indirect-gap semiconductor, the conduction band of the bulk Si
has six degenerate minima or valleys. This six-fold degeneracy
can be lifted by strain or quantum confinement, e.g., it
separates into a four-fold degeneracy and a two-fold one in
[001] quantum wells. The two-fold degenerate valleys with
low energy can be further lifted by a valley splitting due to the
interface scattering.28,29 The existence of the valley degree
of freedom makes the Si-based qubits more attractive.6–10

Moreover, the mature microfabrication technology of the
classical Si-based electronics is proposed to benefit the
realization of Si spin qubits.6,7

Recently, Si quantum dots (QDs) have been widely in-
vestigated both experimentally and theoretically.5–10,30–34 In
the experiments, Si metal-on-semiconductor and Si/SiGe QDs
with a tunable electron filling number from zero have been fab-
ricated, where the valley splitting, few-electron energy spec-
trum, and spin relaxation time have been measured.30–33 The
theoretical works mainly focus on the one-electron Zeeman
sublevels or the singlet-triplet states of two electrons.5–10,34

For example, Culcer et al.6,8,10 analyzed the initialization
and manipulation of one-electron and two-electron qubits in
lateral coupled double quantum dots (DQDs) by utilizing the
valley degree of freedom. Raith et al.34 calculated the energy
spectrum and the spin relaxation time in one-electron QDs. By
explicitly including the electron-electron Coulomb interaction,

Wang et al. obtained the two-electron spectrum from the
exact-diagonalization method and calculated the singlet-triplet
relaxation time in both single7 and lateral coupled double9

QDs. As pointed out by Barnes et al.,35 the robustness of
the quantum states against charge impurity and noise in QDs
can be improved by increasing the number of the electrons,
which reveals the necessity of the theoretical investigation on
multielectron spin qubits. The energy spectra in multielectron
GaAs QDs have been explicitly calculated to identify the
specific spin configuration of each state, where only one valley
is relevant.36–41 However, to the best of our knowledge, there
is no report on the explicit calculation in Si QDs with three
or more electrons due to the complication of the calculation.
Alternatively, Hada et al.42 neglected the correlation effect and
calculated the three-electron energy spectrum within single
configuration approximation in single QDs. However, the cor-
relation effect has been shown to present significant influence
on the energy spectrum via strong Coulomb interaction in Si
QDs.7,42,43 Therefore, in order to obtain an accurate convergent
spectrum, an exact-diagonalization method with sufficient
basis functions is required. The goal of the present work is
to analyze the energy spectrum in the three-electron Si/SiGe
QDs based on the exact-diagonalization method.

In this work, we calculate the three-electron energy spec-
trum in both single and vertically coupled double QDs with the
Zeeman splitting, SOC, valley coupling and electron-electron
Coulomb interaction explicitly included. In the single dot case,
we first calculate the ground-state energy in the absence of the
magnetic field, where good agreement with the experimental
data is achieved. Our calculation also uncovers the valley and
spin configurations of the ground state in experiment. We
present a complete phase-diagram-like picture to describe the
spin and valley configurations of the ground state. We find that
the ground state is of pure (mixed) valley configuration at large
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(small) valley splitting. The spin configuration of the ground
state can be controlled through dot size for the pure valley
configuration, while that in the mixed valley configuration
is always doublet. The magnetic field dependence of the
three-electron energy spectrum in each “phase” is investigated.
We take into account both orbital effect and Zeeman splitting
for the perpendicular magnetic field and only Zeeman splitting
for the parallel magnetic field owing to the strong confinement
along the growth direction. We find that the spin configuration
of the ground state can also be switched by magnetic field. For
the mixed valley configuration, we find interesting doublet-
quartet degeneracy, which results from the negligibly small
intervalley interaction. In the DQD case, the barrier-width and
barrier-height dependencies of the energy spectrum with both
pure and mixed valley configurations are discussed. Moreover,
we show many anticrossing points resulting from the SOCs in
all cases.

This paper is organized as follows. In Sec. II, we set up our
model and formalism. In Sec. III, we show our results of the
three-electron energy spectrum in single QDs and vertically
coupled DQDs from the exact-diagonalization method. We in-
vestigate the perpendicular and parallel magnetic-field depen-
dencies in single QDs and the barrier-width and barrier-height
dependencies in vertically coupled DQDs. The comparison
with experiment in the single QD case is also given in this
section. Finally, we summarize in Sec. IV.

II. MODEL AND FORMALISM

We set up our model in a double quantum well along [001]
direction. The confinement along this direction is described
by44,45

Vz(z) =

⎧⎪⎨⎪⎩
V0, |z| < a

2 ,

0, a
2 � |z| � a

2 + d,

∞, otherwise,

(1)

with the interwell barrier height denoted as V0. Here, d

and a represent the width of each well and that of the
barrier, respectively. The lateral confinement is chosen to
be a parabolic potential Vc(x,y) = 1

2mtω
2
0(x2 + y2) with mt

representing the in-plane effective mass and ω0 being the
confining potential frequency.46,47 The effective diameter d0

is given by
√

h̄π/(mtω0). The total confinement potential then
can be written as V (r) = Vc(x,y) + Vz(z). For an infinitesimal
barrier width (a ∼ 0), our model reduces to the single dot
case.

The external magnetic field with perpendicular and parallel
components is expressed by B = B⊥ẑ + B‖x̂. The single-
electron Hamiltonian reads7

He = P 2
x + P 2

y

2mt

+ P 2
z

2mz

+ V (r) + HZ + Hso + Hv, (2)

where mz denotes the effective mass along the growth
direction and P = −ih̄∇ + (e/c)A with the vector potential
A = (−yB⊥,xB⊥,2yB‖)/2. In our calculation, the orbital
effect of the parallel component of the magnetic field is
neglected due to the strong confinement along the z direction
and the vector potential in the mechanical momentum then
reduces to A = (−yB⊥,xB⊥,0)/2. In Eq. (2), the Zeeman

splitting is given by HZ = 1
2gμB(B⊥σz + B‖σx) with g being

the Landé factor. The SOCs, including the Rashba term21

due to the structure inversion asymmetry (SIA) and the
interface-inversion asymmetry (IIA) term,22–24 are expressed
by

Hso = a0(Pxσy − Pyσx) + b0(−Pxσx + Pyσy), (3)

where a0 (b0) represents the coupling coefficient of the Rashba
(IIA) term. As reported, the typical strength of the spin-orbit
coupling in Si QDs can be two orders of magnitude smaller
than that in the GaAs or InAs QDs,24,45,48 which results in
relatively slow spin relaxation in Si QDs.7 Hv in Eq. (2)
describes the coupling between the two low-energy valleys
lying at ±〈kSi〉 along the z axis with 〈kSi〉 = 0.85(2π/aSi).28

Here, aSi = 5.43 Å stands for the lattice constant of silicon. In
this work, we use “z” (“z”) to denote the valley lying at 〈kSi〉
(−〈kSi〉) for convenience.

In order to build up a complete set of single-electron

basis functions, we define H ′
0 = H0 + Hv with H0 = P 2

x +P 2
y

2mt
+

P 2
z

2mz
+ V (r). Due to the separation of the lateral and vertical

confinement, one can easily solve the Schrödinger equation of
H0. From the lateral part, one obtains the eigenvalues46,47,49

Enl = h̄�(2n + |l| + 1) + h̄lωB, (4)

where � =
√

ω2
0 + ω2

B and ωB = eB⊥/(2mt ). The eigenfunc-
tions read46,47,49

Knl(r,θ ) = Nn,l(αr)|l|e−(αr)2/2eilθL|l|
n [(αr)2], (5)

with Nn,l = {α2n!/[π (n + |l|)!]}1/2 and α = √
mt�/h̄. L

|l|
n is

the generalized Laguerre polynomial. Here, n = 0,1,2, . . . is
the radial quantum number and l = 0,±1,±2, . . . is the az-
imuthal angular momentum quantum number. For the vertical
part, we include the lowest two subbands, one with even parity
(denoted by subscript nz = 0) and the other with odd parity
(nz = 1). The corresponding wave functions can be expressed
as45

ξ0(z)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C0 sin

[
k0

(
z − a

2 − d
)]

, a
2 � z � a

2 + d,

A0 cosh(β0z), |z| < a
2 ,

C0 sin
[
k0

( − z − a
2 − d

)]
, − a

2 −d � z � − a
2 ,

0, otherwise,

(6)

and

ξ1(z)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1 sin

[
k1

(
z − a

2 − d
)]

, a
2 � z � a

2 + d,

A1 sinh(β1z), |z| < a
2 ,

C1 sin
[
k1

(
z + a

2 + d
)]

, − a
2 − d � z � − a

2 ,

0, otherwise,

(7)

with knz
=

√
2mzEnz

/h̄2 and βnz
=

√
2mz(V0 − Enz

)/h̄2. Enz

is the eigenvalue of the nz-th subband. For the single dot
case, only the lowest subband (nz = 0) is relevant. With the
knowledge of the eigenfunctions of H0, one expresses the
single-electron basis functions in different valleys as φ

z(z)
nlnz

=
Knlξnz

e±ikSizuz(z)(r), with uz(z)(r) being the lattice-periodic
Bloch functions.

Then we introduce the valley coupling Hv according
to Ref. 28, where the relevant components are given by6,7
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〈φz
n′l′nz

|Hv|φz
nlnz

〉 = 〈φz
n′l′nz

|Hv|φz
nlnz

〉 = �0
nz,nz

δn,n′δl,l′ and

〈φz
n′l′n′

z
|Hv|φz

nlnz
〉 = 〈φz

n′l′n′
z
|Hv|φz

nlnz
〉 = �1

nz,n′
z
δn,n′δl,l′ . The

expressions of �0
nz,nz

and �1
nz,n′

z
are given in Appendix A.

Since the valley coupling between different subbands
(nz 
= n′

z) in our case is much smaller than the intersubband
energy difference (<2%), we neglect the intersubband
valley coupling. The eigenstates of H ′

0 then can be written as
φ±

nlnz
= 1√

2
(φz

nlnz
± φz

nlnz
) and the corresponding eigenenergies

are E±
nlnz

= Enl + Enz
+ E±

nz
with E±

nz
= �0

nz,nz
± |�1

nz,nz
|

representing the energy from the valley degree of freedom
and �Ev

nz
= 2|�1

nz,nz
| being the valley splitting.

For the three-electron case, the total Hamiltonian can be
expressed as

Htot = H 1
e + H 2

e + H 3
e + H 12

C + H 23
C + H 13

C . (8)

The superscripts “1,” “2,” and “3” on the right-hand side of the
equation label the relevant electrons, e.g., Hi

e represents the
single-electron Hamiltonian of the ith electron given by Eq. (2)
and the Coulomb interaction between ith and j th electrons is
expressed by

H
i,j

C = e2/(4πε0κ|ri − rj |). (9)

Here, κ is the relative static dielectric constant.
By using the single-electron functions {φ±

nlnz
} or {|nlnznv〉}

(nv = ± denotes the valley eigenfunction), we construct the
three-electron basis functions in the form of either doublet
(Stot = 1

2 , denoted as |D(�)
S∗ 〉) or quartet (Stot = 3

2 , denoted as

|Q(�)
S∗ 〉) with Clebsch-Gordan coefficients. Subscript S∗ stands

for the spin magnetic quantum number. Superscript � denotes
four valley configurations of three-electron basis functions,
i.e., � = −(+) for the case of three electrons in “−” (“+”)
valley and � = m (m̃) for two electrons in “−”(“+”) valley
and one electron in “+”(“−”) valley. The details of the three-
electron basis functions are given in Appendix B.

One calculates the matrix elements of Eq. (8) under the
three-electron basis functions. The details of the Coulomb
interaction are given in Appendix C. By neglecting the
small coupling between basis functions of different valley
configurations,6,7 the complete basis functions can be divided
into four individual sets according to valley configurations
(� = −, m, m̃, and +). We diagonalize the Hamiltonian of
each subspace and define an eigenstate as doublet |D(�)

S∗ 〉
(quartet |Q(�)

S∗ 〉) if its amplitude of doublet (quartet) compo-
nents is greater than 50%. In the following, we still use the
notations |D(�)

S 〉 and |Q(�)
S 〉 to describe the spin properties of

the eigenstates without any confusion.

III. NUMERICAL RESULTS

In our calculation, the effective mass mt = 0.19m0 and
mz = 0.98m0 with m0 representing the free electron mass.50

The strengths of the SOCs between the states with the
same valley index “±” are taken as a0 = ±6.06 m/s and
b0 = ±30.31 m/s (see Ref. 24). The Landé factor g = 2 (see
Ref. 51) and the relative static dielectric constant κ = 11.9
(see Ref. 42). In single QDs, we take 1430 quartets and 3330
doublets to guarantee the convergence of the energy spectrum,

TABLE I. The comparison between experimental data33 and our
results in four devices, Si1–Si4. �Ev

0 and d are the valley splitting
and half-well width used in the calculation. �μ∗

i represent the
experimental addition energy and �μi stand for the theory results.
Ri stand for the relative error between �μ∗

i and �μi . The effective
diameter d0 is determined from our calculation.52 The valley index
� denotes valley configuration of three-electron ground state in each
sample. Stot and “Deg.” represent the total spin and degeneracy factor
of the three-electron ground state in each sample, respectively.

Si1 Si2 Si3 Si4

�Ev
0 (meV) 0 0 0.27 0.12

d (nm) 3.945 3.945 3.945 3.926
�μ∗

1 (meV) 4.520 3.800 3.916 4.680
�μ1 (meV) 4.452 3.828 4.008 4.671
R1 (%) 1.5 0.7 2.3 0.2
�μ∗

2 (meV) 3.226 2.863 3.146 3.594
�μ2 (meV) 3.318 2.824 3.061 3.613
R2 (%) 2.9 1.4 2.7 0.5
d0 (nm) 31.5 35.3 34.1 30.3
� m/m̃ m/m̃ . . . m
Stot 1/2 1/2 3/2 1/2
Deg. 4 4 4 2

while in vertically coupled DQDs, we take 7316 quartets and
16008 doublets correspondingly.

A. Single quantum dots

1. Comparison with experiment

Recently, Borselli et al. investigated four Si/SiGe single
QDs, which are labeled as Si1–Si4 separately, in the absence of
the magnetic field.33 They measured the tuning voltages for the
injection of an additional electron into the QDs, i.e., �V

Ne
G =

V
Ne↔(Ne+1)
G − V

(Ne−1)↔Ne
G , where V

Ne↔(Ne+1)
G represents the

gate voltage where the electron number changes between
Ne and Ne+1. Then the addition energy of an incoming
electron was determined by �μNe = μNe+1 − μNe = α�V

Ne
G ,

where μNe = E
Ne
tot − E

Ne−1
tot with E

Ne
tot and α being the total

energy of the Ne-electron ground state and the energy-voltage
conversion factor. The experimental data of �μ1 and �μ2 of
the four samples (noted with the superscript ∗) are listed in
Table I.

For a theoretical study, one can obtain the total energy of
multielectron ground states and calculate the addition energy.
However, the well widths and effective diameters required for
quantitative calculation are unavailable in Ref. 33. Therefore
we first derive the well widths from Eq. (A2) with the reference
value suggested by the experimental work (d ∼ 4 nm).53

For Si3 and Si4, we use the valley splittings �Ev
0 from the

experiment.33 Since the valley splittings of Si1 and Si2 are
too small to be measured in experiment,33 we take them to
be zero in our calculation. Then we calculate the ground-state
energies of one-, two- and three-electron cases by treating d0 as
a parameter and determine its value by the least square method
of �μ1 and �μ2.52 In the previous section, we only introduce
the frame of the three-electron case. For the one-electron case,
one needs to diagonalize the single-electron Hamiltonian He
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as given in Eq. (2), while for the two-electron case we follow
the frame in Ref. 7.

Our results of addition energies as well as the effective
diameters of QDs are listed in Table I. Good agreement with
experimental data can be observed for all devices with the
largest relative error less than 3%, which confirms the validity
and accuracy of our model. In fact, one can also estimate
the effective diameter of the QDs solely from the fitting of
�μ1 with the experimental value �μ∗

1. With the effective
diameter obtained in this way, we recalculate �μ2 and find that
the value also agrees well with �μ∗

2 (within 4%). We should
point out that the Coulomb interaction here is very important
in these quantum systems. Without explicitly including the
Coulomb interaction, the addition energy is mainly from the
orbital energy and the theoretical results become far away from
the experimental data.

2. Ground-state configuration

In Table I, the valley configuration and total spin of the
three-electron ground states are also listed. As shown in the ta-
ble, the ground state in Si3 is mainly comprised of the quartets
with “−” valley configuration due to the large valley splitting.
This level is four-fold degenerate. However, the valley splitting
in Si4 is small and the ground state is two-fold degenerate
doublet of “m” configuration. For Si1 and Si2, the states with
“m̃” valley configuration are degenerate with those with “m”
configuration. Therefore the ground states are fourfold de-
generate. Since the states with different valley configurations
are decoupled as mentioned above,6,7 we explicitly investigate
the three-electron spectrum for each valley configuration
individually in the following. The relative position between the
spectra of different valley configurations is only determined
by the exact value of the valley splitting in real system, which
is also the criterion of the ground-state configuration.

To elucidate the valley and spin configurations of the
ground state in the absence of the magnetic field, we draw a
phase-diagram-like picture, Fig. 1(a), by calculating the energy
difference �Ev

g between the lowest level with pure (“−”)
configuration and that with mixed (“m”) configuration. From
this figure, one finds three regimes for each half-well width d,
as labeled by (�, Stot). It is seen that the ground state is of “−”
(“m”) valley configuration with large (small) valley splitting
as expected. For the “−” -configuration case, the ground state
can vary between quartet and doublet as the dot size changes,
with the transition occurring at around d0 = 26 nm (shown
as the vertical dotted line). Since the energy of the lowest
“+” (“m̃”) configuration state is always higher than that of
the lowest “−” (“m”) configuration one due to a finite valley
splitting, the ground state can not be of this configuration.
However, when �Ev

0 = 0, the lowest “m̃” -configuration level
is degenerate with the “m” -configuration one therefore can
also be the ground state in that case.

In our calculation, we determine the borderline between
different valley configurations from the degenerate condition
between them. Specifically, we calculate the energy of the
lowest “−” and “m” levels in the absence of the valley
splitting, i.e., E

p
g and Em

g separately, and obtain �Ev
g =

E
p
g − Em

g − �Ev
0 . The valley splitting on the borderline is

then given by �Ẽv
0 = E

p
g − Em

g . Actually, the real value of

 0

 0.3
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E
 (

m
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)
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(b) d = 2 nm

ΔEo

−ΔEC

FIG. 1. (Color online) (a) Valley and spin configurations of the
ground state in the absence of magnetic field. The curves represent
the effective diameter dependence of the valley splitting energy for
the emergence of the degeneracy between the lowest levels with “−”
and “m” valley configurations. For each half-well width d , the ground
state is of “−” (“m”) configuration above (below) the corresponding
curve. The “−” -configuration regime is separated into two parts
by the vertical dotted line, according to the total spin Stot. The valley
configuration and the total spin are labeled as (�, Stot) in each regime.
The crosses represent the parameters in Si1–Si4 in Ref. 33. (b) The
orbital energy difference and the inverse number of Coulomb energy
difference between the lowest quartet and doublet states with “−”
valley configuration vs effective diameter for d = 2 nm in the absence
of the magnetic field.

the valley splitting �Ev
0 for certain well width d should be

determined by �1
0,0 in Appendix C. If the coordinate (d0,�Ev

0)
locates above the curve of the corresponding well width, i.e.,
�Ev

0 > �Ẽv
0 or �Ev

g < 0, the ground state is of “−” valley
configuration. Otherwise, it should be of “m” configuration.

The origin of the variation of the ground-state spin
configuration in the “−” -configuration regime is found to be
the competition between the orbital and Coulomb energies.
The relative orbital (Coulomb) energy between the lowest
quartet and doublet �Eo (�EC) is defined as the orbital
(Coulomb) energy of the lowest quartet subtracting that of
lowest doublet. One calculates the orbital energy from the
expectation of

∑3
i=1 Hi

e of the three-electron eigenstates, while
the Coulomb energy is similarly given by H 12

C + H 13
C + H 23

C .
From the explicit expressions of the quartet and doublet given
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in Appendix B, one notices that all three electrons in quartet
must occupy different orbits while two electrons in doublet
can stay in the same one. Therefore the lowest quartet states
have higher orbital energy than the lowest doublet states
(�Eo > 0). We find that the Coulomb interaction of the lowest
quartet states is smaller than that of the lowest doublet states
(�EC < 0). In Fig. 1(b), we plot �Eo and −�EC as function
of effective diameter, where an intersection between these
two quantities can be seen. As a qualitative understanding,
�Eo ∝ 1/d2

0 can be characterized from h̄ω0 = h̄2π/(mtd
2
0 ),

while �EC ∝ 1/d0 is estimated from e2/(4πε0κd0). Therefore
the orbital energy is more sensitive to the diameter than the
Coulomb interaction. For a small-diameter QD, the relative
position between the lowest doublet and quartet is dominated
by the orbital energy and the ground state is doublet. As d0

increases, �Eo can become smaller than −�EC with the
crossover at d0 ∼ 26 nm in Fig. 1(b), resulting in the transition
of the ground state from doublet to quartet. Moreover, one may
notice that the Hund’s rule was reported to be still satisfied in
the absence of the magnetic field in large GaAs QDs,36 where
the three-electron ground state should be a doublet. The reason
lies in the fact that the effective mass in GaAs QDs is only one
third of that in [001]-grown Si QDs, resulting in an increase
of the orbital energy spacing (approximately proportional to
�Eo) in GaAs QDs. Therefore the Hund’s rule is easier to be
reached in that case. In other words, the striking deviation of
the Hund’s rule in Si QDs reflects the important role of the
Coulomb interaction.

From Fig. 1(a), one can directly read the ground-state
configuration with the knowledge of the dot size and valley
splitting, e.g., Si1–Si4 shown as crosses. Moreover, one notices
that our phase-diagram-like picture is robust against the well
width, resulting from the strong confinement regime along z

direction (d � d0).

3. Three-electron spectrum with “−” valley configuration

In this part, we take advantage of our model to calculate the
three-electron energy spectrum with “−” -valley configuration.
We study the perpendicular magnetic field dependence at
d = 2.12 nm (corresponding to �Ev

0 ≈ 1.9 meV) with
d0 = 20 and 29 nm, where the ground states lie in the (−,1/2)
and (−,3/2) configuration regimes, respectively. The lowest
few energy levels are plotted as function of B⊥ in Fig. 2. These
eigenstates are denoted as Q

(−)
−3/2, Q

(−)
−1/2, Q

(−)
1/2, Q

(−)
3/2, D

(−)
−1/2,

and D
(−)
1/2, according to the total spin Stot and Sz of the major

components in these states. The lowest doublet (quartet) states
at B⊥ = 0 T are labeled as circle (open triangle). It is seen that
the ground state for d0 = 20 nm is fourfold degenerate doublet,
while that for d0 = 29 nm is quartet, consistent with Fig. 1(a).
As the magnetic field increases, the degeneracy is lifted due to
the effect of the magnetic field on Landau level and Zeeman
splitting, resulting in many intersecting points as shown in
Figs. 2(a) and 2(b). We find that some intersecting points show
anticrossing behavior due to the SOCs.7 In this work, all the
anticrossing points are labeled by open squares. In the inset, we
enlarge the spectrum in the vicinity of one anticrossing point at
B⊥ ∼ 0.72 T, where an energy gap ∼0.24 μeV is present.21–23

As reported, the anticrossing points are important for spin
manipulation, due to the strong spin mixing at these
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FIG. 2. (Color online) The lowest few energy levels vs perpen-
dicular magnetic field B⊥ in single QDs with d = 2.12 nm and the
effective diameter d0 = 20 (a) and 29 nm (b). The anticrossing points
are labeled by open squares. The circle and open triangle at B⊥ = 0
describe the lowest doublet and quartet states separately. The total
orbital angular momenta L = l1 + l2 + l3 of the energy level are
labeled correspondingly.59 The inset in (a) zooms the vicinity of
the anticrossing point at B⊥ ∼ 0.72 T. The inset in (b) enlarges the
spectrum in the vicinity of B ∼ 0 T.

points.7,9,54–58 In this sense, our results are helpful for further
study on the doublet-quartet decoherence in three-electron
QDs by marking out the anticrossing points as the spin hot
spots.

Since the eigenstates are strongly mixed, e.g., the largest
component in the ground states is usually in the order of
20%, one can not naively describe an eigenstate by a single
basis function. However, away from the anticrossing points,
the SOCs are weak and the total orbital angular momentum
L = l1 + l2 + l3 is still a good quantum number. In Fig. 2(a),
we labeled this quantum number for each state. With this
quantum number, one can understand why an intersecting point
is anticrossing or not in the presence of SOCs. By rewriting
the SOCs in the form of ladder operators, one obtains

Hso = 2ia0

h̄
(P +S− − P −S+) − 2b0

h̄
(P +S+ + P −S−) (10)

with P ± = (Px ± iPy)/2 and S± = Sx ± iSy . Since P ± (S±)
changes L (Sz) by one unit, the states with (L, Sz) can only
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FIG. 3. (Color online) The lowest few energy levels vs parallel
magnetic field B‖ in single QDs. Open squares indicate the anti-
crossing points. The circle and open triangle at B⊥ = 0 describe
the lowest doublet and quartet in the absence of the magnetic
field. The total orbital angular momentum L = l1 + l2 + l3 are
labeled. The half-well width d = 2.12 nm and the effective diameter
d0 = 20 nm.

couple with the states with (L ∓ 1, Sz ± 1) via the Rashba term
and those with (L ± 1, Sz ± 1) via the IIA term.7 For example,
in the inset of Fig. 2(a), the spin-down doublet with (1, − 1

2 )
(black chain curve) couples with the quartet with (0, 1

2 ) (purple
dashed curve) via the IIA term, resulting in the anticrossing
behavior.

To exclude the orbital effect, we apply a parallel magnetic
field instead. The results with d = 2.12 nm and d0 = 20 nm are
shown in Fig. 3, where the eigenstates are denoted as Q

(−)
−3/2,

Q
(−)
−1/2, Q

(−)
1/2, Q

(−)
3/2, D

(−)
−1/2, and D

(−)
1/2 according to Stot and the

x-direction component Sx of their major components. In this
case, the energy levels are linearly dependent on the magnetic
field due to the Zeeman splitting. The degeneracy from the
orbital degree of freedom survives. For example, the ground
state for B‖ < 1 T is twofold degenerate with L = ±1 as
shown in Fig. 3. Similar to the situation with the perpendicular
magnetic field, we also observe anticrossing points, e.g., the
ones marked as open squares at B‖ ∼ 1.1 T. However, we
should point out that the criterion of the anticrossing points
here are different from that with perpendicular magnetic field.7

In this case, the SOCs can be written as7

Hso =
[
a0

h̄
(P + + P −) − ib0

h̄
(P + − P −)

]
(S̃+ + S̃−) (11)

with S̃± = Sy ± iSz.

4. Three-electron spectrum with “m” valley configuration

As shown in Table I and Fig. 1, the valley configuration
of the ground state can be “m” for small valley splitting case,
e.g., in Si4 with ∼0.12 meV. In this part, we study the energy
spectrum with the “m” valley configuration to illustrate the role
of the valley degree of freedom in the three-electron spectrum.
In Fig. 4, we plot the perpendicular magnetic field dependence
of the energy spectrum with the “m” valley configuration in
Si4 (d = 3.926 nm and d0 = 30.3 nm). Similarly, the lowest
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 36
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FIG. 4. (Color online) The lowest few energy levels with the “m”
valley configuration vs perpendicular magnetic field B⊥ in single
QDs. Open squares indicate the anticrossing points. The curves with
crosslets denote the threefold degenerate levels (two doublet states
and one quartet state) and the ones with solid triangles represent the
twofold degenerate levels (one doublet state and one quartet state).
The circle and open triangle at B⊥ = 0 describe the lowest doublet
and quartet and doublet. The total orbital angular momenta L =
l1 + l2 + l3 are labeled. The half-well width d = 3.926 nm and the
effective diameter d0 = 30.3 nm.

several eigenstates here are denoted as Q
(m)
−3/2, Q

(m)
−1/2, Q

(m)
1/2,

Q
(m)
3/2, D

(m)
−1/2, and D

(m)
1/2, according to the total spin Stot and

Sz of the major components. The lowest doublet and quartet
states at B⊥ = 0 T are labeled as circle and open triangle,
respectively. In the “m” valley configuration case, each single-
electron orbit (distinguished by the quantum numbers n, l, and
nz) is fourfold degenerate due to the spin and valley degrees of
freedom. Therefore, at most two electrons in quartet can stay
in the same single-electron orbit, while all the three electrons
in doublets can stay in the same one. This gives rise to the
difference between energy spectrum of the “m” and “−” valley
configurations.

Interestingly, we find that the magnetic-field independent
degeneracy between quartet and doublet can exists in the “m”
valley configuration. We notice that the degeneracy due to
the valley degree of freedom has been discussed by Wang
et al. in the two-electron case in Ref. 7. Here, we find
that the present degeneracy can be either two- or threefold.
In Fig. 4, the threefold degenerate levels (one quartet state
and two doublet states) are labeled by crosslets, while the
twofold degenerate ones (one quartet state and one doublet
state) are marked by solid triangles. Actually, this energy-
level degeneracy mainly results from the negligibly small
intervalley Coulomb interaction and SOCs.6,7 One finds that
the doublet states in the twofold degenerate case are mainly
comprised of |D(m)(2)

±1/2 〉 elements. This is associated with the

situation that |D(m)(2)
±1/2 〉 basis functions of the “m” configuration

are decoupled with |D(m)(1)
±1/2 〉 and |D(m)(3)

±1/2 〉 in the absence of
the intervalley Coulomb interaction and SOCs. Moreover, one
finds that there is one |Q(m)

±1/2〉 basis function with the same

orbital construction as each |D(m)(2)
±1/2 〉 and vice versa, according
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to Appendix B.60 The corresponding Hamiltonian elements
for these two sets are equal, i.e.,〈

D
(m)(2)
±1/2

∣∣Htot

∣∣D(m)(2)′
±1/2

〉
= 〈

Q
(m)
±1/2

∣∣Htot

∣∣Q(m)′
±1/2

〉
= 〈N1N2N3|Htot|N ′

1N
′
2N

′
3〉 ± 1

2gμBBz

−〈N1N2N3|Htot|N ′
2N

′
1N

′
3〉. (12)

Thus it is clear that each quartet energy level with Sz = ± 1
2

degenerates with one doublet state (constructed by |D(m)(2)
±1/2 〉).

For the threefold degenerate levels shown as the curves
with crosslets in Fig. 4, we find that the additional doublet
state is combined by |D(m)(1)

±1/2 〉 and |D(m)(3)
±1/2 〉 basis functions.

However, the combination of these basis functions is very
complex, therefore we skip the discussion in this work.

B. Vertically coupled double quantum dots

In this part, we investigate the vertically coupled DQD case
with a perpendicular magnetic field B⊥ = 0.1 T with both the
“−” and “m” valley configurations. We first study the interdot
barrier-width dependence of the “−” valley configuration. In
Fig. 5(a), the orbital energies of the lowest two subbands
along the z direction are plotted as a function of interdot
barrier width. One can see that the orbital energy of the first
subband increases while that of the second subband decreases
as the barrier width increases, resulting in the decrease of the
energy difference E1 − E0 between them. This corresponds to
the decrease of the interdot coupling. Differently, the valley
energies of the lowest two subbands present oscillation against
the barrier width, which can be expected from the formula
given in Appendix A. Since the intersubband coupling due to
the valley-orbit coupling is much weaker than the intersubband
splitting from the orbital degree of freedom, we neglect this
term in our calculation. Actually, the first subband dominates
the lowest few states because of the large intersubband splitting
(>10 meV) in the strong interdot coupling regime studied
here. The lowest four levels are plotted in Fig. 5(c), where
the energies from the subband and valley are subtracted for
improving the solution of levels. Similar to the single QD case,
the doublet-quartet transition of the ground state can occur
and the anticrossing behavior (illustrated as open squares at
a ∼ 1.5 nm) can be observed. We also study the barrier-height
dependence with “−” valley configuration and plot the results
as Figs. 5(e)–5(g). In Fig. 5(g), the doublet-quartet transition
of the ground state and the anticrossing properties are also
present.

As a comparison, we also show the energy spectrum of the
“m” valley configuration case as Figs. 5(d) and 5(h), where
the ground state is doublet. In these figures, the curves with
crosslets also represent the three-fold degeneracy (two doublet
state and one quartet state).

For the DQDs, the interdot detuning is an interesting issue
for the spin manipulation.6,8–10,44,54,55,58 In the present work,
we skip the explicit study on the interdot detuning dependence
of the three-electron spectrum, where the three electrons can
fill the two dots with different charge configurations.61 Even
though, the major information can still be available from our
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FIG. 5. (Color online) (a) and (e) represent the interdot barrier-
width and barrier-height dependencies of the lowest two subband
energies along z direction. (b) and (f) are the valley energies of the
lower valley eigenvalue of the lowest two subbands as a function
of the interdot barrier width and barrier height. (c) and (g) show
the three-electron energy spectrum with “−” valley configuration,
while (d) and (h) give the corresponding spectrum with “m” valley
configuration. Open squares in (c) and (g) indicate the anticrossing
points. The curves with crosslets denote the threefold degeneracy of
the levels (two doublet states and one quartet state). The total orbital
angular momenta L = l1 + l2 + l3 of each states are labeled. Here,
the effective diameter d0 = 29 nm, the well width d = 2 nm and
B⊥ = 0.1 T. In (a)–(d), the barrier height V0 = 50 meV. In (e)–(h),
the barrier width a = 1 nm.

results of the single and double dot cases in the large- and
zero-detuning limits.

IV. SUMMARY

In summary, we have studied three-electron energy spectra
in Si/SiGe single QDs and vertically coupled DQDs by
using the exact-diagonalization method. In our calculation,
the Zeeman splitting, SOC, valley coupling, and electron-
electron Coulomb interaction are explicitly included. Due
to the strong Coulomb interaction, a large number of basis
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functions are employed to converge the energy spectrum. The
ground-state energies in single QDs show good agreement with
the experiment. As a supplement of the experimental data, we
identify the valley configuration, spin configuration and the
degeneracy factor of the ground state from our calculation. We
then systematically study the ground-state configuration in
the absence of magnetic field, and find that the ground state is
of pure and mixed valley configurations with large and small
valley splittings, respectively. We show that the ground state
with mixed valley configuration is always doublet. In contrast,
the ground state with pure valley configuration is doublet in
small dots, while it can be quartet in large dots. Then, we
explicitly study the energy spectra of the three-electron states
with two typical valley configurations, i.e., pure and mixed
valley states, in the presence of perpendicular and parallel
magnetic fields. In the pure valley configuration case, we show
that the doublet-quartet transition of the ground state can be
realized by tuning the magnetic field and/or dot size. For the
mixed valley configuration, the doublet-quartet transition of
the ground state can also be realized by magnetic field and the
three-electron energy spectrum presents interesting doublet-
quartet degeneracy, which is connected with the negligible
intervalley coupling. Due to the spin-orbit coupling, the inter-
secting points between the energy levels with identical valley
configuration but different spin quantum numbers can present
anticrossing behavior, which is expected to benefit the manip-
ulation of spin. We point out and analyze all these anticrossing
points in each case. Furthermore, we study the barrier-width
and barrier-height dependencies of the three-electron energy
spectrum in vertically strong-coupled DQDs. We also find
anticrossing points in the pure valley configuration case and
doublet-quartet degeneracy in the mixed configuration case.
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APPENDIX A: VALLEY COUPLING ELEMENTS

�0
0,0 = Vvh̄

2k0
2C0

2

mz

+ 2VvV0C0
2 sin2(k0d), (A1)

�1
0,0 = Vvh̄

2k0
2C0

2 cos
[
2kSi

(
a
2 + d

)]
mz

+ 2VvV0C0
2 sin2(k0d) cos(kSia), (A2)

�0
1,1 = Vvh̄

2k1
2C1

2

mz

+ 2VvV0C1
2 sin2(k1d), (A3)

�1
1,1 = Vvh̄

2k1
2C1

2 cos
[
2kSi

(
a
2 + d

)]
mz

+ 2VvV0C1
2 sin2(k1d) cos(kSia), (A4)

�1
0,1 = −�1

1,0 = i

{
Vvh̄

2k0k1C0C1

mz

sin[kSi(a + 2d)]

+ 2VvV0C1C0 sin(k0d) sin(k1d) sin(kSia)

}
, (A5)

where Vv = 7.2 × 10−11 m represents the ratio of the valley
coupling strength to the depth of the quantum well potential.28

APPENDIX B: THREE-ELECTRON BASIS FUNCTIONS

The three-electron basis functions can be constructed in
form of either doublet (Stot = 1/2) or quartet (Stot = 3/2).
We first combine the spin wave functions via Clebsch-Gordan
coefficients. For the doublet states, the spin functions can be
expressed by

χλ
1/2 = [(β1α2 + α1β2)α3 − 2α1α2β3]/

√
6,

χλ
−1/2 = [2β1β2α3 − (β1α2 + α1β2)β3]/

√
6,

(B1)
χ

ρ

1/2 = (β1α2 − α1β2)α3/
√

2,

χ
ρ

−1/2 = (β1α2 − α1β2)β3/
√

2,

and for the quartet states, one has

χS
3/2 = α1α2α3,

χS
1/2 = (α1α2β3 + α1β2α3 + β1α2α3)/

√
3,

(B2)
χS

−1/2 = (α1β2β3 + β1β2α3 + β1α2β3)/
√

3,

χS
−3/2 = β1β2β3.

Here, αi = |↑〉i and βi = |↓〉i with the subscript denoting
the three electrons. The superscript “S” labels the symmetric
configuration for the permutation of any two electrons, while
“λ” and “ρ” represent the symmetric and antisymmetric
configurations for the permutation only for the electrons “1”
and “2,” respectively. With these spin wave functions, we then
add the corresponding orbital parts to construct the total basis
functions, which should maintain the antisymmetric nature for
the permutation of any two of the electrons. Specifically, when
the three electrons occupy three different orbits, i.e., Ni 
= Nj

with i,j ∈ {1,2,3}, one has the total wave functions of the
doublet states∣∣D(�)(1)

1/2

〉 = φρ(1)χλ
1/2 − φλ(1)χ

ρ

1/2,∣∣D(�)(2)
1/2

〉 = φρ(2)χλ
1/2 − φλ(2)χ

ρ

1/2,
(B3)∣∣D(�)(1)

−1/2

〉 = φρ(1)χλ
−1/2 − φλ(1)χ

ρ

−1/2,∣∣D(�)(2)
−1/2

〉 = φρ(2)χλ
−1/2 − φλ(2)χ

ρ

−1/2,

and those of the quartet states∣∣Q(�)
3/2

〉 = φAχS
3/2,∣∣Q(�)

1/2

〉 = φAχS
1/2,

(B4)∣∣Q(�)
−1/2

〉 = φAχS
−1/2,∣∣Q(�)

−3/2

〉 = φAχS
−3/2.

When two electrons with opposite spins share the
same orbit, i.e., N1 = N2 
= N3, N1 
= N2 = N3, or
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N1 = N3 
= N2,∣∣D(�)(3)
1/2

〉 = φρχλ
1/2 − φλχ

ρ

1/2,
(B5)∣∣D(�)(3)

−1/2

〉 = φρχλ
−1/2 − φλχ

ρ

−1/2.

Here, {φ} are the corresponding orbital wave functions. The
superscript “A” on the right-hand side of Eq. (B4) describes the

permutation antisymmetric character for the exchange of any
two electrons and the “(1)” and “(2)” in the superscripts of
Eq. (B3) are used to distinguish the two doublet configurations
with the same spin magnetic quantum numbers or the two
orbital functions with the same symmetry. The orbital wave
functions can be expressed as

φA = 1√
6

(|N1N2N3〉 − |N1N3N2〉 + |N2N3N1〉 − |N2N1N3〉 + |N3N1N2〉 − |N3N2N1〉),

[2pt]φρ(1) = 1

2
√

2
(|N3N2N1〉 − |N2N3N1〉 + |N3N1N2〉 − |N1N3N2〉),

[2pt]φλ(1) = 1

2
√

6
(|N1N3N2〉 + |N2N3N1〉 + |N3N2N1〉 + |N3N1N2〉 − 2|N1N2N3〉 − 2|N2N1N3〉),

[2pt]φρ(2) = 1

2
√

6
(2|N1N2N3〉 − 2|N2N1N3〉 − |N2N3N1〉 + |N3N2N1〉 − |N3N1N2〉 + |N1N3N2〉),

[2pt]φλ(2) = 1

2
√

2
(|N3N1N2〉 − |N3N2N1〉 + |N1N3N2〉 − |N2N3N1〉),

(B6)

φρ =
⎧⎨⎩

1
2 (|N1N3N1〉 − |N3N1N1〉), N1 = N2 
= N3,
1
2 (|N1N2N2〉 − |N2N1N2〉), N1 
= N2 = N3,
1
2 (|N1N2N1〉 − |N2N1N1〉), N1 = N3 
= N2,

(B7)

φλ =

⎧⎪⎨⎪⎩
1

2
√

3
(2|N1N1N3〉 − |N1N3N1〉 − |N3N1N1〉), N1 = N2 
= N3,

1
2
√

3
(|N2N1N2〉 + |N1N2N2〉 − 2|N2N2N1〉), N1 
= N2 = N3,

1
2
√

3
(2|N1N1N2〉 − |N1N2N1〉 − |N2N1N1〉), N1 = N3 
= N2.

(B8)

We should point out that the antisymmetric nature of the total basis functions Eqs. (B3)–(B5) is still maintained. For example,
the exchange of the subscripts “1” and “2” in φρ(1), χλ

1/2, φλ(1), and χ
ρ

1/2 results in an additional minus sign for |D(�)(1)
1/2 〉. Actually,

one can also demonstrate that these basis functions are the linear combinations of the Slater determinants.

APPENDIX C: MATRIX ELEMENTS OF COULOMB INTERACTION

The Coulomb interaction components read7,9,45

〈N1N2N3|Hij

C |N ′
1N

′
2N

′
3〉 = e2

16π2ε0κ
δNk,N

′
k
δli+lj ,l

′
i+l′j

∑
γi ,γj ,γ

′
i ,γ

′
j =z,z

ηγi

nvi
η

γj

nvj
η

γ ′
i

n′
vi
η

γ ′
j

n′
vj
U

(
φ

γi

ni linzi
,φ

γj

nj lj nzj
,φ

γ ′
i

n′
i l

′
i n

′
zi
,φ

γ ′
j

n′
j l

′
j n

′
zj

)
(C1)

with {i,j,k} = {1,2,3}. Here, |Ni〉 ≡ |nilinzinvi〉 is the single-electron wave function of the ith electron. Superscripts γi(j ) and
γ ′

i(j ) run over the two valleys with ηz
± = 1 and ηz

+ = −ηz
− = 1 (see Ref. 7). U in Eq. (C1) can be expressed as7,45

U
(
φ

γ1
n1l1nz1

,φ
γ2
n2l2nz2

,φ
γ ′

1

n′
1l

′
1n

′
z1
,φ

γ ′
2

n′
2l

′
2n

′
z2

) =
∫ ∞

0
dk‖

∫ ∞

−∞
dkzk‖P

n′
1l

′
1

n1l1
(k‖)P n2l2

n′
2l

′
2

(k‖)
W

n′
z1

γ ′
1

nz1 γ1 (kz)
[
W

nz2 γ2

n′
z2

γ ′
2
(kz)

]∗

k2
.

P n′l′
nl can be obtained from the lateral part of the integral 〈nlnzγ |eik·r|n′l′n′

zγ
′〉.

P n′l′
nl =

√
n!n′!

(n + |l|)!(n′ + |l′|)!e
− k2‖

4α2

n′∑
i=0

n∑
j=0

Ci
n′,|l′|C

j

n,|l|n!L|l−l′|
n

(
k2
‖

4α2

)[
sgn(l′ − l)

k‖
2α

]|l′−l|
, (C2)

with Ci
n,l = (−1)i

i! ( n+l

n−i
), n = i + j + |l|+|l′|−|l−l′|

2 and sgn(x) being the sign function. W
n′

zγ
′

nzγ in Eq. (C2) is the integral

〈nzγ |exp(ikzz)|n′
zγ

′〉.
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8D. Culcer, L. Cywiński, Q. Li, X. Hu, and S. Das Sarma, Phys. Rev.
B 82, 155312 (2010).

9L. Wang and M. W. Wu, J. Appl. Phys. 110, 043716 (2011).
10D. Culcer, A. L. Saraiva, B. Koiller, X. Hu, and S. Das Sarma,

e-print arXiv:1107.0003v1 (unpublished).
11C. Tahan, M. Friesen, and R. Joynt, Phys. Rev. B 66, 035314

(2002).
12M. S. Sherwin, A. Imamoglu, and T. Montroy, Phys. Rev. A 60,

3508 (1999).
13A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098

(1996).
14C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters,

Phys. Rev. A 54, 3824 (1996).
15D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H.

Zurek, T. F. Havel, and S. S. Somaroo, Phys. Rev. Lett. 81, 2152
(1998).

16H. Dery, Y. Song, P. Li, and I. Žutić, Appl. Phys. Lett. 99, 082502
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momentum L = l1 + l2 + l3. And the spin-orbit coupling is very
weak compared with the orbital energy and Coulomb interaction.
Therefore one can denote each state (except in the vicinity of the
anticrossing points) by the total orbital angular momentum.

60Here, we take nv1 = nv2 = − and nv3 = + for the permuta-
tion antisymmetric or symmetric characters of the orbital part

of the basis functions for the electrons “1” and “2.” Even
though, the identity among the three electrons is still guaranteed
by the orthogonality and completeness of the entire Hilbert
space.
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