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Limit cycles and chaos in the current through a quantum dot

Carlos López-Monı́s,1 Clive Emary,2 Gerold Kiesslich,2 Gloria Platero,1 and Tobias Brandes2

1Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, ES-28049 Madrid, Spain
2Institute für Theoretische Physik, TU Berlin, Hardenbergstr. 36, DE-10623 Berlin, Germany

(Received 20 April 2011; revised manuscript received 16 December 2011; published 3 January 2012)

We investigate nonlinear magnetotransport through a single-level quantum dot coupled to ferromagnetic leads,
where the electron spin is coupled to a large, external (pseudo)spin via an anisotropic exchange interaction. We
find regimes where the average current through the dot displays self-sustained oscillations that reflect the limit
cycles and chaos and map the dependence of this behavior on magnetic field strength and the tunnel coupling to
the external leads.
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I. INTRODUCTION

Single-electron transport through nanostructures has de-
veloped into a powerful spectroscopic tool for probing
correlations, quantum coherence, and interactions with the
environment on a microscopic level.1–4 Some recent exam-
ples include experiments with semiconductor quantum dots
that have provided detailed insight into level structures,2,5,6

Coulomb and spin-blockade effects,7 phonon emission,8 or
the statistics of individual electron tunnel events.9–11

In this paper, we propose the time-dependent, average cur-
rent of electrons through a single-level quantum dot as probe
for classical nonlinear dynamics and chaos.12 Specifically, we
consider electronic magnetotransport through a quantum dot
containing two spin-split levels with an anisotropic coupling
between the electron spin and an external, classical magnetic
moment or pseudospin. In order to have a spin-polarized
current through the quantum dot, we consider ferromagnetic
leads (see Ref. 13 and references there in).

Previous works have analyzed the anisotropic interaction
between two spins in a closed system under an external
magnetic field,14–18 showing either regular (integrable) or
chaotic (nonintegrable) classical orbits. The results presented
here demonstrate that the signatures of nonlinear dynamics
and classical chaos of the closed system also persist in the
nonequilibrium regime, where the additional coupling to the
electronic reservoirs leads to an even richer dynamics that can
be probed, e.g., by varying the magnetic field and the tunnel
rates. In particular, one finds a transition from a regime with
damped current transients and a constant current, to a situation
where the current displays self-sustained regular limit-cycle
oscillations or chaotic behavior. Limit cycles in transport
have also been found recently in theoretical calculations
in mesoscopic systems coupled to mechanical degrees of
freedom.19–22

Experimental inspiration for our model comes from the
hyperfine interaction in quantum dots. The interaction of
electron spins in quantum dots with surrounding nuclear
spins is usually viewed as simply giving rise to spin re-
laxation and decoherence.23,24 Recently, however, transport
experiments through semiconductor double quantum dots have
shown nonlinear current behavior, which has been attributed
to hyperfine interaction inducing a dynamical nuclear spin
polarization.25–27 The feedback between electron and nuclei
spin polarization gives rise to nontrivial features in the current,

including self-sustained oscillations.25,26 In this setting, the
large spin of our model represents an effective description of
the collective nuclear spin system28 and the electronic part
provides a minimal model for investigating the effects on
transport of coupled spin-spin dynamics.

A further potential realization of the large spin in our
model is a magnetic impurity in a quantum dot. Several recent
works have considered the influence of such an impurity on
the transport properties through the dot.29–32 In this context,
our model can be viewed as the large-spin counterpart of
the previously studied models and in particular the spin-
1/2 impurity model of Refs. 30 and 32. This possibility
is also closely related to transport through single molecular
magnets33–36 for which our large spin would map to a magnetic
atom and the isolated levels of our quantum dot to molecular
orbitals.

We mention that our study of classical chaos in a quantum
dot with coupling to an external pseudospin is also comple-
mentary to previous studies of intrinsic quantum chaos of, e.g.,
ballistic quantum dots. Those latter systems are often analyzed
with statistical tools such as random matrix theory.37,38

The outline of this paper is as follows. In Sec. II, we
introduce the model Hamiltonian and the equations of motion.
Section III presents results and a classification of various
nonlinear regimes in the form of a map in parameter space,
and we conclude with a brief discussion of the experimental
relevance of our finding in Sec. IV.

II. MODEL

A. Hamiltonian

We investigate a quantum dot (QD) with a single orbital
level, coupled to an emitter (left electron lead), a collector
(right electron lead) and to a large spin Ĵ [Fig. 1(a)]. An
external magnetic field Bz is applied in z direction, which
splits the QD spin levels [Fig. 1(b)]. The Hamiltonian for this
model is

Ĥ = ĤFA + ĤJ + V̂ . (1)

Here, ĤFA is the Fano-Anderson model for the QD coupled
to the leads, which is exactly solvable, ĤJ is the Hamiltonian
for the free motion of the large spin due the external magnetic
field, and V̂ is the coupling between a dot electron and the
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FIG. 1. (Color online) Scheme and setup of the investigated
system. (a) An electron spin Ŝ (blue arrow) in a QD is coupled
via the exchange interaction λ with a large spin Ĵ (red arrow). The
QD is attached to ferromagnetic electron reservoirs (brown regions),
allowing electrons to tunnel through the QD. The large spin is isolated.
(b) The spin-dependent rates of the contact barriers are chosen so that
a spin-down electron is always trapped in the QD, while spin-up
electrons can tunnel through it (see details in the text). The large spin
interacts with the spin of the electron trapped in the QD, allowing its
spin to flip and, hence, escape form the QD into the right lead.

large spin. These individual Hamiltonians read

ĤFA =
∑

σ

εd d̂
†
σ d̂σ + BzŜz +

∑
lkσ

εlkσ ĉ
†
lkσ ĉlkσ

+
∑
lkσ

(γlkĉ
†
lkσ d̂σ + H.c.), (2a)

ĤJ = BzĴz, (2b)

V̂ =
∑

i=x,y,z

λi Ŝi Ĵi , (2c)

where εd is the energy of the QD level, d̂†
σ /d̂σ cre-

ates/annihilates a spin-σ electron in the dot, Ŝi is the ith
component of the electron spin operator in second quanti-
zation, Ĵi is the ith component of the large spin operator, and
λi is the coupling between the ith components of the electron
and the large spin, ĉ

†
lkσ /ĉlkσ creates/annihilates an electron

with momentum k and spin σ in lead l ∈ {L,R}, and γlk is the
coupling between the QD and the lth lead. Coulomb interaction
in the QD is neglected, and thus double occupation is allowed.
The flip-flop processes due to the spin-spin interaction are the
origin of the nontrivial dynamics that will be shown in the next
section. Much of the interesting dynamics found occurs at low
magnetic fields, in particular, in a regime where the coupling
between the electron and the large spin dominates Zeeman
splittings (Bz � λ). Thus in this regime, we believe that
different g factors will not be qualitatively important, meaning
the energy mismatch between the Zeeman splittings will not
lead to suppression of the flip-flop processes. Therefore, for

simplicity, we assume identical g factors for the electron spin
and the large spin, and absorb the Bohr magneton and the g

factors into the definition of Bz.
The classical counterpart of the closed system (γlk = 0)

is, for zero external magnetic field (Bz = 0), a completely
integrable system for arbitrary λi ,17 while the isotropic model
(λx = λy = λz) is also completely integrable for finite external
magnetic fields. However, in presence of a finite magnetic field,
an anisotropic coupling between the electron spin and the large
spin, makes the model nonintegrable and can lead to a chaotic
spin dynamics.18 Therefore in this work, we take the coupling
between the electron spin and the large spin to be anisotropic,
and for simplicity, we will focus on the choice

λx = λz = λ, λy = 0. (3)

Finally, the spin-dependent rates of the contact barriers are
chosen so that only spin-up electrons can tunnel out of the
QD [Fig. 1(b)] and Bz � kBT , where T is the temperature
of the leads and kB is Boltzmann’s constant. In this regime,
current can flow only through the spin-up level of the QD.
When an electron enters the spin-down level, it remains trapped
until a spin-flip process (due to the interaction with the large
spin) produces a transition from the spin-down to the spin-up
level, allowing the trapped electron to escape the QD. Notice
that because we have taken identical g factors for both the
electron spin and the large spin, the spin-flip transition from
the QD spin-down to the spin-up level conserves energy, and
the energy that the electron absorbs in the spin-flip is emitted
by the large spin.

B. Equations of motion

The equation of motion (EOM) for the expectation value of
an operator Â is

d

dt
〈Â〉 = 1

ih̄
〈[Â,Ĥ ]〉 +

〈
∂Â

∂t

〉
. (4)

Using this formula, we derive the EOM of each operator in
Eqs. (2a), (2b), and (2c).

We first observe that the length of the large spin j = |Ĵ|
is a conserved quantity since [Ĵ2,Ĥ ] = 0. Next, due to the
interaction V̂ , the EOMs do not close and lead to an infinite
hierarchy of equations that needs to be truncated. In order to
do so, we use a factorization approximation by invoking a
mean-field approximation for V̂ → V̂MF,

V̂MF =
∑

i=x,y,x

λi(Ŝi〈Ĵi〉 + Ĵi〈Ŝi〉 − 〈Ŝi〉〈Ĵi〉), (5)

which neglects the term δŜiδĴi with δŜi = Ŝi − 〈Ŝi〉 and δĴi =
Ĵi − 〈Ĵi〉, i.e., the quantum fluctuations of the electron and the
external spins. We expect this to be a good approximation when
j � 1 and the external spin Ĵ can essentially be treated as a
classical object due to its interaction with other environmental
degrees of freedom. Furthermore, as in the semiclassical
approximation, we neglect quantum fluctuations of the large
spin, we have no spin decay, meaning the large spin is a
constant of motion.

We, furthermore, neglect terms proportional to γlkλi ,
namely, second-order transitions due to the coupling of the
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large spin with the contacts. This is a good approximation in
the infinite bias regime. For the electron leads, we perform the
usual Born-Markov and flat-band approximations and consider
them to be in thermal equilibrium. Moreover, we consider
the infinite bias regime, namely, μL → ∞ and μR → −∞,
respectively (see Appendix A for details). The resulting EOMs
read

d

dt
〈n̂σ 〉 = λ〈Ĵx〉〈Ŝy〉(δσ↑ − δσ↓) − �〈n̂σ 〉 + �Lσ ,

d

dt
〈Ŝx〉 = −(λ〈Ĵz〉 + Bz)〈Ŝy〉 − �〈Ŝx〉,

d

dt
〈Ŝy〉 = −λ〈Ĵx〉〈Ŝz〉 + (λ〈Ĵz〉 + Bz)〈Ŝx〉 − �〈Ŝy〉,

d

dt
〈Ŝz〉 = λ〈Ĵx〉〈Ŝy〉 − �〈Ŝz〉 + 1

2
(�L↑ − �L↓), (6)

d

dt
〈Ĵx〉 = −(λ〈Ŝz〉 + Bz)〈Ĵy〉,

d

dt
〈Ĵy〉 = −λ〈Ŝx〉〈Ĵz〉 + (λ〈Ŝz〉 + Bz)〈Ĵx〉,

d

dt
〈Ĵz〉 = λ〈Ŝx〉〈Ĵy〉,

where n̂σ = d̂†
σ d̂σ , �σ = �Lσ + �Rσ with σ = ↑,↓, and �Lσ

and �Rσ are the tunneling rates through the left and right
contact barriers, respectively. We have taken �↑ = �↓ = �

for simplicity. In order to have current only through the
spin-up level, we take �R↓ = 0. Therefore spin-up electrons
are allowed to tunnel through the QD, whereas spin-down
electrons become trapped in it.

The EOM for the total number of electrons in the QD (N̂ =
n̂↑ + n̂↓) is independent of both the electron and the large spin
components and is exactly solvable (see Appendix A). Thus, as
2Ŝz = n̂↑ − n̂↓, the level occupations can be obtained through
the following expression:

〈n̂σ (t)〉 = 1

2

[
〈N̂ (0)〉 e−�t + �L↑ + �L↓

�
(1 − e−�t )

]
+ (δσ↑ − δσ↓)〈Ŝz(t)〉, (7)

which relates the level occupation with the z-component of
the electron spin. If the coupling between the electron and the
large spins is isotropic (λx = λy = λz), it is straightforward to
see that in the stationary limit the spins decouple, and the well-
known Fano-Anderson solution is obtained (see Appendix B).
In contrast, we show below that the situation is drastically
different for the anisotropic case where the stationary solutions
for the EOMs depend on the coupling between the spins.

The average electron current 〈Î 〉 through the QD is solely
due to a decay at rate �R↑ from the spin-up QD level into the
right lead,

〈Î (t)〉 = e�R↑〈n̂↑(t)〉, (8)

where e denotes the electron charge. In the long-time limit, the
current can be written as [see Eq. (7)]

〈Î (t)〉
e�R↑

= 1

2

�L↑ + �L↓
�

+ 〈Ŝz(t)〉. (9)

Henceforth, for convenience, we take �L↑ = �R↑ = �/2. Other
options give similar behavior except for the transient solutions.
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FIG. 2. (Color online) (a) Parameter space with three regions
describing the behavior of solutions of EOMs [see Eq. (6)].
Boundaries between the regions are obtained analytically from
Eq. (13). Region I: damped oscillations; region II: both damped and
self-sustained oscillations; and region III: self-sustained oscillations
only. (b) Numerically obtained small-� region in the mixed region II.
In the dark-colored region, damped oscillations are obtained. In the
light-colored region: self-sustained oscillations. Initial conditions:
〈Ŝx〉t=0 = 1/2 and 〈Ŝy〉t=0 = 〈Ŝz〉t=0 = 0, 〈Ĵx〉t=0 = 〈Ĵy〉t=0 = j/2
and 〈Ĵx〉t=0 = j/

√
2.

III. REGIONS IN PARAMETER SPACE

The stationary solutions of the EOMs, Eq. (6), can be
obtained analytically, and we find eight fixed points. Two of
these fixed points, however, always have a finite imaginary
component, and as they have no physical meaning, we leave
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FIG. 3. (Color online) Time evolution in region I of (a) the
electron spin components, (b) the large spin components, and (c)
the current through the QD obtained by solving numerically the
EOMs (6). In this region, the solutions exhibit a slow damped
behavior. In the stationary limit, the large spin is completely
polarized in the direction parallel to the external magnetic field,
and a QD electron trapped in the spin-down state. Current is due
only to tunneling through the spin-up level and, in the stationary
limit, tends to a constant value of 1/2. The parameters here are
Bz/λ = 0.1 and �/λ = 9, with initial conditions 〈Ŝx〉t=0 = 1/2,
〈Ŝy〉t=0 = 〈Ŝz〉t=0 = 0, 〈Ĵx〉t=0 = 〈Ĵy〉t=0 = (5/

√
2)(

√
5 − 1)/2, and

〈Ĵz〉t=0 = (5/
√

2)
√

5 + √
5.
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FIG. 4. (Color online) Results for three different parameter sets are shown, each of which gives rise to very different system behavior.
Panels (a)–(c) show fast damping behavior [Bz/λ = 0.2, �/λ = 0.7, dark region in Fig. 2(b)]. In the long-time limit, the large spin is almost
completely polarized in the direction perpendicular to the external field, but unlike in region I, the spin-down electron can escape from the QD
into the right lead due to the interaction with the large spin. Panels (d)–(f) show periodic self-sustained oscillations [Bz/λ = 0.1, �/λ = 0.16,
light region in Fig. 2(b)], which is a signature of limit cycles in phase space (see Fig. 6). Panels (g)–(i) show chaotic self-sustained oscillations
[Bz/λ = 0.1, �/λ = 0.015, light region in Fig. 2(b)]. In the oscillatory cases, the oscillations are captured in the current through the QD,
and in particular, the chaotic behavior is observed in the current [panel (i)]. The initial conditions are 〈Ŝx〉t=0 = 1/2, 〈Ŝy〉t=0 = 〈Ŝz〉t=0 = 0,

〈Ĵx〉t=0 = 〈Ĵy〉t=0 = (5/
√

2)(
√

5 − 1)/2, and 〈Ĵz〉t=0 = (5/
√

2)
√

5 + √
5.

them out of the subsequent analysis. The remaining fixed
points serve to divide the parameter space of the model into
distinct regions, as shown in Fig. 2.

Introducing the notation

P = (〈Ŝx〉,〈Ŝy〉,〈Ŝz〉,〈Ĵx〉,〈Ĵy〉,〈Ĵz〉), (10)

the six relevant fixed points are

P± =
(

0,0,−1

4
,0,0,±j

)
, (11a)

PII,1± =
(

0,B2,−Bz

λ
,
�

Bz

B2,±B1,−Bz

λ

)
, (11b)

PII,2± =
(

0,−B2,−Bz

λ
,− �

Bz

B2,±B1,−Bz

λ

)
, (11c)

where

B1 = −
√

j 2 −
(

λ

4Bz

− 1

)(
�

λ

)2

−
(

Bz

λ

)2

, (12a)

B2 = −
√

Bz

λ

(
1

4
− Bz

λ

)
. (12b)

For certain values of Bz, �, and λ, the quantities B1 and
B2 [see Eqs. (12a) and (12b)] can have finite imaginary

components and therefore points PII,1± and PII,2± only have
physical meaning in the region of parameter space where B1

and B2 are real. Figure 2(a) shows a projection of the three-
dimensional parameter space on the � versus Bz plane for a
fixed λ. This diagram is divided in three regions. In region I,
B1 is a pure imaginary number, and hence, PII,1± and PII,2± are
nonphysical, and P± the only physical fixed points. In region
II, B1 and B2 are both real, and all six fixed points are physical.
In region III, B2 is purely imaginary, and again P± are the only
physical fixed points. Points P± are thus physical solutions for
the EOMs (6) in all three regions, whereas the fixed points
PII,± are physical only in region II. The boundaries between
the regions are obtained by solving the equations B1 = 0 and
B2 = 0, namely,

B1 = 0 ⇒ � =
√

j 2 − (Bz/λ)2

1/4 − Bz/λ

Bz

λ
,

(13)

B2 = 0 ⇒ Bz

λ
= 1

4
,

and these two equations give the lines plotted in Fig. 2(a).

A. Region I

In order to obtain the time evolution of the electron and
large spin components and the electronic current through the
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FIG. 5. (Color online) Fourier spectra of the nondamped current
time evolutions shown in Fig. 4 in the long-time limit. Panels
(a) and (b) show the Fourier transform of Figs. 4(f) and 4(i),
respectively, where ν is the frequency. Panel (a) shows peaks at well
defined frequencies, meaning that behavior of the current is periodic.
However, panel (b) shows a uniform frequency distribution, which is
a signature of chaotic dynamics.

QD, the EOMs (6) are solved numerically. Figure 3 shows
the time evolution of the electron spin and the large spin
components, and the current through the QD in region I of the
parameter space. All exhibit completely damped oscillations.
In the previous discussion, we have seen that in region I, P±
of Eq. (11a) are the only physical fixed points. Depending on
the choice of parameters and initial conditions, the system will
evolve to P+ or P−. For the parameters and initial conditions
chosen in Fig. 3, the system evolves toward the fixed point
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FIG. 6. (Color online) Electron spin (left figures) and large
spin (right) trajectories projected on a two-dimensional plane for
the nondamped solutions in region II [light region in Fig. 2(a)].
Panels (a) and (b) show the formation of a limit cycle as seen
in the time evolution plots, see Figs. 4(d)–4(f) (Bz/λ = 0.1 and
�/λ = 0.16). Panels (c) and (d) correspond to the time evolution
plots of Figs. 4(g)–4(i), which suggests that the trajectories are chaotic
(Bz/λ = 0.1 and �/λ = 0.015).
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FIG. 7. (Color online) In this region, the solutions exhibit periodic
self-sustained oscillations, which are reflected in the current. The
corresponding limit cycles are shown in Fig. 8. The parameters
chosen here are Bz/λ = 1.0 and �/λ = 10. The initial conditions are
〈Ŝy〉t=0 = 1/2, 〈Ŝx〉t=0 = 〈Ŝz〉t=0 = 0, 〈Ĵx〉t=0 = 〈Ĵy〉t=0 = 3

√
11/2,

and 〈Ĵz〉t=0 = −1.

P+. In this case, the large spin becomes completely polarized
in the direction parallel to the external magnetic field [see
Fig. 3(b)], and a spin-down electron remains trapped in the
QD [see Fig. 3(a)] and the interaction between the electron
and the large spins is no longer effective. Spin-up electrons,
however, can still tunnel through the QD [see Fig. 3(c)], and
in the stationary limit the current becomes [see Eq. (9)]

〈Î (t)〉
e�R↑

= 1

2
. (14)

In region I, then, the coupling of the two-spin systems with
the external leads results in complete damping of the transient
oscillations of the electron and the large spin components and
the current. A finite, fully spin-polarized electron current flows
through the QD that in the stationary limit is not influenced by
the interaction with the large spin.

B. Region II

In region II, the EOMs (6) exhibit both damped and
self-sustained oscillatory solutions, depending on the choice of
parameters and initial conditions. Figure 2(b) shows the part
of region II where the self-sustained oscillations are found.
This behavior can be seen for all intensities of the external
magnetic field in region II, but only for small values of coupling
� with the leads. Comparing Figs. 2(a) and 2(b), we see
that most values for Bz and � in region II lead to damped
oscillations. Furthermore, although we have given analytical
expressions for the boundaries between the different regions,
see Eq. (13), we have not found an expression for the boundary
between the regions inside region II where self-sustained and
damped oscillations are found. Figure 2(b) has been obtained
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by solving the EOMs (6) in region II. As can be seen, the
boundary between both regions is fuzzy in contrast with the
ones obtained between regions I, II, and III [see Eq. (13)].
Moreover, Fig. 2(b) shows small “islands” in the oscillatory
region, where damped solutions are obtained.

1. Damped oscillations

Figures 4(a)–4(c), show the time evolution of the electron
and the large spin components, and the current in region
II with parameters Bz and � such that they all exhibit
damped oscillations. Previously, we have seen that in region
II all the six fixed points are physical. For the parameters
and initial conditions chosen in Figs. 4(a)–4(c), the system
evolves toward the fixed point PII,1+. The large spin becomes
almost completely polarized in the y direction [see Fig. 4(b)],
perpendicular to the external magnetic field. and the current
becomes [see Eq. (9)]

〈Î 〉
e�R↑

= 3

4
− Bz

λ
. (15)

Thus the stationary current increases if either the external
magnetic field decreases or the coupling between the spins
increases. Since in region II Bz/λ < 1/4, the coupling between
the electron and the large spins enhances the current through
the QD, compared with the current obtained in region I
[see Eq. (14)]. Nevertheless, the result of coupling the two
spins to the leads stills yields complete damping of both spin
oscillations, as in region I.

2. Self-Sustained oscillations and chaos

We shall now focus on the small region in region II where
self-sustained oscillatory solutions are found [see Fig. 2(b)].
Figures 4(d)–4(f) show the time evolution of the electron and
the large spin components, and the current through the QD. The
chosen values of Bz and � lead to complicated, but periodic,
undamped oscillations. Figure 5(a) shows the Fourier spectrum
of the current time evolution of Fig. 4(f) in the long-time
limit. The spectrum exhibits peaks at well defined frequencies,
which clearly confirms the periodic behavior of the current.
Furthermore, in nonlinear systems, self-sustained oscillations
are a signature of limit cycles, and in Figs. 6(a) and 6(b), we
plot the electron and the large spin trajectories in phase space,
projected on the x-z plane, in the long-time limit. These figures
show that the spin trajectories are precisely limit cycles. For
all the initial conditions chosen, the system always converges
to them. Finally, Figs. 4(g)–4(i) show that decreasing � turns
the periodic self-sustained oscillations chaotic. In this case,
the Fourier spectrum of the current, shown in Fig. 5(b), is
uniformly distributed through all frequencies, which is a clear
signature of chaos. Figures 6(c) and 6(d) show the electron and
large spin trajectories in the long-time limit, where it can be
seen that they perform complicated nonperiodic paths. In this
area of region II, the coupling between the interacting spins
and the leads does not produce damping of the spins as in
the previous cases. Moreover, the electron current through the
QD captures the complicated dynamics due to the interaction
between the electron and the large spins, as seen in Figs. 4(f)
and 4(i).
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FIG. 8. (Color online) Electron spin trajectories projected in the
〈Ŝy〉-〈Ŝz〉 plane in region III. The solutions of the EOMs given in
Eq. (6) are periodic self-sustained oscillations (see Fig. 7). Panels
(a)–(f) show the different limit cycles obtained when varying the
external magnetic field. �/λ = 1.

C. Region III

Figures 7(a)–7(c) show the time evolution of the spin
components and current for typical parameters in region III.
They all exhibit periodic self-sustained oscillations. Figure 8
shows the different limit cycles performed by the electron spin
in phase space, projected in the y-z plain, when the value of the
external magnetic field is increased. The trajectories found for
the large spin in the long-time limit suggest that this behavior
can be understood by means of an effective model in which the
large spin simply acts on the QD electrons as an ac magnetic
field in x direction with amplitude

Bac(t) = λj√
2

[cos(Bzt) − sin(Bzt)]. (16)

The EOMs for this effective model are (see Appendix C for
details)

d

dt
〈Ŝx〉 = −Bz〈Ŝy〉 − �〈Ŝx〉,

d

dt
〈Ŝy〉 = Bz〈Ŝx〉 − Bac(t)〈Ŝz〉 − �〈Ŝy〉, (17)

d

dt
〈Ŝz〉 = Bac(t)〈Ŝy〉 − �〈Ŝz〉 − �

4
.

Thus, in this region, the six autonomous nonlinear equations,
Eq. (6), can be approximated by a set of three nonau-
tonomous linear equations, Eq. (17). The agreement between
the solutions obtained with this effective model and the full
EOMs is very good. In region III, the coupling between the
two-spin system leads to self-sustained oscillations, which are
visible in the electron current through the QD, as shown in
Fig. 7(c).

IV. CONCLUSIONS

We have studied electron transport through a quantum dot
coupled to ferromagnetic leads in which the electron spin
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interacts with a large spin while an external magnetic field
is applied. We have found that the motion of the electron
spin, the large spin, and the current through the QD strongly
depend on the coupling between spins. When the electron
and the large spins are isotropically coupled, the large spin
becomes completely polarized and decouples from the electron
spin. Conversely, when the electron and the large spins are
anisotropicaly coupled, we have found that their motion
and the current through the QD can either behave as in
the isotropic case or show self-sustained oscillations, which,
furthermore, can be periodic or chaotic. Switching between
different behaviours can be obtained by varying either the
strength coupling with the leads or the intensity of the external
magnetic field.

We foresee two possible experimental realizations of the
large spin of our model. The first is as an effective model
on a hyperfine bath. Here, a semiclassical treatment may
be justified by considering that the number of nuclei spins
in semiconductor QDs interacting with an electron spin is
very large (e.g., for GaAs QDs there are typically 105–106

nuclei spins). Situations in which the hyperfine interaction is
anisotropic have been discussed in Refs. 39–41. The second
realization is that our large spin represents the spin of a
magnetic impurity of a doped semiconductor or a magnetic
atom in a single molecular magnet. While in this case the spin
may not be so large, mean-field analyses such as pursued here
can still provide useful information, see, e.g., Ref. 42.

From the theoretical point of view, it would be interesting
to investigate how the features of this semiclassical treatment
are reflected in a quantum master equation approach in which
the electron and the large spins are both treated as quantum
objects. This opens a path to investigate the quantum/classical
divide in a nonequillibrium context.
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APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION

In this appendix, we summarize the steps in the derivation
of the EOMs (6). We start with the Hamiltonian (1) and,
for later convenience, we shift the reservoir frequencies∑

lkσ εlkσ ĉ
†
lkσ ĉlkσ → ∑

lkσ (εlkσ + μl)ĉ
†
lkσ ĉlkσ , where μl is

the chemical potential of lead l. Under the mean-field ap-
proximation considered in this work [see Eq. (5)], the closed
set of EOMs obtained for the time evolution of operators in
the Hamiltonian (1) are then computed to be

i
d

dt
〈d̂†

σ d̂σ ′ 〉 = λ

2
(δσ ′↑〈d̂†

σ d̂↓〉 + δσ ′↓〈d̂†
σ d̂↑〉 − δσ↑〈d̂†

↓d̂σ ′ 〉 − δσ↓〈d̂†
↑d̂σ ′ 〉)〈Ĵx〉 + 1

2
(δσ ′↑ 〈d̂†

σ d̂↑〉 − δσ ′↓ 〈d̂†
σ d̂↓〉

− δσ↑ 〈d̂†
↑d̂σ ′ 〉 + δσ↓ 〈d̂†

↓d̂σ ′ 〉)(λ〈Ĵz〉 + Bz) −
∑
l, k

(γlk〈ĉ†lkσ d̂σ ′ 〉 − γ ∗
lk〈d̂†

σ ĉlkσ ′ 〉),
(A1)

i
d

dt
〈ĉ†lkσ d̂↑〉 = λ

2
〈Ĵx〉〈ĉ†lkσ d̂↓〉 + 1

2
(λ〈Ĵz〉 + Bz)〈ĉ†lkσ d̂↑〉 +

∑
l′, k′

γ ∗
l′k′ 〈ĉ†lkσ ĉl′k′↑〉 − (εlkσ + μl)〈ĉ†lkσ d̂↑〉 − γ ∗

lk〈d̂†
σ d̂↑〉,

i
d

dt
〈ĉ†lkσ d̂↓〉 = λ

2
〈Ĵx〉〈ĉ†lkσ d̂↑〉 − 1

2
(λ〈Ĵz〉 + Bz)〈ĉ†lkσ d̂↓〉 +

∑
l′, k′

γ ∗
l′k′ 〈ĉ†lkσ ĉl′k′↓〉 − (εlkσ + μl)〈ĉ†lkσ d̂↓〉 − γ ∗

lk〈d̂†
σ d̂↓〉,

and
d

dt
〈Ĵx〉 = −(λ〈Ŝz〉 + Bz)〈Ĵy〉, d

dt
〈Ĵy〉 = −λ〈Ŝx〉〈Ĵz〉 + (λ〈Ŝz〉 + Bz)〈Ĵx〉, d

dt
〈Ĵz〉 = λ〈Ŝx〉〈Ĵy〉, (A2)

where we have used the choice λx = λz = λ and λy = 0. Since the EOMs for the large spin components have already the desired
form [see Eq. (6)], hereinafter, we shall focus on the time evolution of the electron operators [see Eq. (A1)]. Under the Born
approximation, the leads are assumed to be in thermal equilibrium for all time,

〈ĉ†lkσ ĉl′k′σ ′ 〉 = flσ δll′ δσσ ′ δ(k′ − k), (A3)

with flσ the equilibrium Fermi-Dirac distribution for spin-σ electrons in lead l:

flσ = f (εlkσ ) = 1

e(εlkσ )/kBT + 1
. (A4)

Applying the Laplace transform, 〈Â〉s ≡ ∫ ∞
0 e−st 〈Â〉t dt , to Eq. (A1) we obtain

is 〈d̂†
σ d̂σ ′ 〉s = λ

2
(δσ ′↑〈d̂†

σ d̂↓〉s + δσ ′↓〈d̂†
σ d̂↑〉s − δσ↑〈d̂†

↓d̂σ ′ 〉s − δσ↓〈d̂†
↑d̂σ ′ 〉s)〈Ĵx〉s

+ 1

2
(δσ ′↑ 〈d̂†

σ d̂↑〉s − δσ ′↓ 〈d̂†
σ d̂↓〉s − δσ↑ 〈d̂†

↑d̂σ ′ 〉s + δσ↓ 〈d̂†
↓d̂σ ′ 〉s)(λ〈Ĵz〉s + Bz)

−
∑
l, k

(γlk〈ĉ†lkσ d̂σ ′ 〉s − γ ∗
lk〈d̂†

σ ĉlkσ ′ 〉s) + i 〈d̂†
σ d̂σ ′ 〉0 (A5a)
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and

is 〈ĉ†lkσ d̂↑〉s = λ

2
〈Ĵx〉s〈ĉ†lkσ d̂↓〉s + 1

2
(λ〈Ĵz〉s + Bz)〈ĉ†lkσ d̂↑〉s + flσ δσ↑ γ ∗

lk − (εlkσ + μl)〈ĉ†lkσ d̂↑〉s − γ ∗
lk〈d̂†

σ d̂↑〉s , (A5b)

is 〈ĉ†lkσ d̂↓〉s = λ

2
〈Ĵx〉s〈ĉ†lkσ d̂↑〉s − 1

2
(λ〈Ĵz〉s + Bz)〈ĉ†lkσ d̂↓〉s + flσ δσ↓ γ ∗

lk − (εlkσ + μl)〈ĉ†lkσ d̂↓〉s − γ ∗
lk〈d̂†

σ d̂↓〉s , (A5c)

where 〈Â〉0 denotes the expectation value of operator Â at time t = 0, and where we have taken 〈ĉ†lkσ d̂σ ′ 〉0 = 0. After some
algebra, Eqs. (A5b) and (A5c) become

〈ĉ†lkσ d̂↑〉s = γ ∗
lk

(flσ δσ↑ − 〈d̂†
σ d̂↑〉s)

εlkσ + μl − 1
2 (λ〈Ĵz〉s + Bz) + is + 1

2
λ2〈Ĵx 〉2

s

λ〈Ĵz〉s+Bz+2(is+εlkσ +μl )

+ 2γ ∗
lkλ〈Ĵx〉s(〈d̂†

σ d̂↓〉s − flσ )

(λ〈Ĵz〉s + Bz)2 − 4(is + εlkσ + μl)2 + λ2〈Ĵx〉2
s

,

(A6a)

〈ĉ†lkσ d̂↓〉s = γ ∗
lk

(flσ δσ↓ − 〈d̂†
σ d̂↓〉s)

εlkσ + μl + 1
2 (λ〈Ĵz〉s + Bz) + is − 1

2
λ2〈Ĵx 〉2

s

λ〈Ĵz〉s+Bz−2(is+εlkσ +μl )

+ 2γ ∗
lkλ〈Ĵx〉s(〈d̂†

σ d̂↑〉s − flσ )

(λ〈Ĵz〉s + Bz)2 − 4(is + εlkσ + μl)2 + λ2〈Ĵx〉2
s

.

(A6b)

We now consider the infinite bias limit and set, for the left lead, μL → ∞, and for the right, μR → −∞. In this limit, the
denominator of the first term in Eq. (A6a) becomes εlkσ + μl + i0+, with positive infinitesimal 0+, and the second term is seen
to be of the order μ−2

l and thus negligible compared with the first term (of order μ−1
l ). Equations (A6a) and (A6b) thus become

〈ĉ†lkσ d̂σ ′ 〉s = γ ∗
lk

εlkσ + μl + i0+ (flσ δσσ ′ − 〈d̂†
σ d̂σ ′ 〉s). (A7)

This result allows us to rewrite the summation that appears in Eq. (A5a) as∑
lk

(γlk〈ĉ†lkσ d̂σ ′ 〉s − γ ∗
lk〈d̂†

σ ĉlkσ ′ 〉s) = 1

2π

∑
l

∫ ∞

−∞
dε

[
�lσ (ε)

ε + μl + i0+ − �lσ ′(ε)

ε + μl − i0+

]
(f (ε)δσσ ′ − 〈d̂†

σ d̂σ ′ 〉s)

with the lead- and spin-dependent rates
�lσ (ε) = 2π ρlσ (ε)|γl(ε)|2 (A8)

with ρlσ (ε) density of states of the l-th lead. We assume these rates to be energy independent, �lσ (ε) = �lσ (flat-band
approximation). Using the Sokhatsky-Weierstrass theorem,

1

x ± i0+ = P
1

x
∓ iπδ(x),

upon evaluation of the Fermi functions at μL = ∞ and μR = −∞, we obtain∑
l, k

(γlk〈ĉ†lkσ d̂σ ′ 〉s − γ ∗
lk〈d̂†

σ ĉlkσ ′ 〉s) = i

2

∑
l

(�lσ + �lσ ′)〈d̂†
σ d̂σ ′ 〉s − i�Lσ δσσ ′ . (A9)

Replacing the previous expression in Eq. (A5a) gives

〈n̂σ 〉s = λ〈Ĵx〉s〈Ŝy〉s(δσ↑ − δσ↓) − �〈n̂σ 〉s + �Lσ , s 〈Sx〉s = −〈Ŝy〉s(λ〈Ĵz〉s + Bz) − � 〈Ŝx〉s + 〈Ŝx〉0,
(A10)

s 〈Ŝy〉s = −λ〈Ŝz〉s〈Ĵx〉s + 〈Ŝx〉s(λ〈Ĵz〉s + Bz) − � 〈Ŝy〉s + 〈Ŝy〉0, s 〈Ŝz〉s = λ〈Ĵx〉s〈Ŝy〉s − �〈Ŝz〉s + 1

2
(�L↑ − �L↓),

where �σ = �Lσ + �Rσ for σ = ↑,↓, although we have assumed for simplicity �↑ = �↓ = �, and the identities,

Ŝx = 1

2
(d̂†

↑d̂↓ + d̂
†
↓d̂↑), Ŝy = 1

2i
(d̂†

↑d̂↓ − d̂
†
↓d̂↑), Ŝz = 1

2
(d̂†

↑d̂↑ − d̂
†
↓d̂↓), (A11)

have been used. Finally, inverse Laplace transforming Eqs. (A10) yields the EOMs (6) for the occupation and the spin components
of the electron in the QD.

The EOM for the total occupancy of the QD is obtained by summing the EOMs of the spin-up and spin-down occupations,

d

dt
〈N̂〉 = −�〈N̂〉 + �L↑ + �L↓. (A12)

Notice that this EOM is independent of the electron and large spins, moreover, it is exactly solvable giving

〈N̂ (t)〉 = 〈N̂ (0)〉 e−�t + �L↑ + �L↓
�

(1 − e−�t ). (A13)
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1. Heuristic derivation

The electronic part of our EOMs can be seen to make sense by considering a more intuitive derivation using rate equations for
the QD occupations [see Eq. (6)] when λ = 0. The QD states in the transport window are {|0〉, |↑〉, |↓〉, |2〉 = |↑↓〉}. In the
infinite-bias regime, electrons can tunnel into the QD from the left lead and tunnel out of the QD to the right lead, thus

ṗ0 = WR
0↑p↑ + WR

0↓p↓ − (
WL

↑0 + WL
↓0

)
p0, ṗ↑ = WL

↑0p0 + WR
↑2p2 − (

WR
0↑ + WL

2↑
)
p↑,

(A14)
ṗ↓ = WL

↓0p0 + WR
↓2p2 − (

WR
0↓ + WL

2↓
)
p↓, ṗ2 = WL

2↑p↑ + WL
2↓p↓ − (

WR
↑2 + WR

↓2

)
p2,

where pi is the probability of finding an electron in state |i〉. Wl
f i is the tunneling rate from the initial |i〉 to the final |f 〉 states

through the lth barrier. Using the conservation of total probability [Tr(ρ) = 1], we get

ṗ↑ = WL
↑0(1 − p↓) + (

WR
↑2 − WL

↑0

)
p2 − (

WL
↑0 + WR

0↑ + WL
2↑

)
p↑,

ṗ↓ = WL
↓0(1 − p↑) + (

WR
↓2 − WL

↓0

)
p2 − (

WL
↓0 + WR

0↓ + WL
2↓

)
p↓, (A15)

ṗ2 = WL
2↑p↑ + WL

2↓p↓ − (
WR

↑2 + WR
↓2

)
p2.

We now consider that WL
↑0 = WL

2↓ = �L↑ and WL
↓0 = WL

2↑ = �L↓, and WR
0↑ = WR

↓2 = �R↑ and WR
0↓ = WR

↑2 = �R↓, so

ṗ↑ = �L↑(1 − p↓) + (�R↓ − �L↑)p2 − (�L↑ + �R↑ + �L↓)p↑, (A16)

ṗ↓ = �L↓(1 − p↑) + (�R↑ − �L↓)p2 − (�L↓ + �R↓ + �L↑)p↓,

ṗ2 = �L↓p↑ + �L↑p↓ − (�R↑ + �R↓)p2.

Finally, since

ṗσ + ṗ2 = �Lσ − (�Lσ + �Rσ )(pσ + p2) (A17)

and 〈n̂σ 〉 = pσ + p2, we arrive to

〈 ˙̂nσ 〉 = −�〈n̂σ 〉 + �Lσ , (A18)

where we have used that �Lσ + �Rσ = �.

APPENDIX B: ISOTROPIC MODEL

The EOMs for the completely isotropic case λx = λy = λz = λ are

d

dt
〈n̂σ 〉 = λ(〈Ĵx〉〈Ŝy〉 − 〈Ĵy〉〈Ŝx〉)(δσ↑ − δσ↓) − �〈n̂σ 〉 + �Lσ ,

d

dt
〈Ŝx〉 = λ〈Ĵy〉〈Ŝz〉 − (λ〈Ĵz〉 + Bz)〈Ŝy〉 − �〈Ŝx〉,

d

dt
〈Ŝy〉 = −λ〈Ĵx〉〈Ŝz〉 + (λ〈Ĵz〉 + Bz)〈Ŝx〉 − �〈Ŝy〉, d

dt
〈Ŝz〉 = λ(〈Ĵx〉〈Ŝy〉 − 〈Ĵy〉〈Ŝx〉) − �〈Ŝz〉 + 1

2
(�L↑ − �L↓),

d

dt
〈Ĵx〉 = λ〈Ŝy〉〈Ĵz〉 − (λ〈Ŝz〉 + Bz)〈Ĵy〉, d

dt
〈Ĵy〉 = −λ〈Ŝx〉〈Ĵz〉 + (λ〈Ŝz〉 + Bz)〈Ĵx〉, d

dt
〈Ĵz〉 = λ(〈Ŝx〉〈Ĵy〉 − 〈Ŝy〉〈Ĵx〉).

(B1)

To find the solutions in the stationary limit, we put to zero the time derivatives. Therefore it can be seen right away that in the
long-time limit, the quantum dot occupations decouple from the large spin components and become

〈n̂σ 〉 = �Lσ

�
. (B2)

Thus the spin dynamics can not be observed in the current.

APPENDIX C: EFFECTIVE MODEL FOR REGION III

In this appendix, we summarize the steps in the derivation of the effective EOMs [see Eq. (17)] for region III of the parameter
space [see Fig. 2(a)]. Applying the transformation 〈Ŝ〉 = e−�t R(t) · 〈S̃〉 and 〈Ĵ〉 = R(t) · 〈J̃〉 with

R(t) =

⎛
⎜⎝

cos(Bzt) − sin(Bzt) 0

sin(Bzt) cos(Bzt) 0

0 0 1

⎞
⎟⎠ , (C1)
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to the EOMs (6), they become

d

dt
〈S̃x〉 = −λ{〈Ĵz〉〈S̃y〉 + [〈J̃x〉 cos(Bzt) − 〈J̃y〉 sin(Bzt)]〈S̃z〉 sin(Bzt)},

d

dt
〈S̃y〉 = λ{〈Ĵz〉〈S̃x〉 − [〈J̃x〉 cos(Bzt) − 〈J̃y〉 sin(Bzt)]〈S̃z〉 cos(Bzt)},

d

dt
〈S̃z〉 = λ[〈J̃x〉〈S̃y〉 cos2(Bzt) − 〈J̃y〉〈S̃x〉 sin2(Bzt) + (〈J̃x〉〈S̃x〉 − 〈J̃y〉〈S̃y〉) sin(Bzt) cos(Bzt)] + 1

2
(�L↑ − �L↓) e�t ,

(C2)
d

dt
〈J̃x〉 = −λe−�t {〈S̃z〉〈J̃y〉 + [〈S̃x〉 cos(Bzt) − 〈S̃y〉 sin(Bzt)]〈Ĵz〉 sin(Bzt)},

d

dt
〈J̃y〉 = λe−�t {〈S̃z〉〈J̃x〉 − [〈S̃x〉 cos(Bzt) − 〈S̃y〉 sin(Bzt)]〈Ĵz〉 cos(Bzt)},

d

dt
〈J̃z〉 = λe−�t [〈S̃x〉〈J̃y〉 cos2(Bzt) − 〈S̃y〉〈J̃x〉 sin2(Bzt) + (〈S̃x〉〈J̃x〉 − 〈S̃y〉〈J̃y〉) sin(Bzt) cos(Bzt)].

Since in the long-time limit d 〈J̃i〉/dt → 0, we assume 〈J̃〉 to be stationary. Therefore the EOMs for the electron spin in the
original frame become

d

dt
〈Ŝ〉 = Beff × 〈Ŝ〉 − �〈Ŝ〉 + 1

2
(�L↑ − �L↓) uz, (C3)

where Beff = [Bac(t),0,Bz] and uz is the unit vector pointing in the z direction.
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