
PHYSICAL REVIEW B 85, 045304 (2012)

Intersubband polaritons in the electrical dipole gauge
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We provide a theoretical description of the coupling between the electromagnetic field and the intersubband
excitations of a bidimensional electron gas. Our theory, based on the electrical dipole gauge, applies generally to
an arbitrary quantum heterostructure embedded in a multilayer waveguide or in a microcavity. We show that the
dipole gauge Hamiltonian takes into account the Coulomb interactions in the system, without the need of adding
extra terms to the Hamilitonian. Furthermore, the bright excitations of the system appear as many-body collective
plasmon modes, interacting between each other and with the light field through dipole coupling. The electrical
dipole gauge therefore provides a suitable framework for the study of solid-state quantum electrodynamics
phenomena that occur at very high electronic densities, such as the ultrastrong light-matter interaction.
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I. INTRODUCTION

In the description of a physical problem dealing with
light-matter interaction, there is always a degree of freedom in
the choice of the potentials associated with the electromagnetic
field. Even though the physical phenomena are obviously
independent from the particular vector or scalar potentials
used, the choice of the gauge is a critical issue, as it can
be more or less adequate for the physical interpretation of
the phenomena. In the literature, there is already a consensus
that the interaction of nonrelativistic bound charges is very
conveniently expressed in terms of the dipole gauge.1 This has
been first identified by Power and Zienau in the 1950s (Ref. 2)
and subsequently by Woolley.3 In this formulation, called
Power-Zienau-Woolley (PZW) gauge, the sources are electric
and magnetic polarization fields and the coupling occurs via
the intensities of the displacement field D and the magnetic
field H rather than using the scalar and vector potentials V and
A. In the case where the magnetic interactions in the system
can be neglected, the PZW gauge is also called dipole gauge
since the interaction Hamiltonian contains only the coupling
between the material polarization P with the light field.

In our paper, we propose to apply the dipole gauge
to the case of intersubband transitions interacting with a
photonic cavity mode. The motivation of our approach stems
from the fact that we are interested to investigate a regime,
called ultrastrong coupling, first introduced by Ciuti et al.4

This regime of light-matter interaction is attainable in a
bidimensional electron gas with very high density embedded
into a photonic microcavity4–6 and is characterized by the
fact that the coupling and the material excitation energies
are comparable quantities. However, the very high electronic
densities increase on one hand the light-matter interaction and
on the other renormalize the transition energies of the system
due to a collective effect, the ”depolarization shift.”7 This
effect can not be neglected in the limit of ultrastrong coupling,
however, it was not explicitly considered in the initial study
described in Ref. 4. In our work, we show that the dipole
gauge Hamiltonian handles the light-matter interaction and
the depolarization effect on the same footing. The underlying
physical picture is that the active polarization that couples to
the photonic mode is not a single-particle electronic transition
between confined states, but rather a collective electronic

mode (a plasmonic mode) arising from electrons distributed
in different subbands, yet phased by the Coulomb interaction.
The latter point is one of the main conclusions of our theoretical
investigation.

The correct description of the collective electronic excita-
tions and their interaction with light can be obtained in the
Coulomb gauge, only if both the vector potential A and scalar
potential V are considered. This has already been noticed in
studies of ensembles of two-level systems interacting with
light.8 In the absence of the cavity, thus in the weak-coupling
limit, collective effects can be identified with the scalar
potential V ,9 which describes an instantaneous interaction
between electrons.10 However, when dealing with the resonant
coupling of a microcavity with an electronic transition the
observable quantity is the retarded electromagnetic field that
can be obtained through a proper combination of both V

and A.10 In order to have a general Hamiltonian, which is
valid from the weak- to the ultrastrong-coupling regimes, it is
therefore essential to include the Coulomb potential V , thus
completing the study of Ref. 4. Such Hamiltonian is readily
obtained in the dipole gauge, where the matter degrees of
freedom are gathered in the polarization field P, which not
only describes the interactions between the electrons, but also
couples to a material-independent and retarded photonic field
described by the electric displacement D.1,10 Indeed, as we
previously pointed out in Ref. 6, the depolarization effect in
the bidimensional electron gas is contained in the quadratic
P2 term of the dipolar Hamiltonian. As a result, our model
correctly describes the local field effects arising from the very
different spatial scales between the electronic and photonic
confinements. The results of Ref. 4 are contained in our
formalism and recovered only in the opposite limit, i.e., when
the electronic polarization fills the whole cavity volume. The
importance of the spatial overlap factor was also outlined in
our experimental study of the ultrastrong-coupling regime6,11

as it allows us to correlate both polaritonic and weak-coupling
absorption data. On a more fundamental level, we show how
the spatial confinement of the electronic polarization leads to
the no-go theorem for intersubband transitions.12,13

Our paper is organized as follows. In Sec. II, we establish
the Hamiltonian of the system in the dipole gauge. We
consider a very general case of an arbitrary heterostructure
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embedded into a general planar waveguide multilayer. The
microscopic expression of the intersubband polarization field
is derived in Sec. II D, in the long-wavelength approximation.
This microscopic expression relies directly on the electronic
wave functions, and therefore allows us to go beyond the
semiclassical model employed in Ref. 6, as it applies to an
arbitrary heterostructure potential, with an arbitrary number
of occupied subbands.

In Sec. III, we adapt the general dipolar Hamiltonian
obtained in Sec. II to the case of a series of highly doped
quantum wells and we express it in terms of the collective
electronic excitations of the system. We also provide a version
of this “plasma Hamiltonian” for the case of zero-dimensional
(0D) resonators (Sec. III C). In Sec. III D, we study the
correspondence between the plasma Hamiltonian, truncated
for the case of a single intersubband transition and a single
waveguide mode, and the corresponding Hamiltonian in the
Coulomb gauge. This allows us to connect our formalism with
previous work.4 In particular, we show that the dipole gauge
provides automatically the relevant contributions due to the
Coulomb interaction of the system, which were missing in
Ref. 4.

The formalism is applied to study the properties of the
polariton states in Sec. IV. In Sec. IV A, we examine the
polariton dispersion, and in Sec. IV B, we discuss the no-go
theorem for intersubband transitions. We show in Sec. IV C
that our formalism is consistent with the effective medium
approach, in full agreement with what has been proposed in the
literature.14 Most of the technical details have been gathered
in the appendices.

II. INTERACTION HAMILTONIAN

A. General considerations

The interaction between light and quantum heterostructures
is usually studied in planar multilayered systems. This geom-
etry is most naturally compatible with the epitaxial growth.
A very general system is described in Fig. 1(a). It consists
of homogeneous, nonabsorbing, and nondispersive dielectric
layers described by real dielectric constants εi , embedded
between two infinite semiplanes that act as optical claddings.
We can then define a piecewise dielectric function ε(z), with
ε(z) = εi in the ith layer, z being the growth axis. The
multilayered dielectric stack defines guided modes that confine
the light field around the heterostructures. Note that, at this
point, ε(z) does not include the resonant contribution from the
electronic transition in the heterostructures. This contribution
will be included through the coupling between the guided
modes and the electronic polarization. The full Hamiltonian
of the system is written as

Ĥ = Ĥe + Ĥp + Ĥint. (1)

Here, Ĥe is the Hamiltonian of the electron gas in the
heterostructures, which is provided explicitly in Sec. II C, and
Ĥp is the photon Hamiltonian:

Ĥp =
∫ [

1

2ε0ε(z)
D̂2(r) + μ0

2
Ĥ2(r)

]
d3r (2)

FIG. 1. (Color online) (a) General planar multilayered system
with a piecewise dielectric function ε(z), supporting guided modes.
There are quantum heterostructures embedded inside the multilayered
stack. (b) TM0 mode guided between two metallic plates.

with D̂(r) and Ĥ(r), respectively, the displacement field and
the magnetic field operators. The interaction Hamiltonian Ĥint

in the electrical dipole gauge is written as, neglecting the
magnetic interactions,15

Ĥint =
∫

1

ε0ε(z)

[
−D̂(r) · P̂(r) + 1

2
P̂2(r)

]
d3r. (3)

Here, P̂(r) is the polarization density operator of the electron
gas. This is a central quantity in our theory, and it is provided
explicitly in Sec. II D from a microscopic model. One issue that
we will discuss in details in the paper is the role of the quadratic
interaction term P̂2(r), which describes the self-interaction of
the electronic polarization, and therefore contains the effects
of the dipole-dipole interactions.

Most generally, the expression of the interaction (3) should
be written as a nonlocal expression, which takes into account
the spatial dispersion of the electromagnetic response of
the medium.16 However, as illustrated in Fig. 1(a), in the
systems that we study, the heterostructures embedded in the
multilayered stack have a typical extension in the growth axis
(the z axis) that is much smaller than the wavelength. This
justifies the local form of the interaction postulated in Eq. (3).

We can evaluate the convenience of the dipole gauge
already at the classical level, where the displacement field
D(r) is determined only by the charges exterior to the
system. On a quantum mechanical level, this means that D̂(r)
describes a purely transverse field.10 Therefore, neglecting the
dissipation in the system, we can consider D̂(r) as a free
photon field, independent from the electronic polarization
of the heterostructures. This can be clearly observed, for
instance, in the normal component of the displacement field
D̂z, which, while it couples to the intersubband polarization,
is continuous across the interfaces. We therefore consider the
derivation of D̂(r) as a separate problem, which is dependent
only on the particular arrangement of the multilayered stack.
In this approach, the resonant contributions of the electronic
intersubband transitions taking place in the active media are
contained separately in the polarization operator density P̂,
and are active only through the interaction term Ĥint. Later on
(Sec. IV C), we shall see that this approach leads to an effective
medium treatment of the system.
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In our treatment, the dissipation effects will be neglected.
The latter can be taken into account as in the classical paper
by Huttner and Barnet17 by including a dissipative bath with
continuous degrees of freedom. This approach will, however,
require more precise definition of the displacement field D̂, as
it leads to a noise contribution from the dissipative bath.15,17

Here, we will restrict to a fully Hamiltonian treatment. The
dissipation will be taken into account only in a phenomeno-
logical way in Sec. IV C by adding a small imaginary part to
the eigenfrequencies of the system.18

B. Free photon Hamiltonian

For the quantum description of electromagnetic field, we
use the basis of the guided modes of the multilayered stack,
which are bounded in space. Due to the translational invariance
of the system in the plane perpendicular to the z axis, the guided
modes are characterized by their in-plane wave vector q and
their energy h̄ωcq. The function ωcq = ωcq(|q|) defines the
dispersion relation of the guided modes. The heterostructures
interact only with the Transverse Magnetic (TM)-polarized
modes in order to respect the selection rule of intersubband
transitions.19 By using the general quantization rules,10,20 we
can assign bosonic creation and annihilation operators a

†
q and

aq to each guided mode. The components of the quantized
electromagnetic TM free field are then

Ĥ =
∑

q

iAq(eq ∧ ez)fq(z)eiqr‖(aq + a
†
−q), (4)

D̂z =
∑

q

iAqez

|q|
ωcq

fq(z)eiqr‖(aq − a
†
−q), (5)

D̂‖ = −
∑

q

Aqeq
1

ωcq

dfq(z)

dz
eiqr‖ (aq − a

†
−q), (6)

Aq =
(

h̄ωcq

2μ0SLq

)1/2

. (7)

Here, S is the area of the system and r‖ is the in-plane
position vector. We have introduced the unit vectors ez and
eq = q/|q|, and the symbol ∧ designs the vector product. The
constant Aq is the vacuum field intensity of the guided modes.
It has been derived, for this particular system, in Appendix A.
The function fq(z) describes the lateral profile of the guided
modes, and Lq is a normalization coefficient:∫ +∞

−∞
fq(z)2dz = Lq. (8)

If we set the maximum of the dimensionless function fq(z)
equal to 1, with this definition, Lq can be regarded as the
effective thickness of the multilayer system. The function fq(z)
satisfies the Helmholtz equation

d2fq(z)

dz2
− q2fq(z) + ε(z)ω2

cq

c2
fq(z) = 0. (9)

According to the boundary conditions for the electromag-
netic field, fq and ε(z)−1dfq/dz must be continuous at the
interfaces between the different layers, and fq(z) must vanish
for z → ±∞. Such a function has been illustrated in Fig. 1(a).
Equation (9) will have in general multiple solutions, describing

different modes labeled by a discrete index j , which can be
added in the notations if necessary.

One or two boundaries of the multilayer system can be
metallic. In the mid- and far-infrared frequency ranges, the
metals are described by a very large negative real dielectric
constant εM < 0, and the electromagnetic field density in the
metallic layers is vanishing. Therefore, in order to have a
consistent quantification scheme for the electromagnetic field,
without the burden of quantifying the conducting electrons
in the metallic boundaries, we neglect the electromagnetic
density energy in the metallic regions in the integrals (2) and
(3). However, the finite dielectric constant εM can be taken into
account through the dispersion relation of the guided modes
as for the example provided in Appendix A.

With the use of the above expressions, the Hamiltonian (2)
of the free electromagnetic field takes the standard form

Ĥp =
∑

q

h̄ωcq(a†
qaq + 1/2). (10)

We now apply this formalism to a particular system. For
mid-IR and THz frequencies, the simplest confining system
is provided by the TM0 mode guided between two metallic
plates, separated by a distance Lcav, as illustrated in Fig. 1(b).
The semiconductor with a dielectric constant ε fills the space
between the plates. In this case, in the limit of perfect
metallic boundaries we have fq(z) = 1 and Lq = Lcav and
the dispersion relation becomes q2 = εω2

cq/c
2 [Fig. 1(b)].

The in-plane component of the displacement field vanishes,
D̂‖ = 0, and the remaining nonzero z component is

D̂z = iez

∑
q

√
εε0h̄ωcq

2SLcav
eiqr‖ (aq − a

†
−q). (11)

In the rest of the paper, we consider exclusively the TM0

mode, which simplifies greatly the calculations without a loss
of generality. In Sec. III C, we also consider the case of double-
metal zero-dimensional microcavities in which we have added
a lateral confinement. In these structures, the propagation wave
vector q of the TM0 mode becomes quantized.

C. Electronic Hamiltonian

In a semiconductor heterostructure, the band offsets be-
tween different semiconductor layers provide a confining
potential V (z) in the growth axis. A typical example of
a confining heterostructure, the quantum well, is sketched
in Fig. 2(a), and a general heterostructure is illustrated in
Fig. 2(b). We consider the case where the Fermi level EF

lies into the conduction band, due to intentional doping,
which leads to the formation of a bidimensional electron gas7

[Fig. 2(b)]. The potential V (z) yields discrete energy levels
h̄ωλ, labeled by an integer index λ. Electrons are free to move
in the plane perpendicular to the growth axis, and we denote by
h̄k their in-plane momentum. This free movement is described
by the parabolic subbands illustrated in Figs. 2(a) and 2(b),
and the total energy of an electron in the subband λ is

h̄ωλk = h̄ωλ + h̄2k2

2m∗ (12)
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FIG. 2. (Color online) (a) Typical quantum heterostructure po-
tential V (z): a quantum well. There a two bound levels with wave
functions φ1,2(z). (b) General potential of a doped heterostructure,
including the Hartree correction VH (z) due to the static Coulomb
interactions.

with m∗ the effective electron mass. In a highly doped
heterostructure, in order to determine the confining energies
h̄ωλ, one must take into account not only the heterostructure
potential, but also the Coulomb interaction between the
charges. In the Hartree approximation, this static Coulomb
interaction is described by a self-consistent potential VH (z)
due to the presence of electrons and ionized impurities.7,19

The potential VH (z) depends on the envelope wave functions
φλ(z). Therefore, the energies h̄ωλ and wave function φλ(z) are
determined altogether by solving the one-particle Schrödinger
equation with a total potential V (z) + VH (z) self-consistently
with a Poisson problem:7[

− h̄2

2m∗
d2

dz2
+ V (z) + VH (z)

]
φλ(z) = h̄ωλφλ(z), (13)

d2VH (z)

dz2
= − e2

εε0
[ρ(z) − Nd (z)], (14)

ρ(z) = m∗

πh̄2

∑
λ

Nλ|φλ(z)|2. (15)

Here, ρ(z) is the electronic density, Nd (z) is the dopant
density, and Nλ is the population of the λth subband. The
exchange-correlation effect has been neglected in the above
equations. This set of equations leads to one-particle quantum
states |λ,k〉 with normalized wave functions

〈r|λ,k〉 = φλ(z)
1√
S

exp(ikr‖). (16)

The corresponding fermionic destruction and creation
operators are cλk and c

†
λk. The electronic Hamiltonian acquires

the one-particle form

Ĥe =
∑
λk

h̄ωλkc
†
λkcλk. (17)

At this point, we have determined the stationary state of
the system. The effects of the Coulomb interaction that we

have considered so far are the static effects arising from
the inhomogeneous spatial distribution of charges. These
static effects have been lumped into the one-particle subband
energies h̄ωλk through the self-consistent set of equations
(13)–(15).

In the next section, we use the stationary basis of single-
particle states φλ(z) in order to define the microscopic
polarization density of the electron gas. This will allow us
to study the excited collective states, coupled with light, and
to recover the dynamic effects of the Coulomb interaction,
such as the depolarization shift.

D. Microscopic expression of the polarization

Usually, for the studies of the interaction of intersubband
transitions with light, one does not define a polarization
operator as an independent local quantity P̂(r), but rather
computes the linear response of the electronic system due to the
solicitation of an external harmonic electric field. The linear
response is described by the frequency-dependent nonlocal
susceptibility χ (ω),21 which is computed from the current-
current correlation function through the Kubo formula.22 The
collective excitations of the system are then obtained from the
analytical properties of χ (ω).

In order to use the electrical dipole gauge, as formulated
by the interaction Hamiltonian (3), we need to express the
local polarization operator P̂(r) as an independent quantity.
Classically, the local polarization P(r) is defined as the
average dipole moment of the charge distribution over some
microscopic volume.23 For instance, in the case of the square
quantum well with a thickness LQW illustrated in Fig. 2(a),
such volume could be the volume of the quantum well.
However, it is difficult to apply such a definition for an arbitrary
heterostructure, such as the one depicted in Fig. 2(b), where
the spatial extension of the confinement potential varies with
the energy. In this case, the averaging volume becomes an
arbitrary quantity. Since the microscopic intersubband dipole
is defined from the electronic wave functions φλ(z), the truly
microscopic expression of P̂(r) should involve directly φλ(z).

A similar problem has been encountered in the attempts
to define the static polarization in ferromagnetic materials
as function of the electronic wave functions and nuclei
distributions.24 Then, the idea is to define the polarization
as the time integral of the microscopic current arising during
the adiabatic switch from one configuration of electrons and
nuclei to another.

In our case, the microscopic current that corresponds to the
intersubband transitions is a rapidly oscillating function at the
frequencies of the transitions. Then, we define the polarization
in such a way that its time evolution under the full Hamiltonian
would lead to a microscopic current

dP̂(r)

dt
= 1

ih̄
[P̂(r),Ĥ ] = ĵ(r). (18)

This definition is valid in the absence of magnetic inter-
actions. Since the polarization operator commutes with the
electrical displacement field, the evolution of P̂(r) is driven
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only by the electronic part of Hamiltonian (17). The expression
of the total current operator in the PZW gauge is

ĵ(r) = ih̄e

2m∗ [	̂†(r)∇r	̂(r) − ∇r	̂
†(r)	̂(r)]. (19)

Note that the paramagnetic term, proportional to the vector
potential A, is absent since in the PZW gauge the momentum of
the particles is expressed as a function of their velocity only.10

Here, we have introduced the field operator 	̂(r), constructed
from the one-particle wave functions (16):

	̂(z,r‖) =
∑
λk

cλkφλ(z) exp(ikr‖)/
√

S. (20)

Since we are interested in the intersubband transitions only,
we shall consider solely the z component of the current. The
latter is readily expressed as

ĵz(r) = ih̄e

2Sm∗
∑

λ>μ,q

ξλμ(z)eiqr‖[Bλμq − B
†
λμ−q] (21)

with the following definitions:

B
†
λμq =

∑
k

c
†
λk+qcμk, (22)

ξλμ(z) = φλ(z)∂zφμ(z) − φμ(z)∂zφλ(z). (23)

For simplicity, we have chosen the envelope wave functions
of the bound states φλ(z) to be real. Note that the intrasubband
contributions all vanish since ξλλ(z) = 0 according to the above
definition.

In order to establish the polarization operator in the long-
wavelength limit, we first compute the commutators of the B

operators (22) with the Hamiltonian (17):

[B†
λμq,Ĥe] = −

∑
k

h̄(ωλk+q − ωμk)c†λk+qcμk. (24)

In the long-wavelength limit, the excitation wave vector q is
small compared to the typical electron wave vectors k. Since
we assumed parabolic bands, we can write

ωλk+q − ωμk ≈ ωλ − ωμ ≡ ωλμ. (25)

Then, (24) becomes

[B†
λμq,Ĥe] = −h̄ωλμB

†
λμq. (26)

This commutation relation indicates that the polarization
density operator satisfying (18) is

P̂z(r) = h̄e

2Sm∗
∑

λ>μ,q

ξλμ(z)

ωλμ

eiqr‖ [B†
λμ−q + Bλμq]. (27)

This is the expression to be used in the interaction
Hamiltonian Ĥint (3). It is clear that this expression satisfies
the requirement stated in the beginning of this section. Indeed,
it is a local function of space through the microscopic current
density ξλμ(z). The size of the confining potential enters only
implicitly through the wave functions that construct ξλμ(z) and
we do not need to define any arbitrary averaging volume.

To express the interaction Hamiltonian Ĥint as a function of
the electronic polarization, it is convenient to split it into two
parts:

Ĥint = ĤI1 + ĤI2 (28)

with ĤI1 the linear part and ĤI2 the part quadratic in the
polarization. The expression of ĤI1 in the long-wavelength
limit, for the case of the TM0 mode, is readily obtained with
the help of (11):

ĤI1 = i
∑

λ>μ,q

√
h̄ωcq

2εε0SLcav
ezλμ(a†

q − a−q)(B†
λμ−q + Bλμq).

(29)

Here, we have introduced the dipole matrix element zλμ =
〈φλ|z|φμ〉 of the transition μ → λ, and made use of the
following identity:∫ +∞

−∞
ξλμ(z)dz = 2m∗ωλμ

h̄
zλμ. (30)

This identity guarantees the equivalence between the current
and dipole matrix elements, which are more commonly used
in studies of intersubband transitions.19,25

The quadratic term of the interaction Hamiltonian becomes

ĤI2 = e2h̄2

8εε0Sm∗2

∑
λ>μ,λ′>μ′,q

Iλμ,λ′μ′

ωλμωλ′μ′

× (B†
λμq + Bλμ−q)(B†

λ′μ′−q + Bλ′μ′q), (31)

where Iλμ,λ′μ′ denotes the current-current overlap integral

Iλμ,λ′μ′ =
∫ +∞

−∞
ξλμ(z)ξλ′μ′(z)dz. (32)

Note that the expressions derived above are exact and general,
except for the long-wavelength approximation that is satisfied
for the majority of experiments with intersubband devices.
For instance, they will apply for a heterostructure featuring
population inversion. In the following, we are interested in the
specific case of noninverted (thermalized) subbands.

III. BOSONIZED PLASMA HAMILTONIAN

A. Bright and dark states

In order to further study the interaction between the light
and the thermalized subbands, we replace the fermionic
Hamiltonian Ĥe by an effective bosonic Hamiltonian, which
contains only the polarization degrees of freedom. In this way,
we obtain a fully diagonalizable Hopfield-type model. To carry
out this approach, we need to replace the B operators (22) by
effective bosonic operators. For this purpose, we compute the
commutator

[Bλμq,B
†
λμq] =

∑
k

(c†μkcμk − c
†
λk+qcλk+q) = N̂μ − N̂λ.

(33)

We recognize the difference between the number operators
N̂μ and N̂λ of the respective subbands. Let us define normal-
ized operators through the relation

B
†
λμq = √

�Nλμb
†
λμq (34)

with

�Nλμ = 〈N̂μ〉 − 〈N̂λ〉. (35)
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Here, the mean values of the operators are computed in the,
say, thermal state arising from the Fermi-Dirac statistics. In
the limit of weakly excited systems, the operators b

†
λμq defined

above obey the bosonic commutation rules26

[bλμq,b
†
λμq′] = δq,q′ . (36)

Taking into account (36), (34), and (26), we replace
the fermionic Hamiltonian Ĥe (17) by an effective bosonic
Hamiltonian, which yields exactly the same time evolution of
the weakly excited system:

Ĥ ′
e =

∑
λ>μ,q

h̄ωλμb
†
λμqbλμq. (37)

The bosonic operators introduced here describe the only
intersubband excitations that couple with light,4 and they are
therefore called “bright” states. To illustrate the bright states,
we consider the system to be in the electric quantum limit at
T = 0 K, where only the first subband (λ = 1) is occupied
by N electrons. The fundamental state is then given by |F 〉 =
�|k|<kF

c
†
1k|0〉, where kF is the Fermi wave vector. The lowest-

energy single-particle excitations can be spanned on the basis
of states

|Ek〉 = c
†
2kc1k|F 〉. (38)

These basis states are eigenstates of the electronic Hamil-
tonian Ĥe with eigenenergies h̄ω21 + Efond, where Efond is
the total energy of the ground state. In the following, the
energy scale is reset so that Efond = 0. The excitations |Ek〉
are illustrated in Fig. 3(a). For simplicity, in our example, we
consider only vertical transitions q = 0. The dipole moment
operator d̂ between the subbands 1 and 2 is

d̂ = z12

∑
k

(c†2kc1k + c
†
1kc2k). (39)

It is easy to show that each excitation |Ek〉 holds a dipole
z12 = 〈F |d̂|Ek〉. We can, however, change the basis by using
any appropriate linear combinations of |Ek〉’s:

|Ba〉 =
∑

k

βa,k|Ek〉, (40)

∑
k

βa,kβ
∗
b,k = δa,b, (41)

〈F |d̂|Ba〉 = z12

∑
k

βa,k. (42)

FIG. 3. (Color online) (a) One-particle excitation between two
subbands. The fundamental subband is filled with N electrons at
T = 0 K. (b) Bright excitation.

Here, a,b = 1, . . . ,N label the new basis states. The coef-
ficients βa,k are arbitrary within the normalization condition
(41), but let us define the a = 1 state so that all β1,k are
equal. Because of (41), we then have β1,k = 1/

√
N and

therefore |B1〉 is exactly the state created by the bosonic
operator introduced above: |B1〉 = b

†
q=0|F 〉. This state, which

is a coherent superposition of all possible single-particle states
with equal amplitudes 1/

√
N , is illustrated in Fig. 3 (b). Next,

because of (42) and (41), we have

〈F |d̂|B1〉 = z12

√
N, 〈F |d̂|Ba �=1〉 = 0. (43)

These formulas express the fact that the whole oscillator
strength of the system is held by the single state b

†
q=0|F 〉,

whereas all other N − 1 states, which are orthogonal to it,
have a zero oscillator strength and do not couple with light.

At a first glance, it might seem that the emergence of
the superradiant state b

†
q=0|F 〉 is due to a mere change of

the basis, and that this state does not have any particular
physical meaning. Indeed, this state is perfectly degenerate
with the dark states with respect to the electronic Hamiltonian
Ĥe. However, the inclusion of the interaction Hamiltonian (3)
lifts the degeneracy between the bright superradiant state and
the dark states |Ba �=1〉 since both the quadratic ĤI2 and the
linear ĤI1 parts renormalize the energy of the bright state.
The quadratic part ĤI2 leads to a blue-shift, as explained in
the next section, and the linear part to the emergence of two
polariton states. Neither ĤI1 nor ĤI2 acts on the dark states,
which therefore remain at the energy of the bare intersubband
transition h̄ω21. These heavily degenerated dark states hinder
the efficiency of the electronic injection into the polariton
states.27

B. Plasma Hamiltonian

The procedure of bosonization described in the previous
section assigns bosonic operators bλμq and b

†
λμq to each

intersubband transition μ → λ. Each transition now enters
the bosonized Hamiltonian with an energy h̄ωλμ. Therefore,
in order to avoid cumbersome notations, from now on, we
label each transition μ → λ with a single Greek index α,
i.e., α ≡ [λ,μ]. This means that now we count the number of
excitations in the system instead of the number of subband
states.

We now seek to express the interaction Hamiltonian as a
function of the bosonic operators bαq and b

†
αq. To this end, we

introduce the plasma frequencies ωPα through the formula

ω2
Pα = e2�Nα

εε0m∗SLα
eff

. (44)

Here, Lα
eff is the effective length introduced by Vinter

and Tsui.7 This length is a function of the current-current
correlation integral introduced by Eq. (32), and describes the
spatial extension of the microscopic current density of the
intersubband transition α:

Lα
eff = 2m∗ωα

h̄

1

Iα,α

. (45)

045304-6



INTERSUBBAND POLARITONS IN THE ELECTRICAL . . . PHYSICAL REVIEW B 85, 045304 (2012)

We will also make use of the transition oscillator strength

f o
α = 2m∗ωα

h̄
z2
α. (46)

The linear part of the interaction Hamiltonian then becomes

ĤI1 = i
∑
α,q

h̄ωPα

2

√
ωcq

ωα

f o
α f w

α (a†
q − a−q)(b†α−q + bαq).

(47)

Here, f w
α is the overlap factor between the cavity mode and

the current distribution of the transition α, defined as

f w
α = Lα

eff/Lcav. (48)

This definition, introduced here for simplicity for the special
case of a TM0 mode, can be generalized for a mode with an
arbitrary shape, as shown in the end of this section.

We now turn to the quadratic part ĤI2 of the interaction
Hamiltonian. It is expressed as a sum over pairs of transitions
λ > μ,λ′ > μ′ = α,β. Let us consider first the terms that
correspond to the same transition α = β. By combining these
terms with the electronic Hamiltonian (37), we have

Ĥ ′
e + ĤI2(α = β) =

∑
α,q

[
h̄ωαb†αqbαq

+ h̄ω2
Pα

4ωα

(b†αq + bα−q)(b†α−q + bαq)

]
.

(49)

This quadratic Hamiltonian can be diagonalized with the
Bogoliubov transformation28 by introducing new bosonic
operators pαq, which satisfy

[pαq,Ĥ
′
e + ĤI2(α = β)] = h̄ω̃αpαq, (50)

where ω̃α denotes the new eigenvalues. This diagonalization
procedure yields the following results:

ω̃α =
√

ω2
α + ω2

Pα, (51)

pαq = ω̃α + ωα

2
√

ω̃αωα

bαq + ω̃α − ωα

2
√

ω̃αωα

b
†
α−q. (52)

In Eq. (51), the new eigenvalue ω̃α is exactly the frequency
of the collective mode of the bidimensional electron gas known
as the “intersubband plasmon.”22 By using (44) and (52) to
express the remaining α �= β terms of ĤI2, we arrive at the full
Hamiltonian, which is now expressed in terms of the collective
plasmonic operators

Ĥ =
∑
α,q

h̄ω̃αp†
αqpαq +

∑
q

h̄ωcq(a†
qaq + 1/2)

+ i
∑
α,q

h̄�αq(a†
q − a−q)(p†

α−q + pαq)

+
∑

α �=β,q

h̄�αβ(p†
αq + pα−q)(p†

β−q + pβq). (53)

Here, we have introduced the light-matter coupling constant
in the dipole gauge

�αq = ωPα

2

√
ωcq

ω̃α

f o
α f w

α . (54)

The quantity �αβ is the plasmon-plasmon coupling constant

�αβ = ωPαωPβ

4
√

ω̃αω̃β

Cαβ, (55)

where the coefficient Cαβ is the plasmon-plasmon correlation
coefficient, defined as

Cαβ = Iα,β√
Iα,αIβ,β

=
∫

ξα(z)ξβ(z)dz√
Iα,αIβ,β

. (56)

The plasma Hamiltonian described in Eq. (53) is the central
result of this paper. It provides a fully quantum description of
the coupling between the light and the coherent collective
intersubband modes of a bidimensional electron system.
The Hamiltonian (53) contains both the interaction with the
electromagnetic field and the coupling between plasmons from
different subbands. The interplasmon coupling is contained in
the coefficients Cαβ . With the definition (32), it appears simply
as the normalized spatial overlap between the intersubband
currents associated to the transitions α and β. This overlap
vanishes when the subbands belong to spatially different
quantum wells. On the contrary, Cαβ takes values close to unity
when the subbands originate from the same quantum well.
The coefficients Cαβ provide thus a convenient description
for a number of cases, from spatially decoupled quantum
wells (tight-binding approximation) to strongly coupled het-
erostructures such as a superlattice. When several intersubband
plasmons are present in the system, the Bogoliubov procedure
can be further applied to the interplasmon coupling terms of
Eq. (53) in order to obtain the new normal modes and their
coupling with the light field. These results will be presented in
a separate paper.

We conclude this section by providing a very general ex-
pression of the light-matter coupling constant for an arbitrary
shaped guided mode fq(z). To establish this expression, we
use the general form of the z component of the displacement
field (5) instead of the special case of the TM0 mode (11).
We then express the linear coupling term ĤI1 by following the
same procedure as described in Sec. II D and the beginning of
this section. This leads to the result

�αq = ωPα

2
√

ω̃α

√
ωcq cos θqCα,q. (57)

Here, we have introduced the normalized current-light
overlap coefficient

Cα,q =
∫

fq(z)ξα(z)dz√
LqIα,α

(58)

and the angle θq is the propagation angle between the guided
mode and the in-plane direction

cos θq = |q|c√
εωcq

. (59)

In the previous expression, ε = ε(z ≈ zα) is the background
dielectric constant of the media surrounding the current density
ξα(z). The expressions (55) and (57) reveal the striking
resemblance between the plasmon-plasmon and the plasmon-
light coupling constants �α,β and �α,q. Indeed, the two
coupling constants are proportional to a normalized overlap
factor, respectively, Cα,β and Cα,q [Eqs. (56) and (58)). In
the same way as Cα,β represents the overlap integral between
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FIG. 4. (Color online) Scheme of all possible interactions be-
tween a microcavity and a three-level quantum well. The thick arrow
corresponds to the electromagnetic mode and the thin arrows to the
intersubband plasmon modes.

the two currents arising from transition α and β, Cα,q is the
overlap between the current distribution α and the electrical
field profile of the optical mode fq(z). Moreover, each plasmon
enters the interaction with a weight factor ωPα/2

√
ω̃α . The

weight of the light mode is
√

ωcq cos θq, the cosine term
expressing the selection rule for intersubband transitions.19

Therefore, the interaction between the different plasmons and
the interaction with the light mode have the same form in the
dipole gauge. Indeed, the Hamiltonian (53) describes a set
of coupled oscillators, one of which is the electromagnetic
resonator, the other being the collective plasmon modes. This
is schematized in Fig. 4.

In most experimental situations, the function fq(z) varies
slowly at the scale of the intersubband current density ξα(z),
and therefore can be taken out from the integral in Eq. (58).
In this case, we recover the usual expression for the oscillator
strength f o

α (Ref. 25) using (46) and (30). This leads to the
expression (54), where instead of the definition (48), we use a
generalized filling factor of the form

f w
α = Lα

efffq(z ≈ zα)2

Lq
cos2 θq. (60)

[The definition (48) for the TM0 mode is recovered by
setting θq = 0 and Lq = Lcav.] The dipole gauge provides
therefore a very compact description of the interaction between
the light and intersubband excitations. In particular, the simple
structure of the coupling constants allows us to disclose
the role played by the collective effect, described by the
plasma frequencies ωPα and the microcavity geometry, which
sets the overlap coefficients. Finally, in this formulation, the
weak-coupling regime is naturally recovered for the case of
vanishing plasmon-light overlap (Cα,q → 0 or f w

α → 0), as
expected. In this situation, which is common for absorption
experiments, one measures solely the collective effects in
the intersubband system contained in the matter part of the
quantum Hamiltonian (53).7,29

C. Case of 0D microcavities

So far, we used the expansion of the electromagnetic field
into the basis of guided modes labeled by the wave vector
q. Our choice was motivated by the microscopic definition
of the polarization density in Sec. II D, which is naturally

expanded into electronic plane waves propagating along the
heterostucture slab [see, for instance, Eq. (22)].

The approach developed here allows the rigorous quantum
description of 0D microcavities that confine the electromag-
netic field into all tree dimensions of space. Such systems have
been recently employed for the study of light-matter coupling
with intersubband transitions.6,30 In this case, the possible
polarization excitations will be determined by the quantizing
conditions for q imposed by the microcavity boundaries.

We start by expanding the electrical displacement into
laterally localized TM0-like modes:

D̂(r) = D̂(z,r‖) = iez

∑
m

√
εε0h̄ωcm

2SLcav
um(r‖)(a†

m − am).

(61)

The index m labels the discrete cavity modes and the set of
functions um(r‖) describes the lateral shape of the modes. They
are normalized such as∫ ∫

um(r‖)um′(r‖)d2r‖ = Sδmm′ . (62)

We must now provide the expansion of the polarization den-
sity (27) into the new basis of localized electromagnetic modes.
To this end, it is very convenient to use the quantum mechanical
notations |q〉 and |um〉 so that 〈r‖|q〉 = exp(iqr‖)/

√
S and

〈r‖|um〉 = um(r‖). Then, the basis transformation is expressed
as

|um〉 =
∑

q

|q〉〈q|um〉. (63)

Here, 〈q|um〉 is simply the qth Fourier component of the
function um(r‖) (Ref. 31):

〈q|um〉 = 1

S

∫ ∫
eiqr‖um(r‖)d2r‖. (64)

We have, accordingly, the transformation law for the B

operators (22):

B†
αm =

∑
q

〈q|um〉B†
αq. (65)

Since the same transformation law applies to the bosonic
operators b

†
αq, we can readily express the expansion of the

polarization density in the new basis:

P̂z(r) = h̄e

2Sm∗
∑
α,m

√
�Nα

ωα

ξα(z)um(r‖)[b†αm + bαm]. (66)

The interaction Hamiltonian is also readily expressed. Details
are provided in Appendix B, and the final expression for the
plasma Hamiltonian of 0D microcavities is

Ĥ =
∑
α,m

h̄ω̃αp†
αmpαm +

∑
m

h̄ωcm(a†
mam + 1/2)

+ i
∑
α,m

h̄ωPα

2

√
ωcm

ω̃α

f o
α f w

α (a†
m − am)(p†

αm + pαm)

+
∑

α �=β,m

h̄ωPαωPβ

4
√

ω̃αω̃β

Cα,β(p†
αm + pαm)(p†

βm + pβm).

(67)
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The above Hamiltonian (67) is formally similar to the
plasma Hamiltonian (53). The difference arises from the
modified spectrum of electromagnetic modes, which is no
longer continuum but discrete. The discrete spectrum allows us
to study the simplest possible light-matter interacting system,
where only the lowest intersubband transition (α = 2,1)
interacts resonantly with a single microcavity mode that is
sufficiently far from the others, say, the fundamental mode
m = 0. Then, the plasma Hamiltonian for this polariton-dot
system is reduced to6

Ĥ = h̄ω̃21p
†
21p21 + h̄ωc(a†a + 1/2)

+ i
h̄ωP 21

2

√
ωc

ω̃21
f o

21f
w
21(a† − a)(p†

21 + p21). (68)

An example of a microcavity is provided by the square
patch resonators depicted in Refs. 6 and 32. In this case, the
resonances are labeled by two lateral indexes m = N,M and
the corresponding lateral functions are

uN,M (r‖) =
√

2 − δ0N

√
2 − δ0M cos

(
πNx

s

)
cos

(
πMy

s

)
.

(69)

Here, s is the size of the square. The fundamental mode is
actually twofold degenerate (N = 1,M = 0), (N = 0,M =
1), however, only one of the two modes can be selected in
experiments with polarized light. The mode (N = 1,M = 0)
is depicted in Fig. 5(a).

Generally, in the case of a resonant light excitation, only
the spatial modes that correspond to the specific microcavity
resonance will be excited. That means that the charge distri-
bution will vibrate into well-defined spatial modes, imposed
by the microcavity. The charge density ρ(r) can be obtained
from the divergence of the polarization matrix element (66),
ρ(r) = ∂Pz(r)/∂z:

ρλ,μ,m(r) = e
√

�Nλμ

S
φλ(z)φμ(z)um(r‖). (70)

In the case of a square infinite quantum well
of thickness LQW, the wave functions are φλ(z) =√

2/LQW sin(λπz/LQW). The charge distribution, which cor-

FIG. 5. (Color online) (a) Electrical displacement for the (N =
1,M = 0) mode of a patch microcavity with a patch size s.
(b) Intersubband charge density for the fundamental transition of a
quantum well with thickness LQW coupled with the (N = 1,M = 0)
mode of the microcavity.

responds to the first intersubband excitation 1 → 2 coupled
with the fundamental cavity mode N = 1,M = 0, has been
plotted in Fig. 5(b). This example shows how the microcavity
allows us to control the spatial properties of the bright state.

D. Back transformation in the Coulomb gauge

The light-matter coupling between microcavities and inter-
subband transitions has been studied, so far, exclusively in the
Coulomb gauge.4 Usually, the case of a single intersubband
transition coupled with a continuum of guided modes ωcq
has been considered. These theoretical studies pointed out the
possibility to obtain the ultrastrong-coupling regime, where
the light-matter coupling constant becomes comparable to
the frequency of the intersubband transition ω21.4 In this case,
the full quantum Hamiltonian, including the antiresonant terms
and the quadratic vector potential term Â2, must be taken into
account in order to describe correctly the system.4

In this section, we establish a link between the previous
studies in the Coulomb gauge and the description in the
dipole gauge developed here. We shall consider the case of
a single intersubband transition (λ = 2,μ = 1), coupled with
the TM0 mode. We then perform a unitary transformation
to the Hamiltonian in order to obtain its expression in the
Coulomb gauge. The transformed Hamiltonian will have
identical eigenvalues as the original one, but will be expressed
in terms of the vector and scalar potentials A and V .

In this section, it is convenient to keep the individual
subband indexes 2,1. We return to the form of the Hamiltonian
with a single intersubband transition before the Bogoliubov
transformation leading to the depolarization shift

Ĥ =
∑

q

h̄ω21b
†
qbq +

∑
q

h̄ωcq(a†
qaq + 1/2)

+ i
∑

q

h̄ωP

2

√
ωcq

ω21
f o

21f
w
21(a†

q − a−q)(b†−q + bq)

+ h̄ω2
P

4ω21
(b†q + b−q)(b†−q + bq). (71)

(The subscripts “21” have been dropped for operators.) The
vector potential for the TM0 mode is

Â(r) = ez

∑
q

√
h̄

2εε0SLcavωcq
eiqr‖ (aq + a

†
−q). (72)

We use (72) to express the inverse PZW unitary
transformation1

T = exp

(
− i

h̄

∫
Â(r) · P̂(r)d3r

)
. (73)

It is written in the case of a single intersubband transition
as

T = exp

(
−i

∑
q

χq(a†
q + a−q)(b†−q + bq)

)
, (74)

χq = 1

2

√
ω2

P f o
21f

w
21

ω21ωcq
. (75)
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Recalling the parity of the photon dispersion ωcq = ωc−q,
the following transformation laws of the bosonic operators are
obtained:

T +bqT = bq − iχq(a†
−q + aq), (76)

T +aqT = aq − iχq(b†−q + bq). (77)

With these relations and their Hermitian conjugates, the
transformed Hamiltonian is obtained to be

T +ĤT =
∑

q

h̄ω21b
†
qbq +

∑
q

h̄ωcq(a†
qaq + 1/2)

+ i
∑

q

h̄�̄q(a†
q + a−q)(bq − b

†
−q)

+
∑

q

h̄�̄2
q

ω12
(a†

q + a−q)(a†
−q + aq)

+ (
1 − f o

21f
w
21

) ∑
q

h̄ω2
P

4ω21
(b†q + b−q)(b†−q + bq).

(78)

Here, �̄q is the light-matter coupling constant in the minimal
coupling gauge

�̄q = ω21χq = ωP

2

√
ω21

ωcq
f o

21f
w
21. (79)

The first four terms of (78), together with (79), provide
the Hopfield-type Hamiltonian used for the theoretical study
of intersubband polaritons.4,33 Namely, the presence of the
Â2 term and the antiresonant terms leads to the ultrastrong-
coupling regime.4 The latter has been defined as the situation
where the coupling term �̄q, taken at resonance ω21 = ωcq,
becomes comparable with the energy of the intersubband
transition ω21:

�̄q(ω21 = ωcq) = ωP

2

√
f o

21f
w
21 ≈ ω21. (80)

Since from (78) and (79) the Â2 term is proportional
to the square of the plasma frequency ω2

P , we see that the
ultrastrong-coupling regime, as defined in Ref. 4, is obtained
in systems featuring high photonic confinement factor f w

21,
and high plasma frequency ωP , i.e., high electronic densities.
However, for high electronic densities, the Coulomb interac-
tion brings important dynamical corrections.8 The latter are
already present in the dipole gauge, which naturally includes
the collective excitations of the electron gas, as described in
Sec. III B. In the Hamiltonian (78) expressed in the Coulomb
gauge, these corrections actually arise from the last term. In
Appendix C, we show that this term can indeed be cast in a
form of a long-wavelength limit of the Coulomb potential.

The Coulomb correction in the Hamiltonian (78) contains
an interesting new element, which is the geometrical prefactor
(1 − f o

21f
w
21). This prefactor is equal to one in the case of a

very large cavity (f w
21 → 0). This case of vanishing photon

confinement corresponds, for instance, to the multipass wave
guides employed for the absorption measurements where the
depolarization shift is observed. However, the confinement
factor f o

21f
w
21 becomes an important correction in the case of

microcavities with filling factors f w
21 close to unity, such as

the double-metal microcavities.6,11,30 We interpret the factor
−f o

21f
w
21 as an image contribution to the Coulomb interaction

due to the boundary conditions of the electric field at the
microcavity walls. In other words, it can be seen as a local
field correction due to the partial screening of the microcavity
field by the oscillating intersubband charges. Indeed, both the
displacement field D̂z(r) and the polarization field P̂z(r) that we
used to construct the PZW Hamiltonian satisfy the boundary
conditions on the cavity walls, which are transported to the
Coulomb correction through the unitary transformation (74).

Note that the unitary transformation (74) holds only for
a truncated Hilbert space, where we retained only the first
intersubband transition and the fundamental waveguide mode.
The full gauge equivalence is established correctly only if
the complete set of quantum transitions and electromagnetic
modes of the system are accounted for.34 This issue will be
discussed elsewhere.

We can combine the last term in the Hamiltonian (78)
with the first one, and perform a Bogoliubov diagonalization
just like in Sec. III B. As a result, we obtain a renormalized
intersubband frequency with an effective depolarization shift,
which takes into account the local field corrections, contained
in the factor f o

21f
w
21:

ω̄21 =
√

ω2
21 + ω2

P

(
1 − f o

21f
w
21

)
. (81)

The local field factor 1 − f o
21f

w
21 yields an effective plasma

frequency ωP

√
1 − f o

21f
w
21. We can then rewrite the full

Hamiltonian in the Coulomb gauge (78) using Eq. (81) and
the corresponding polarization operators. The result is exactly
the Hamiltonian of Ref. 4, used for the study of the ultrastrong-
coupling regime, where the bare intersubband frequency has
been replaced by the effective frequency ω̄21:

T +ĤT =
∑

q

h̄ω̄21b
†
qbq +

∑
q

h̄ωcq(a†
qaq + 1/2)

+ i
∑

q

h̄�̄q(a†
q + a−q)(bq − b

†
−q)

+
∑

q

h̄�̄2
q

ω̄21
(a†

q + a−q)(a†
−q + aq). (82)

Note that now bq describes the bosonic operator after the
Bogoliubov transformation, and the frequency ω̄21 should be
used in the definition of �̄q. This result validates the studies
performed in the Coulomb gauge,35 in the limit of micro-
cavities with large filling factors, where ω̄21 ≈ ω21. However,
contrary to Refs. 4 and 35, the effective Hamiltonian (82)
includes also the correct limit of the weak-coupling regime,
obtained for vanishing overlap with the cavity mode f w

21 → 0.
In this case, from expression (81), we recover the renormalized
transition frequency ω̃21, whereas the Hamiltonians in Refs. 4
and 35 would predict only the bare intersubband spacing ω21.

IV. PROPERTIES OF THE POLARITON STATES

A. Polariton dispersion

We now analyze coupled light-matter polariton states
arising from the dipolar Hamiltonian. To simplify, we ignore
the coupling between plasmons on different subbands. This is
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equivalent to consider a single intersubband transition ωα , not
necessarily the fundamental one, in interaction with the TM0

mode. All the results that will be stated remain also valid for
0D resonators. The corresponding plasma Hamiltonian is

Ĥ =
∑

q

h̄ω̃αp†
qpq +

∑
q

h̄ωcq(a†
qaq + 1/2)

+ i
∑

q

h̄ωPα

2

√
ωcq

ω̃α

f o
α f w

α (a†
q − a−q)(p†

−q + pq). (83)

This Hamiltonian is very similar to a Dicke model.36 However,
the coupling coefficient is proportional to ωP /

√
ω̃α and has a

nonlinear dependence on ωP because of the formula of the
depolarization shift ω̃α =

√
ω2

α + ω2
P . We show further that

this nonlinearity leads to the no-go theorem for quantum well
systems, and the Hamiltonian (83) does not allow a quantum
phase transition.13 The Hamiltonian (83) can be diagonalized
exactly by introducing the polariton operator

�q = xqaq + yqa
†
−q + zqpq + tqp

†
−q. (84)

The Hopfield coefficients introduced here satisfy the nor-
malization condition

|xq|2 − |yq|2 + |zq|2 − |tq|2 = 1. (85)

The Hopfield-Bogoliubov determinant corresponding to the
equation [Ĥ ,�q] = h̄ωq�q is then∥∥∥∥∥∥∥∥∥

ωcq − ωq 0 i�q i�q

0 −ωcq − ωq i�q i�q

−i�q i�q ω̃α − ωq 0

i�q −i�q 0 −ω̃α − ωq

∥∥∥∥∥∥∥∥∥ (86)

with �q the light-matter coupling constant from (54) (the
subscript α has been dropped). Zeroing the determinant (86)
provides the eigenvalue equation(

ω2
q − ω̃2

α

)(
ω2

q − ω2
cq

) = f o
α f w

α ω2
Pαω2

cq. (87)

This biquadratic equation can be solved analytically, the
two real solutions ωq,+ and ωq,− being the frequencies of
the two coupled states. The Hopfield coefficients are also
readily expressed in closed form. For instance, we can define
a photonic part hp = |xq|2 − |yq|2 and an electronic part
he = |zq|2 − |tq|2 linked by the relation hp + he = 1. For the
photonic part, we obtain the expressions

hp,+ = ω2
q,+ − ω̃2

α

ω2
q,+ − ω2

q,−
, hp,− = ω̃2

α − ω2
q,−

ω2
q,+ − ω2

q,−
. (88)

Note that we have necessarily hp,+ + hp,− = 1 (and therefore
he,+ + he,− = 1).

The polariton frequencies ωq,±, as well as the electronic
Hopfield coefficients he,± have been plotted as a function
of the cavity frequency ωcq on Figs. 6(a) and 6(c). For this
illustration, we have used the numerical values ωP = 0.83ωα ,
f o

α = 1, and f w
α = 0.8. As seen from Fig. 6(a), the polariton

dispersion features a gap. The upper edge of the gap, obtained
at ωcq = 0, is the frequency of the intersubband plasmon ω̃α .
The lower edge is easily estimated from Eq. (87) to be

ωq,−|ωcq→∞ =
√

ω2
α + ω2

Pα

(
1 − f o

α f w
α

) = ω̄α. (89)

FIG. 6. (Color online) (a) Polariton dispersion, normalized at the
bare intersubband transition ωα . (b) Splitting of the two polariton
states. (c) Hopfield coefficients. In these figures, the subscript q has
been dropped, for clarity. The numerical values used for solving
Eq. (87) are ωP = 0.83ωα , f o

α = 1, and f w
α = 0.8.

In the next section, we show that f o
α f w

α < 1; therefore, the
lower gap edge always appears at a frequency higher than
the bare intersubband frequency ωα . The impossibility for the
light to propagate at the gap energies can be explained by the
destructive interference between the microcavity electromag-
netic field and the local field created by the collective electronic
oscillations.

The most important aspect of the strong-light-matter-
coupling regime is the mixing between the electronic and
photonic degrees of freedom. This mixing is quantified by
the Hopfield coefficients (88). Namely, the coupled system fea-
tures maximum mixing when the photonic part of the Hopfield
coefficients equals the electronic part: he,± = hp,± = 1/2.
From Eq. (88), we readily obtain that this is satisfied when the
cavity is tuned into resonance with the intersubband plasmon:

he,± = hp,± ⇔ ωcq = ω̃α. (90)

This has been illustrated in Fig. 6(c). In the well-known
Jaynes-Cummings model,37 the maximum mixing also corre-
sponds to the point of minimal splitting ωq,+ − ωq,− between
the two polariton states. However, this is not true in the general
case. As shown in Appendix D, the minimum splitting occurs
when the cavity is resonant with the lower gap-edge frequency
[Eq. (89)]

d(ωq,+ − ωq,−)

dωcq
= 0 ⇔ ωcq = ω̄α. (91)
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This is also illustrated in Fig. 6(b). Moreover, in Appendix D,
we show that the minimal splitting can be computed exactly,
and the result is

min(ωq,+ − ωq,−) = √
f o

α f w
α ωP = 2�R. (92)

We recognize the quantity 2�R to be the Rabi splitting, as
known from the usual definition38

2�R =
√

f o
α e2(�Nα/S)

εε0m∗Lcav
. (93)

Note that this is an exact result, which is valid for all orders of
light-matter interaction. A more general result for an arbitrary
cavity can be obtained with the expressions (57) or (60). The
quantity 2�R can therefore be used as an experimental measure
of the interaction strength, even in the ultrastrong-coupling
regime.

We see that both edges of the gap ω̄α and ω̃α play an
important role in the theory. The frequency ω̃α defines the point
of maximum quantum mixing, whereas ω̄α defines the point
of minimum splitting 2�R . However, we can observe from the
plot on Fig. 6(b) that the splitting around the point ωcq = ω̃α

is not very different from 2�R . This feature is a characteristic
of the ultrastrong-coupling regime, where we can no longer
define a strict resonance condition for the optimal coupling
point. Indeed, the system will feature almost identical coupling
energy 2h̄�R if the cavity resonates with any frequency in the
band between ω̄α and ω̃α . The three characteristic frequencies
ω̃α , ω̄α , and 2�R are linked through the simple relation

ω̃2
α = ω̄2

α + 4�2
R. (94)

As pointed out in Ref. 4, for a very large interaction
strength, the effects of the quadratic and antiresonant terms in
the interaction Hamiltonian become important. These effects
are manifested with the nonlinear behavior of the polariton
frequencies ωq,± as a function of the Rabi splitting 2�R .4

Since the light-matter interaction strength scales as the plasma
frequency ωP [Eqs. (92) and (93)], we have studied these
effects as a function of ωP , as shown in Fig. 7. Experimentally,
ωP can be varied either through the temperature of the system
or by applying a gate voltage.39 In both cases, one controls the
subband population difference �Nα . For the plot of Fig. 7, we

FIG. 7. (Color online) Polariton frequencies as a function of the
plasma frequency for a cavity resonant with the bare intersubband
transition ωcq = ωα . The gray area indicates the gap. For this
figure, we have used f o

α = 1 and f w
α = 0.8. The linear asymptotes

correspond to the Jaynes-Cummings model.

have chosen a cavity that is resonant with the bare intersubband
transition when ωP = 0, i.e., ωcq = ωα . Moreover, in this
example, we neglect the Hartree correction of the bare
intersubband frequency as the number of charges in the system
progressively increases. This assumption is true for a suffi-
ciently thin square quantum well. Because both frequencies
ω̄α and ω̃α increase with ωP due to the depolarization effect,
the system gets blue-shifted from the cavity mode, however,
the blue-shift is much smaller for ω̄α . The Jaynes-Cummings
model corresponds to the linear asymptotes of the polariton
branches at low ωP . Figure 7 clearly shows that this model
ceases to be valid for high electronic densities. Moreover,
the magnitude of the polariton gap increases as the polariton
branches depart from the linear asymptotes. Therefore, the
measurement of the gap can be considered as a direct
spectroscopic evidence of the ultrastrong-coupling regime.6,11

Along with the charge density, the second ingredient of the
light-matter interaction is the overlap factor f w

α between the
photonic mode and the intersubband current. As evident from
the expression of the Hamiltonian in the Coulomb gauge (78),
this factor controls not only the intensity of the light-matter
coupling [linear term in Eq. (78)], but also the relative weight
between the longitudinal Coulomb corrections [last term in
(78)] and the transverse corrections contained in the A2 term.

The influence of the overlap factor f w
α on the polariton

dispersion is illustrated in Fig. 8. In this plot, the cavity
frequency ωcq is slightly blue-shifted with respect to the bare
intersubband transition ωα . When f w

α = 0, we recover two
uncoupled oscillators at frequencies ωcq and ω̃α as expected
from Eq. (87). For small values of f w

α , there is a small splitting
that appears when the cavity is tuned with the intersubband
plasmon ωcq = ω̃α . In this case, the A2 term of the Hamiltonian
(78), which scales as (f w

α )2, is negligible. The polariton gap
is also negligible since ω̃α ≈ ω̄α , and the system is described
by the Jaynes-Cummings model with a resonant frequency ω̃α

renormalized by the Coulomb interactions.
On the contrary, for filling factors close to one (f w

α ≈ 1), the
Coulomb correction in the Hamiltonian (78) is negligible, and
the weight of the quadratic term shifts to A2. If the electronic

FIG. 8. (Color online) Illustration of the polariton frequencies
for cavities with increasing filling factor f w

α . For this illustration, the
cavity is slightly blue-shifted with respect to the bare intersubband
frequency ωα .
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density is sufficiently high, the system enters the ultrastrong-
coupling regime as defined in Ref. 4. The resonance condition
ωcq = ω̃α loses its strict meaning, as the cavity can be resonant
with any frequency in the polariton gap.

B. No-go theorem

The no-go theorem states the impossibility of the lower
polariton state to acquire zero energy when the light-matter
interaction is increased.12 This property is related to the
quadratic term of the interaction light-matter Hamiltonian.
For intersubband polaritons, the no-go theorem becomes
particulary clear in the dipole gauge, where, as shown below,
it stems from the depolarization effect.

The asymptotic value of the lower polariton frequency for
very high plasma frequencies ωPα → ∞ is deduced from
Eq. (87):

ω2
−|ωPα→∞ → ω2

cq

(
1 − f w

α f o
α

)
. (95)

Note that this limit does not contain the bare intersubband
frequency ωα , and therefore is independent from the eventual
Hartree corrections to the heterostructure potential. The no-go
theorem for intersubband polariton is then equivalent to the
following strict inequality:

f w
α f o

α < 1. (96)

This inequality can be proven by using the properties of the in-
tersubband current matrix element ξα(z) (23), which allows us
to express the overlap factor f w

α = Lα
eff/Lcav through Eq. (45):

f w
α = 2m∗ωα

h̄Lcav

1∫ ∞
−∞ ξ 2

α (z)dz
. (97)

We suppose that wave functions of the bound states and
their derivatives decay sufficiently fast, so that ξα(z) is zero
close to the cavity boundaries, as illustrated in Fig. 9. Then,
we can define a domain with a finite size LQW < Lcav, which
we can arbitrarily call “quantum well” such as all the the
wave functions and their derivatives are zero outside this
domain (Fig. 9). We chose the origin of the coordinates so that
0 � z � LQW inside the quantum well. We then reexpress the

FIG. 9. (Color online) Sketch of the intersubband current ξα(z)
for a heterostructure in a cavity with thickness Lcav. We suppose
that the current decays sufficiently fast so it can be considered as
null close to the cavity boundaries. We can then define a region
of space with a thickness LQW < Lcav containing the entire current
density.

current-current integral in the nonlocal form∫ +∞

−∞
ξα(z)2dz =

∫ ∫ +∞

−∞
ξα(z)ξα(z′)δ(z − z′)dz dz′. (98)

We can choose an arbitrary orthogonal basis of real functions
χn(z) on the segment [0,LQW] in order to span the delta
function:

δ(z − z′) =
∑

n

χn(z)χn(z′). (99)

This basis is not necessarily the basis of envelope wave func-
tions. The expansion of the integral (98) on the basis χn(z) is∫ +∞

−∞
ξα(z)2dz =

∑
n

(∫ LQW

0
ξα(z)χn(z)dz

)2

. (100)

An evident choice for χn(z) is the Fourier basis on the segment
[0,LQW]

χn(z) =
√

2−δ0,n

LQW
cos

(
2πnz
LQW

)
n even,√

2
LQW

sin
(

2πnz
LQW

)
n odd.

(101)

With this particular choice, the first basis function χ0(z) =√
1/LQW is constant on the segment [0,LQW]. Since all terms

of Eq. (100) are positive, we have the Cauchy-Schwartz
inequality for the current-current overlap:∫ +∞

−∞
ξα(z)2dz >

1

LQW

(∫ LQW

0
ξα(z)dz

)2

. (102)

The right-hand side of the last equation can be expressed with
the oscillator strength according to the identities (30) and (46).
By combining this expression with the definition (97), we
obtain the following inequality:

Lα
eff <

LQW

f o
α

. (103)

This result shows that the higher the oscillator strength of
an intersubband transition, the more the corresponding current
density is localized in the space. This provides directly the
no-go theorem since it leads to the inequality

f w
α f o

α <
LQW

Lcav
< 1. (104)

Therefore, the no-go theorem is a consequence of the con-
finement of the electronic plasma in a finite volume of space.13

This confinement is also the origin of the depolarization shift,
which arises from the plasma energy of the bound charges.

The inequality (103) provides a lower bound for the plasma
energy of the system. The plasma energy is quantified as the
weight of the P̂2 term in the plasma Hamiltonian (49):

h̄
ω2

Pα

4ωα

= h̄e2

εε0m∗ωα

× �Nα

4SLα
eff

. (105)

By using the inequality (103) and the definition of the
oscillator strength (46), we obtain the following inequality
for the plasma energy:

h̄
ω2

Pα

4ωα

>
d2

α

2εε0
× �Nα

SLQW
. (106)
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FIG. 10. (Color online) Comparison of the polariton dispersion,
at resonance (ωcq = ωα), with and without the depolarization effect.
For simplicity, the Hartree shift of ωα is neglected in this illustration.

Here, dα = ezα is the dipole moment of the intersubband
transition. The left side of (106) corresponds exactly to the
classical self-interaction energy of �Nα dipoles uniformly
distributed in a volume SLQW.10 According to Eq. (106),
the quantum self-energy is higher than the classical one
since the wave functions of the bound states illustrated in
Fig. 2 provide stronger spatial confinement of the charged
particles.

The plasma energy of the charged particles localized in a
finite volume compensates for the energy decrease of the lower
polariton as the light-matter-coupling strength is increased.
This is illustrated in Fig. 10, where we have compared the
polariton branches ω± as a function of ωP with the solution
of Eq. (87) when the depolarization shift is discarded, i.e.,
when ω̃α is replaced with ωα . The cavity is chosen so that
ωcq = ωα , and the Hartree corrections have been neglected
for clarity. It is clearly seen that the depolarization effect
prevents the lower polariton energy to reach zero, which is
an equivalent statement of the no-go theorem for intersubband
transitions.

C. Effective dielectric function

The dispersion relation (87) allows us to obtain the effective
dielectric constant εeff(ω) of the polaritonic medium. The latter
can be defined through the propagation equation

εeff(ωq)
ω2

q

c2
= q2. (107)

Since for the TM0 mode ω2
cq = c2q2/ε, we obtain from (87)

ε

εeff(ω)
= 1 + f o

α f w
α ω2

Pα

ω2 − ω̃2
α

. (108)

Note that the zero of the dielectric constant εeff(ω) corresponds
to the frequency of the intersubband plasmon ω̃α , as expected.
The above expression can be recast in the form

ε

εeff(ω)
= 1 − f o

α f w
α

ε
+ f o

α f w
α

εQW(ω)
, (109)

where εQW(ω) is the dielectric constant of the heterostructure
alone:

εQW(ω) = ε

(
1 − ω2

Pα

ω2 − ω2
α

)
. (110)

The result (109) is very similar to the effective dielectric
constant obtained by Zeluzny and Nalewajko.14 This result
arises naturally from the initial assumption that the heterostruc-
ture is much smaller than the wavelength of light. However,
in our case, the geometrical overlap factor f o

α f w
α contains a

quantum correction due to the shape of the wave functions.
The model developed so far is purely Hamiltonian, and

the dissipation has not been included. The dissipation can be
introduced through a coupling with a reservoir of harmonic
oscillators. Such a model has been considered, for instance, in
Refs. 17 and 18. In particular, the method of Ref. 18 leads to
a dielectric function of the form

εQW(ω) = ε

(
1 − ω2

Pα

ω2 + i�αω − ω2
α

)
. (111)

Here, �α is the linewidth of the intersubband plasmon modes,
which can be determined in a phenomenological way, i.e.,
from absorption measurements.19

On the basis of the results from the previous section, we
can obtain an approximation for the dielectric constant by
replacing the effective plasma thickness Lα

eff with its maximum
value LQW/f o

α [see Eq. (103)]. We can call this substitution
the “semiclassical approximation” since it leads to a plasma
self-energy provided by the classical expression, as seen from
Eq. (106). This leads to the widespread expression for the
heterostructure dielectric constant22

εQW,cl(ω) = ε

(
1 − ω̄2

Pα

ω2 + i�αω − ω2
α

)
, (112)

ω̄2
Pα = f o

α e2�Nα

εε0m∗SLQW
. (113)

In this limit, we obtain exactly the effective medium
constant from Ref. 14 since, in this case, the product f o

α f w
α

is replaced with LQW/Lcav, which is independent from the
particular intersubband transition. From Sec. IV B, it is
clear that the semiclassical approximation assumes that the
intersubband polarization is constant inside the heterostructure
slab, and zero everywhere else.

Including more than one transition in the definition of
the dielectric constant is not not trivial since one is obliged
to diagonalize the full plasma Hamiltonian (53), taking into
account the coupling between the different intersubband
plasmons. The semiclassical approximation allows us to write
a simple analytical expression for the mutlitransition dielectric
function

εQW,cl(ω) = ε

(
1 −

∑
α

ω̄2
Pα

ω2 + i�αωq − ω2
α

)
. (114)

This result is demonstrated in Appendix E.

V. CONCLUSION

In summary, we have provided a theoretical description of
the light-matter interaction for the intersubband transitions in
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the electrical dipole gauge. We showed that, by introducing
a microscopic expression for the intersubband polarization
field P̂(r), the Power-Zienau-Woolley Hamiltonian provides a
suitable framework for the study of the interaction between the
collective electronic excitations and light. This description is
very general and applies to an arbitrary electronic potential
once the corresponding single-particle wave functions are
known. In particular, it can be used in the case of the
ultrastrong-coupling regime in the limit of very high electronic
densities and high overlap factors between the quantum well
medium and the microcavity mode.

The physical interpretation of the dipolar interaction Hamil-
tonian is straightforward. The linear part of the Hamiltonian
ĤI1 describes the coupling of the electronic excitations with the
cavity electromagnetic field. The quadratic part ĤI2 contains
the depolarization effect (the effect of an oscillating current
on itself) and the coupling between plasmons from different
transitions. The plasma energy described by the term ĤI2 leads
to the no-go theorem for intersubband transitions. This energy
has a close analogy to the electromagnetic dipole self-energy
of a two-level system,10 which plays an important role for the
estimation of the radiative corrections of atomic transitions.1,40

When the dipolar Hamiltonian is transformed back in
the Coulomb gauge, it provides the Coulomb interaction
terms of the system including image charge effects arising
from the boundary conditions on the cavity walls. This has
been discussed for a truncated Hamiltonian describing a
single intersubband transition interacting with a TM0 mode
of a double-metal waveguide. In this case, we find that the
weights of the scalar potential V and the A2 term of the
Coulomb gauge version of the Hamiltonian are governed by
the geometrical overlap factor f w

α . Our study completes the
theoretical framework of the ultrastrong coupling, introduced
in Ref. 4, where only on the vector potential part A2 was
considered. We found that this study is justified for cavities
with filling factors close to unity. A more general PZW back
transformation, which uses the whole basis of guided modes
and the full set of intersubband transitions, will be discussed
elsewhere.

We believe that the approach developed here, based on
operator formalism to describe the collective intersubband
excitations, provides a compact and useful description, which
could allow further studies of quantum electrodynamical
effects inserted in solid-state systems.
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APPENDIX A: VACUUM FIELD AMPLITUDE OF THE
GUIDED MODES

In this Appendix, we derive the vacuum normalization
constant Aq [Eq. (7)] by taking into account the multilayered
geometry of the guided mode stack. We also comment on
the special treatment of metallic boundaries of the guiding
structure.

We start by expressing the volume integral (2) as a function
of the TM-polarized field components (4)–(6):

μ0

2

∫
Ĥ2d3r = μ0

2

∫
ĤĤ†d3r

= S
∑

q

A2
q(a†

qaq + aqa
†
q + aqa−q + a†

qa
†
−q)

× μ0

2

∫
f 2

q (z)dz, (A1)

∫
1

2ε0ε(z)
D̂2

zd
3r =

∫
1

2ε0ε(z)
D̂zD̂†

zd
3r

= S
∑

q

A2
q(a†

qaq + aqa
†
q − aqa−q − a†

qa
†
−q)

× q2

ω2
cq

∫
1

2ε0ε(z)
f 2

q (z)dz, (A2)

∫
1

2ε0ε(z)
D̂2

‖d
3r =

∫
1

2ε0ε(z)
D̂‖D̂†

‖d
3r

= S
∑

q

A2
q(a†

qaq + aqa
†
q − aqa−q − a†

qa
†
−q)

× 1

ω2
cq

∫
1

2ε0ε(z)

(
dfq

dz

)2

dz. (A3)

To derive these expressions, we have used the parity of ωcq
and Aq as respect to q and e−q = −eq. We have also used
the orthogonality of the two-dimensional space harmonics
exp(iqr‖)/

√
S.

To obtain the proper normalization of the electromagnetic
field, we first show the following identity:

I =
∫

dz

{
μ0

2
f 2

q − 1

2ε0ε(z)

[
q2

ω2
cq

f 2
q +

(
dfq

dz

)2]}
= 0.

(A4)

For the demonstration, we use the Helmholtz equation (9).
Let us consider the ith layer, then by definition ε(z) = εi is
constant. By multiplying Eq. (9) by fq and integrating across
the ith layer, we obtain

Ii = − 1

ε0εi

fq
dfq

dz

∣∣∣∣
i+

+ 1

ε0εi

fq
dfq

dz

∣∣∣∣
i−

, (A5)

Ii =
∫

i

dz

{
μ0f

2
q − 1

ε0εi

[
q2

ω2
cq

f 2
q +

(
dfq

dz

)2]}
. (A6)

Here, we have also used that ε0μ0 = 1/c2, and the symbol
i± means the upper (lower) side of the layer. By using the
boundary conditions of the electromagnetic field

fq|i− = fq|(i+1)+, (A7)

1

εi

dfq

dz

∣∣∣∣
i−

= 1

εi+1

dfq

dz

∣∣∣∣
(i+1)+

, (A8)

and the fact that I = 1/2
∑

i Ii , we finally obtain

I = − 1

2ε0εU

fq
dfq

dz

∣∣∣∣
U

+ 1

2ε0εD

fq
dfq

dz

∣∣∣∣
D

, (A9)
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where U (D) denotes the upper (lower) boundary of the
multilayer. Either one or the two boundaries go to infinity; then
the field and its derivative go to zero. The other option is to take
metallic boundaries. Since in the mid- and far- infrared ranges
the dielectric constant of the metals εM is very high, we can
adopt perfect metal boundary conditions, where |εM | → ∞.
We can then neglect the contribution of the field from the
metallic layers in the integral (2). In all cases, the identity
(A4) is proven. Thanks to this identity, the antiresonant terms
in the photon Hamiltonian cancel, and the remaining term is
simplified to ∑

q

2μ0SLqA
2
q(a†

qaq + 1/2). (A10)

Following standard textbooks,10 the prefactor should corre-
spond to the energy quantum of the guided mode h̄ωcq, which
leads to Eq. (7).

Although we used perfect metal boundary conditions for
the normalization of the vacuum field amplitude Aq, we
can still describe the effects of the finite metal permittivity
εM in our model. As an example, consider the current
experimental situation where the multilayer is constituted by
a surface plasmon waveguide, obtained by deposing a metal
layer on a semiconductor substrate. We suppose the metal-
semiconductor interface to be at z = 0. In the semiconductor,
the mode profile is described by an exponential function
fq(z) = eγqz for z < 0, with γq the decay length of the surface
plasmon mode into the semiconductor. Let ε be the dielectric
constant of the semiconductor, then we have41

ω2
cq

c2
= q2

∣∣∣∣1

ε
+ 1

εM

∣∣∣∣, (A11)

γq = ε
ωcq

c

1

|ε + εM | . (A12)

Using the above prescription, we consider the field in the
metal to vanish, but we keep the expression of the finite
dielectric function εM in the dispersion relations above. We
then have Lq = 1/2γq, and the quantum amplitude of the
surface plasmon mode becomes

Aq =
(

ε0εch̄ω2
cq

S|ε + εM |1/2
.

)1/2

(A13)

We see that in the far-infrared domain, where ωcq → 0 and
εM is very large and negative, both spontaneous emission and
the strong-coupling phenomena are unfavored since Aq has
vanishingly small values. On the contrary, the photon electric
amplitude Aq can be enhanced in a microcavity resonator.

APPENDIX B: DERIVATION OF THE POLARITON DOT
HAMILTONIAN

We first write the linear part of the interaction Hamiltonian
(3) by using the expressions (27), (61), and the definition (64):

HI1 = i
∑
α,m

√
h̄ωcm

2εε0SLcav
zα(a†

m − am)

×
∑

q

[B†
αq〈q|um〉 + Bαq〈−q|um〉]. (B1)

Since the function um(r‖) is real, we have 〈−q|um〉 =
〈um|q〉, and therefore we can use the transformation law (65)
and its Hermitian conjugate to obtain

HI1 = i
∑
α,m

√
h̄ωcm

2εε0SLcav
zα(a†

m − am)(B†
αm + Bαm).

(B2)

In order to transform the quadratic part (31), we use the inverse
transformations

B†
αq =

∑
m

〈um|q〉B†
αm, (B3)

Bαq =
∑
m

〈q|um〉Bαm, (B4)

and therefore∑
q

(B†
αq + Bα−q)(B†

β−q + Bβq)

=
∑

q,m,m′
(〈um|q〉B†

αm + 〈−q|um〉Bαm)

× (〈um′ |−q〉B†
βm′ + 〈q|um′ 〉Bβm′ ). (B5)

Using once again the relation 〈−q|um〉 = 〈um|q〉 and the
closure relation

∑
q |q〉〈q| = 1 along with the orthogonality

condition 〈um|um′ 〉 = δmm′ , it is straightforward to transform
the expression (B5) into∑

m

(B†
αm + Bαm)(B†

βm + Bβm). (B6)

We then use exactly the same bosonization approach as in
Sec. III A to arrive at the Hamiltonian (67).

APPENDIX C: LONG-WAVELENGTH LIMIT OF THE
COULOMB INTERACTION

In order to show that the last term of Eq. (78) has the form
of the Coulomb interaction, we first reexpress it through the B

operators defined in Sec. II D:∑
q

h̄ω2
P

4ω21
(b†q + b−q)(b†−q + bq)

= 1

2Sεε0

e2h̄2

4m∗2ω2
21

I12,12

×
∑

q

(B†
21q + B21−q)(B†

21−q + B21q). (C1)

We first use the Vinter’s identity7,42

h̄2

4m∗2ω2
21

I12,12

= −
∫ ∫ +∞

−∞
dz dz′φ1(z)φ2(z)|z − z′|φ1(z′)φ2(z′) (C2)

and we recognize the prefactor of (C1) to be exactly the long-
wavelength limit of the Coulomb interaction matrix element
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V
λμ,μ′λ′

q→0 :

V
λμ,μ′λ′

q→0 = − e2

2Sεε0

∫ ∫ +∞

−∞
dz dz′φλ(z)

×φμ(z)|z − z′|φμ′(z′)φλ′(z′). (C3)

Note that we have V
12,12

q→0 = V
21,21

q→0 = V
21,12

q→0 = V
12,21

q→0 , so we
recover only the matrix elements that describe the interaction
of electrons between subbands 1 and 2, as should be expected.

Next, by using the fermionic commutation rules, we can
easily rearrange the binary products of B operators into four
c-operator products:∑

q

B
†
21qB

†
21−q =

∑
q,k,k′

c
†
2k+qc

†
2k′−qc1k′c1k, (C4)

∑
q

B21qB21−q =
∑

q,k,k′
c
†
1k+qc

†
1k′−qc2k′c2k, (C5)

∑
q

B
†
21qB21q =

∑
q,k,k′

c
†
2k+qc

†
1k′−qc2k′c1k +

∑
q,k

c
†
2k+qc2k+q,

(C6)∑
q

B21qB
†
21q =

∑
q,k,k′

c
†
1k+qc

†
2k′−qc1k′c2k +

∑
q,k

c
†
1k+qc1k+q.

(C7)

Note that the sum of the pair terms in Eqs. (C6) and
(C7) simply acts as the identity operator in the two-subband
subspace and therefore can be ignored. The remaining four
operator terms can be regrouped in order to provide the
long-wavelength expansion of the Coulomb potential V̄ for
our problem:

V̄ = (
1 − f o

21f
w
21

) ∑
q,k,k′

[λμ,μ′λ′]

V
λμ,μ′λ′

q→0 c
†
λk+qc

†
μk′−qcμ′k′cλ′k.

(C8)

The symbol [λμ,μ′λ′] means that the sum runs only along
the four Coulomb matrix elements mentioned above. The final
result (C8) can be interpreted as a dipole-dipole interaction,
where the oscillating intersubband dipole moments interact
with each other through their local field.33

APPENDIX D: PROPERTIES OF THE POLARITON
DISPERSION

The eigenvalue equation for the polariton problem is
[Eq. (87)] (

ω2 − ω̃2
α

)(
ω2 − ω2

c

) = f o
α f w

α ω2
P ω2

c . (D1)

For simplicity, we have dropped the wave vector index q. The
real roots of Eq.(D1) are obtained from

ω2
± = 1

2

(
ω2

c + ω̃2
α ± √

�
)
, (D2)

� = (
ω2

c + ω̃2
α

)2 − 4ω2
c ω̄

2
α. (D3)

From these equations, it is easy to deduce

dω±
dω2

c

= 1

4ω±

(
1 ± d

√
�

dω2
c

)
. (D4)

The minimal splitting is obtained from

d(ω+ − ω−)

dω2
c

= 0. (D5)

Multiplying this equation by ω+ − ω− and using (D4), we
obtain

(ω+ − ω−)2 = ω2
+ − ω2

−
2
√

�

d
√

�

dω2
c

. (D6)

To transform this equation, we use the following relations:

ω2
+ − ω2

− =
√

�, (D7)

ω2
+ + ω2

− = ω2
c + ω̃2

α, (D8)

ω2
+ω2

− = ω2
c ω̄

2
α. (D9)

The first is an immediate corollary from (D2), while the second
and the third are the Newton formulas for Eq. (D1). We then
have

2(ω+ − ω−)2 = 2(ω2
+ + ω2

− − 2ω+ω−)

= 2
(
ω2

c + ω̃2
α − 2ωcω̄α

) = d
√

�

dω2
c

= 2
(
ω2

c + ω̃2
α

) − 4ω̄2
α. (D10)

To obtain the last line, we have derived Eq. (D3) with respect
to ω2

c . This equation clearly leads to the result

d(ω+ − ω−)

dω2
c

= 0 ⇔ ωc = ω̄α. (D11)

Furthermore, we can express the minimal splitting

min(ω+ − ω−)2 = ω̃2
α − ω̄2

α = f o
α f w

α ω2
P . (D12)

This is the result stated in Eqs. (92) and (93).

APPENDIX E: SEMICLASSICAL PLASMA HAMILTONIAN

In this Appendix, we consider the plasma Hamiltonian
in the semiclassical approximation discussed in the end of
Sec. IV C. It will be shown that this Hamiltonian leads to the
semiclassical dielectric constant (114).

In the semiclassical approximation, it is assumed that the
intersubband polarization is constant along the heterostructure
slab. We can then approximate the current-current correlation
function by the first order in the expansion (100) described in
Sec. IV B:∫ +∞

−∞
ξα(z)ξβ(z)dz ≈ 1

LQW

∫ LQW

0
ξα(z)dz

∫ LQW

0
ξβ(z)dz

= 2m∗

h̄

√
ωαωβf o

β f o
α . (E1)

This is equivalent to use a suitably averaged microscopic
response in the quantum well slab. With the use of (E1), we
obtain the following expressions for the coefficients that enter
the plasma Hamiltonian:

Lα
eff = LQW/f o

α , (E2)

ω̄2
Pα

= e2f o
α �Nα

εε0m∗SLQW
, (E3)

Cα,β = 1. (E4)
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We consider first the matter part of the plasma Hamiltonian, which is rewritten as

H =
∑
α,q

h̄ω̃αp†
αqpαq +

∑
α �=β,q

h̄ω̄Pαω̄Pβ

2
√

ω̃αω̃β

(p†
αq + pα−q)(p†

β−q + pβq). (E5)

Since the plasmon coupling coefficients are independent from the index q, the latter is dropped in the equations, and (E5) is
expressed in a more handy form:

H =
∑

α

h̄ω̃αp†
αpα +

∑
α �=β

h̄�αβ(p†
α + pα)(p†

β + pβ), (E6)

�αβ = �βα = h̄ω̄Pαω̄Pβ

2
√

ω̃αω̃β

. (E7)

Let us consider N coupled plasmons; then, the Hopfield determinant of the resulting Hamiltonian is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω − ω̃1 0 −�12 −�12 . . . −�1N −�1N

0 ω + ω̃1 �12 �12 . . . �1N �1N

−�12 −�12 ω − ω̃2 0 . . . −�2N −�2N

�12 �12 0 ω + ω̃2 . . . �2N �2N

...
...

...
...

. . .
...

...

−�1N −�1N −�2N −�2N . . . ω − ω̃N 0

�1N �1N �2N �2N . . . 0 ω + ω̃N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (E8)

To simplify this determinant, we first add every impair row to the row above, then we subtract every impair column from the
column on the left. This leads to the following simplified determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω − ω̃1 2ω̃1 0 0 . . . 0 0

0 ω + ω̃1 �12 0 . . . �1N 0

0 0 ω − ω̃2 2ω̃2 . . . 0 0

�12 0 0 ω + ω̃2 . . . �2N 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . ω − ω̃N 2ω̃N

�1N 0 �2N 0 . . . 0 ω + ω̃N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (E9)

Let �[1,...,N] be the determinant of N th order. By developing this determinant along the columns, we obtain the following
recursive expression:

�[1,...,N ] = (
ω2 − ω̃2

1

)
�[2,...,N] − 22

N∑
i

ω̃1ω̃i�1i�i1�[2,...,N ]/[i] . . .

− n!2n+1
∑

i1,i2,...,in

ω̃1ω̃i1 , . . . ,ω̃in�1i1�i1i2 , . . . ,�in1�[2,...,N ]/[i1,i2,...,in] . . .

− (N − 1)!2Nω̃1ω̃2, . . . ,ω̃N�12�23, . . . ,�N1 (E10)

with �[2,...,N]/[i1,i2,...,in] being the determinant of order N − 1 − n, excluding the transitions i1,i2, . . . ,in. The notation i1,i2, . . . ,in
means that the sum does not contain repetitive indexes. Using the definition (E7), the determinant is easily rewritten
as

�[1,...,N] = (
ω2 − ω̃2

1

)
�[2,...,N] −

N∑
i

ω̄2
P 1ω̄

2
P i�[2,...,N ]/[i] . . . − n!

∑
i1,i2,...,in

ω̄2
P 1ω̄

2
P i1

, . . . ,ω̄2
P in

�[2,...,N ]/[i1,i2,...,in] . . .

− (N − 1)!ω̄2
P 1ω̄

2
P 2, . . . ,ω̄

2
PN . (E11)
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Having expressed the N th-order determinant as a function of lower-order ones, we make the following recursive assumption for
n < N :

�[1,...,n] =
n∏

i=1

(
ω2 − ω2

i

) (
1 −

n∑
i=1

ω̄2
P i

ω2 − ω2
i

)
. (E12)

Let us denote xi = ω̄2
P i/(ω2 − ω2

i ), then our recursive hypothesis implies

�[1,...,N] =
N∏

i=1

(
ω2 − ω2

i

)[
(1 − x1)

(
1 −

N∑
i=2

xi

)
−

N∑
i=2

x1xi

(
1 −

N∑
k=2,k �=i

xk

)
. . . − n!

×
∑

i1,i2,...,in

x1xi1 , . . . ,xin

(
1 −

N∑
k=2,k �=i1,i2,...,in

xk

)
. . . − (N − 1)!x1x2, . . . ,xN

]
. (E13)

We can easily show that all the terms in this sum that imply high orders of the xi cancel two by two, except the linear terms,
which completes our recursive demonstration. The final result can be cast in the form

�[1,...,N] = εQW,cl(ω)

ε

N∏
i=1

(
ω2 − ω2

i

)
, (E14)

where εQW,cl(ω) is the semiclassical multiband dielectric constant, provided by Eq. (114). Therefore, the coupled plasmonic
eigenmodes of the Hamiltonian (E5) are provided by the zeros of the dielectric function εQW,cl(ω).

If we now add the light-matter interaction with a single photonic mode, similar reasoning leads to the Hopfield determinant

�(ω) = εQW,cl(ω)

ε

(
ω2 − ω2

c

ε

εeff,cl(ω)

) N∏
i=1

(
ω2 − ω2

i

)
(E15)

with εeff,cl(ω) the classical effective medium constant defined by

1

εeff,cl(ω)
= fw

εQW,cl(ω)
+ 1 − fw

ε
. (E16)

Here, fw = LQW/Lcav is the filling factor of the quantum well (heterostructure) in the cavity, which is independent from the
intersubband transition in this approximation.

From a mathematical point of view, the analytical diagonalization of the problem was obtained thanks to the relation Cα,β = 1.
This would not be possible in the general case, and yet it is clear that the Hopfield determinant of the Hamiltonian (53) is a
polynomial of 2 × (N + 1)th degree. Therefore, we can still use the definition (107) to compute numerically the exact quantum
effective dielectric constant of the problem.
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22L. Wendler and E. Kändler, Phys. Status Solidi B 177, 9 (1993).
23L. Landau and E. Lifchitz, Electrodynamics of Continuous Media

(Mir, Moscow, 1969).
24R. Resta, J. Phys.: Condens. Matter 22, 123201 (2010).
25C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50,

8663 (1994).

045304-19

http://dx.doi.org/10.1098/rspa.1983.0022
http://dx.doi.org/10.1098/rspa.1983.0022
http://dx.doi.org/10.1007/BF02827754
http://dx.doi.org/10.1098/rspa.1971.0049
http://dx.doi.org/10.1103/PhysRevB.72.115303
http://dx.doi.org/10.1103/PhysRevB.72.115303
http://dx.doi.org/10.1103/PhysRevLett.90.116401
http://dx.doi.org/10.1103/PhysRevLett.90.116401
http://dx.doi.org/10.1103/PhysRevLett.105.196402
http://dx.doi.org/10.1103/PhysRevLett.105.196402
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1088/0953-8984/19/29/295213
http://dx.doi.org/10.1103/PhysRevLett.79.4633
http://dx.doi.org/10.1103/PhysRevLett.79.4633
http://dx.doi.org/10.1063/1.3598432
http://dx.doi.org/10.1103/PhysRevA.19.301
http://dx.doi.org/10.1103/PhysRevA.19.301
http://dx.doi.org/10.1038/ncomms1069
http://dx.doi.org/10.1103/PhysRevB.59.13043
http://dx.doi.org/10.1088/1751-8113/40/13/025
http://dx.doi.org/10.1103/PhysRevA.46.4306
http://dx.doi.org/10.1103/PhysRevA.57.3050
http://dx.doi.org/10.1103/PhysRevB.82.165318
http://dx.doi.org/10.1103/PhysRevB.16.651
http://dx.doi.org/10.1002/pssb.2221770102
http://dx.doi.org/10.1088/0953-8984/22/12/123201
http://dx.doi.org/10.1103/PhysRevB.50.8663
http://dx.doi.org/10.1103/PhysRevB.50.8663


YANKO TODOROV AND CARLO SIRTORI PHYSICAL REVIEW B 85, 045304 (2012)

26S. De Liberato and C. Ciuti, Phys. Rev. Lett. 102, 136403
(2009).

27S. De Liberato and C. Ciuti, Phys. Rev. B 79, 075317
(2009).

28F. Schwabl, Advanced Quantum Mechanics (Springer, Berlin,
2000).

29Marie S-C. Luo, S. L. Chuang, S. Schmitt-Rink, and A. Pinczuk,
Phys. Rev. B 48, 11086 (1993).

30M. Geiser, C. Walther, G. Scalari, M. Beck, M. Fischer, L. Nevou,
and J. Faist, Appl. Phys. Lett. 97, 191107 (2010).

31C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanqiue Quantique
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