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Direct and indirect excitons in semiconductor coupled quantum wells in an applied electric field
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An accurate calculation of the exciton ground and excited states in AlGaAs and InGaAs coupled quantum
wells (CQWs) in an external electric field is presented. An efficient and straightforward algorithm of solving
the Schrödinger equation in real space has been developed and exciton binding energies, oscillator strengths,
lifetimes, and absorption spectra are calculated for applied electric fields up to 100 kV/cm. It is found that
in a symmetric 8–4–8-nm GaAs/Al0.33Ga0.67As CQW structure, the ground state of the system switches from
direct to indirect exciton at approximately 5 kV/cm with dramatic changes of its binding energy and oscillator
strength while the bright excited direct-exciton state remains almost unaffected. It is shown that the excitonic
lifetime is dominated either by the radiative recombination or by tunneling processes at small/large values of the
electric field, respectively. The calculated lifetime of the exciton ground state as a function of the bias voltage is
in a quantitative agreement with low-temperature photoluminescence measurements. We have also made freely
available a numerical code for calculation of the optical properties of direct and indirect excitons in CQWs in an
electric field.
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I. INTRODUCTION

The electronic and optical properties of quantum-well
structures have been widely investigated in the past decade
due to their potential applications in electro-optic and opto-
electronic devices. In recent years there has been growing
interest in coupled quantum wells (CQWs) due to formation
of long-lived excitons when these structures are placed in
an electric field (EF). Intensive studies of indirect excitons
in CQWs have resulted in their electrostatic and optical
control.1–7 Very recently, CQWs have been embedded into
Bragg-mirror microcavities and there has been found a special
type of voltage-tuned exciton polaritons which can be used for
optical nonlinearities and polariton lasing achieved at much
lower threshold powers.8

A CQW structure consists of two quantum wells separated
by a barrier layer. For a sufficiently thin barrier, the tunneling of
carriers through the barrier makes the two wells electronically
coupled to each other. As a result, an electron (hole) can either
reside in one of the two wells or its wave function (WF) is
distributed between both wells. In the case of Coulomb bound
electron and hole residing in the same well, they form a direct
exciton. If, however, they are located in different wells, an
indirect exciton is created.

In a symmetric CQW structure with no EF applied, formerly
degenerate single-particle states split, due to the tunneling
through the middle barrier, into doublets with symmetric and
antisymmetric states in each. Since only transitions between
states having the same parity are optically allowed, the
Coulomb-coupled electron-hole (e-h) pairs form excitonic
states that are optically either bright or dark. An EF, being
applied in the growth direction, breaks down the symmetry
of the system making all these excitons bright. In fact,
single-particle states experience with EF a transition from
states with well-defined parity to the ones with the electron
(hole) located in one of the two wells, thus forming direct
and indirect combinations of uncorrelated e-h pair states.
These different pair states are Coulomb coupled with each
other and form an exciton in which direct or indirect pair can

dominate. In particular, with increasing EF, the exciton ground
state (GS) undergoes a transition from bright direct exciton to
indirect exciton which has a much weaker optical activity.
The exciton radiative lifetime increases due to a reduction
in the spatial overlap between the electron and hole WFs.9–13

The exciton binding energy, in turn, reduces due to an increased
e-h separation. It has also been found that the electronic
coupling between quantum wells considerably enhances the
quantum-confined Stark effect in CQW structures.14–17 The
tunneling effect is also enhanced with the EF allowing
the carriers to leak out of the system.18,19 This can lead
to a considerable shortening of the photoluminescence decay
time.20 All these properties of CQWs make them a much richer
system compared to single quantum wells.

Excitonic states in CQWs in the presence of EF have
been intensively studied in recent years. Different theoret-
ical approaches have been used ranging from variational
methods21–27 to direct diagonalizations in which the exciton
WF is expanded into a large basis28 or the Schrödinger
equation is discretized in the momentum space.29 In this
paper, we present a more accurate and straightforward way
for solving the Schrödinger equation for an exciton in a CQW
structure. Expanding the exciton WF into e-h pair states we
solve in the real space a system of differential equations for
the exciton in-plane motion, using the shooting method, here
generalized to a matrix form. The e-h pair basis states are
calculated exactly using the analytical form of the electron
(hole) WF in a uniform EF. We present the full calculation of
exciton bound and (discretized) continuum states as well as
the absorption spectrum of a CQW in an applied EF. We study
the EF effect on the exciton binding energy and lifetime in
a 8-4-8-nm GaAs/Al0.33Ga0.67As symmetric CQW structure,
both for the ground and excited states, and demonstrate a
direct-to-indirect crossover of the exciton ground state with
increasing EF. An example of an asymmetric 10-4-10-nm
InGaAs CQW having different In content in the left and
right QWs is also given, demonstrating our calculation of the
electron and hole energies of quantization and the exciton
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transition energies and oscillator strengths as functions of the
applied EF.

II. FORMALISM AND NUMERICAL METHOD

Let us consider a symmetric GaAs/AlxGa1−xAs CQW
that consists of two GaAs QW layers separated by a thin
AlxGa1−xAs barrier and surrounded on both sides by thick
barriers of the same kind. In this paper we mainly concentrate
on a CQW structure that has been intensively used in a series
of experiments,1–4,30 taking the barrier and well widths to
be Lb = 4 nm and Lw = 8 nm, respectively, and the barrier
concentration of Al to be x = 0.33. The electric field F is
applied in the growth direction. For a different CQW in the
presence of an EF simulations can be performed using our
online available numerical code31 (see Sec. III D below for
more details). We are interested in optically allowed transitions
in such a system and, thus, consider excitonic states with
zero in-plane and angular momenta only. In the effective mass
approximation, the excitonic Hamiltonian can be divided into
three parts: the first two, Ĥe and Ĥh, take into account the
electron and hole quantization in heterostructure potentials Ve

and Vh and the third one, ĤX, is responsible for the e-h in-plane
relative motion and Coulomb binding,

Ĥ (ze,zh,ρ) = Ĥe(ze) + Ĥh(zh) + ĤX(ze,zh,ρ) + Eg (1)

with

Ĥe,h(z) = −h̄2

2

∂

∂z

1

me,h(z)

∂

∂z
+ Ve,h(z) ± eFz, (2)

ĤX = − h̄2

2μ

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ

)
− e2

εb

√
(ze − zh)2 + ρ2

, (3)

where ze(h) is the electron (hole) coordinate in the growth
direction, ρ the coordinate of the e-h relative motion in the QW
plane, εb the background dielectric constant that we assume to
be z independent, me the electron effective mass, and Eg the
band gap of the well material (GaAs). Due to the strong QW
confinement, the heavy-hole subband is split off considerably
and can be approximated by an anisotropic effective mass
using the Kohn-Luttinger parameters γ1 and γ2,32

1

mh

= 1

m0
(γ1 − 2γ2), (4)

1

μ
= 1

me

+ 1

m0
(γ1 + γ2), (5)

where mh is the hole effective mass in the growth direction,
μ the exciton in-plane reduced mass, and m0 the free electron
mass. We assume a rectangular form of the heterostructure
confinement potentials,

Ve,h(z) =
{

0 inside the wells,

Ve,h > 0 outside,
(6)

and similar steplike profiles for the electron and hole effective
masses in the growth direction.

In our calculation, we have used the following parameters:
the background dielectric constant24 εb = 12.5, the energy-
band offset ratio29 Ve:Vh = 65:35. The band gap discontinuity
at the GaAs/AlxGa1−xAs interface is linearly approximated24

as 1.247x eV. The Kohn-Luttinger parameters for pure GaAs

and AlAs are obtained from Ref. 33: me = 0.0665 m0, γ1 =
6.79 and γ2 = 1.92 in GaAs (giving the hole mass mh =
0.34 m0); and me = 0.15 m0, γ1 = 3.79 and γ2 = 1.23 in AlAs
(giving mh = 0.75 m0). The AlxGa1−xAs alloy parameters
were linearly interpolated between those of GaAs and AlAs.
In particular, for the content x = 0.33, we have used me =
0.094 m0 and mh = 0.48 m0 in Al0.33Ga0.67As layers. The
in-plane reduced mass in the barrier layers (0.057 m0) differs
from that in the well layers (0.042 m0). However, because of a
very small probability for the exciton ground state to find the
carriers in the barrier, we take for the in-plane reduced mass
the GaAs value of μ = 0.042 m0.

A. Electron and hole single-particle states

To solve the excitonic Schrödinger equation with the full
Hamiltonian Eq. (1) we, first, prepare a basis of single-particle
states that satisfy the following one-dimensional equations:

Ĥe,h(z)ψe,h(z) = Ee,hψe,h(z). (7)

To do so, we use the advantage of the analytic form of
the electron and hole WFs in the rectangular confinement
potentials Eq. (6) and uniform electric field F . In each layer of
the CQW structure, the electron WF is given by a superposition
of two Airy functions34

ψe(z) = akAi(ξ ) + bkBi(ξ ), (8)

where

ξ (z) =
(

2meeF

h̄2

)1/3 [
z − Ee − Ve(z)

eF

]
(9)

and the index k labels the heterostructure layers (from left
to right), taking integer values from 1 to 5. The electron
eigenenergy Ee and five pairs of coefficients (ak , bk) in
Eq. (8) are found from four pairs of boundary conditions (BCs)
on heterostructure interfaces and two BCs at z → ±∞.

The interface BCs following from Eqs. (2) and (7) are the
continuity of ψe(z) and m−1

e (z)∂ψe(z)/∂z. The other two BCs
take into account the possibility for the electron to tunnel
through the barrier and escape from the system to the side
of the CQW structure where the applied EF gradually lowers
the potential. In that area, the solution is given by a wave
propagating away from the system. For the electron WF
and F > 0, this outgoing BC at z → −∞ yields b1 = −ia1,
which follows from the specific combination of the Airy
functions Ai(ξ ) − iBi(ξ ), producing an outgoing wave.18,34

At the same time, the electron cannot escape to the other
side of the structure where the potential gradually increases,
and, thus, the other BC, typical for bound/localized states, is
ψe(z → +∞) = 0, giving b5 = 0 due to the asymptotics of
the Airy functions.34 The form of the WF and the BCs for the
hole are found in a similar way, taking into account that the
potential grows in the opposite direction. The secular equation
following from all 10 BCs determines discrete eigenvalues of
Eq. (7),

E
e,h
j = Ẽ

e,h
j − i�

e,h
j , (10)

which are the complex energies of electron/hole resonant
states, also known in the literature as Siegert states.35 The
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real part of the eigenvalue, Ẽ
e(h)
j , is the energy position of the

electron (hole) j -th resonant level, while the imaginary part
�

e(h)
j gives its tunneling linewidth.

The WF of any resonant state having a finite linewidth is
essentially complex, i.e., it cannot be made real by any uniform
phase shift. Also, its amplitude grows exponentially to the
outside area to which the particle can escape and, thus, has
to be normalized to its flux.35,36 This normalization includes
a divergent volume integral and a compensating surface term.
For the values of the EF considered in this paper, the calculated
linewidths of the electron and hole states of interest are always
small compared to their energies of quantization. Similarly,
the imaginary parts of the WFs are small compared to the real
ones and can be dropped. The normalization condition is then
taken in a form

∫ zmax

zmin

[
ψ̃

e,h
j (z)

]2
dz = 1, (11)

where ψ̃
e,h
j = Re(ψe,h

j ). The limits of integration in Eq. (11),
zmin and zmax, taken to be the same for electron and hole, are
two distant points on both sides of the CQW where the WFs
decay considerably before they start to grow exponentially due
to the carrier tunneling, so the surface terms are minimized and
can be dropped leaving in the normalization only finite-volume
integrals.

Different electron and hole subbands (Ẽe
i for i = 1,2 and

Ẽh
j for j = 1–4) calculated in the presence of the EF are shown

in Fig. 1. The corresponding WFs, ψ̃e
i and ψ̃h

j , are illustrated
in Figs. 2(a)–2(d) for a few different values of the EF. At zero
field, the GS and the first ES have, respectively, symmetric and
antisymmetric WFs; see Fig. 2(a). With increasing EF, the WFs
become asymmetric, and the WF maxima for the electron and
hole GSs move in opposite directions. The GS and the first ES
for the same carrier are also confined in different QWs. This
happens to both carriers already at F = 2 kV/cm; see Fig. 2(b).
As the EF grows further, the GS-ES splittings increase almost
linearly with F (Fig. 1), and the hole ES jumps from the left to
the right QW [Fig. 2(c)]. This corresponds to an anticrossing of
hole ES subbands that takes place at 27.8 kV/cm; see the inset
in Fig. 1(b). Such an anticrossing behavior was also found in
previous calculations.23,29 The same happens to the electron
ES at a much higher EF. Figure 2(d) shows a modified ES WF
for F = 100 kV/cm that is a precursor of a similar transition
for the electron.

Far from the CQW structure, we observe tiny oscillations
in the WF of the electron (hole) GS in the left (right) barrier;
see Figs. 2(e) and 2(f). This oscillatory behavior, typical
for freely propagating particles, occurs due to the lowering of
the potential by the EF, so an electron (hole) can escape to the
left (right) barrier. Since mhVh > meVe, the frequency of the
oscillations for the hole is larger than that for the electron. Such
oscillations become more dramatic and start earlier (closer to
the CQW center) for some of higher ESs. For example, for F =
100 kV/cm the hole state h3 exibits huge oscillations clearly
seen in Fig. 2(d). However, the next hole ES h4 which has
the dominant contribution to the direct exciton state discussed
below has only tiny oscillations, similar to those in Fig. 2(f),
and a small tunneling rate, comparable to that of the hole GS.
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FIG. 1. (Color online) Energies of two electron states (a) and
four hole states (b) in 8–4–8-nm GaAs/Al0.33Ga0.67As CQW as
functions of an applied electric field. Insets show spectral regions
with anticrossing.

B. Excitonic states: Multi-sub-level approach

We calculate excitonic states in a CQW structure in the
presence of an EF, expanding the exciton WF into a finite set
of e-h pair states,

	(ze,zh,ρ) =
N∑

n=1


n(ze,zh)φn(ρ), (12)

where


n(ze,zh) = ψ̃e
i (ze)ψ̃h

j (zh), n = (i,j ), (13)

and ψ̃
e,h
i (z) are the electron and hole wave functions calculated

in the presence of EF and heterostructure potentials; see
Sec. II A. The Schrödinger equation for the exciton, Ĥ	 =
EX	, then takes the form

[
K̂(ρ) + E(0)

n − EX

]
φn(ρ) +

N∑
m=1

Vnm(ρ)φm(ρ) = 0 (14)

with

K̂(ρ) = − h̄2

2μ

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ

)
, (15)

Vnm(ρ) = −e2

εb

∫∫ zmax

zmin


n(ze,zh)
m(ze,zh)√
(ze − zh)2 + ρ2

dzedzh, (16)
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FIG. 2. (Color online) [(a)–(d)] Wave functions and energy levels
of electron and hole ground and excited states for different values of
the electric field F . Gray lines show CQW heterostructure potentials,
using Eg = 1.519 eV for the band gap. [(e) and (f)] Oscillating tails
in the electron and hole wave functions.

and the energies of pair states given by

E(0)
n = Ẽe

i + Ẽh
j + Eg. (17)

In our calculation of the exciton states in 8-4-8-nm
GaAs/Al0.33Ga0.67As CQW for EFs up to F = 25 kV/cm
it was sufficient to restrict the basis in Eq. (12) to four
e-h pair states (N = 4), keeping only the GS and the first
ES for electron and hole. This allowed us to calculate the
exciton GS with an accuracy better than 0.01 meV. We
label these four basis states as e1h1 (n = 1), e1h2 (n = 2),
e2h1 (n = 3), and e2h2 (n = 4), where e (h) stands for
an electron (hole) and the numbers 1 and 2 refer to the
single-particle GS and first ES, respectively, while n is
the unified pair index introduced in Eq. (13). Other QW
structures may require higher ESs to be taken into account.
These are also needed in our case when a stronger EF is
considered. In particular, higher quantized levels for the hole
h3 and h4 [see Fig. 1(b)] are taken into account for F >

25 kV/cm and F > 70 kV/cm, respectively, and these states
have a major contribution to the direct exciton WF.
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FIG. 3. (Color online) Matrix elements Vnm of the Coulomb
potential calculated between different e-h pair states at F = 4 kV/cm.

We calculate the exciton transition energy EX and the
in-plane components of the WF, φn(ρ), by solving the matrix
differential equation [Eq. (14)] numerically. To do so, we intro-
duce a matrix generalization of the shooting method, applying
the latter to a system of coupled differential equations. The
shooting method transforms a boundary-value problem like
Schrödinger’s equation with BCs to an initial-value problem
in which one of the boundary values (in the present case the
WF at ρ → ∞) is taken as a starting point. The boundary
value(s) on the other side (at ρ = 0) is then used to find the
eigenenergies. The BCs follow straightforwardly from Eq. (14)
and the asymptotics of the Coulomb matrix elements Vnm(ρ).
At large distances Vnm(ρ) → −δnme2/(εbρ), while at small
distances the potentials Vnm(ρ) have logarithmic dependence,
as is clear from Fig. 3. Therefore, for bound states

φn(ρ → ∞) = Anρ
sne−αnρ, (18)

where αn =
√

2μ(E(0)
n − EX)/h̄ and sn = μe2/(h̄2εbαn) −

1/2, and

φ′
n(0) = 0 . (19)

Discretizing Eq. (14) on a finite grid, a numerical solution
in the area 0 � ρ � R is generated iteratively using a finite
difference scheme. In particular, a second-order scheme that
we have used in our calculation brings Eq. (14) to the form

φn(ρ − �ρ) = −φn(ρ + �ρ)
2ρ + �ρ

2ρ − �ρ
+

N∑
m=1

Fnm(ρ)φm(ρ),

(20)

where �ρ is the discretization step and the matrix Fnm(ρ)
depends on the Coulomb interaction and on a finite-difference
representation of the kinetic term Eq. (15). The WF amplitudes
An in the starting values φn(R) in Eq. (18) are the unknowns
to be found along with the eigenvalue EX. Going to the very
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last point ρ = 0 and using the boundary condition Eq. (19)
produces a homogeneous matrix equation of the form

N∑
m=1

Mnm(EX)Am = 0 (21)

in which Mnm(EX) depends solely on the exciton energy EX

(and no longer on ρ), and, thus, the energy eigenvalues are
determined by

det |Mnm(EX)| = 0. (22)

For small values of the EF, the electron and hole GS-
ES splittings are smaller than the exciton Coulomb energy
(compare Figs. 1 and 3) and, thus, several bound states [having
the asymptotics given by Eq. (18)] can always be found in the
system. However, as the EF grows, the Coulomb energy of
the exciton ESs is getting smaller than the e-h pair splitting
energies and, thus, some of these exciton states become
unbound. Since the unbound states have energies EX > E

(0)
1 ,

at least for some of their radial components the asymptotics
Eq. (18) is no longer valid and a proper treatment of the
excitonic continuum is required. This task is outside the scope
of the present paper, which mainly concentrates on exciton
bound states. Nevertheless, some effects of the continuum and,
in particular, its influence on the excitonic absorption spectrum
can be taken into account, in a first attempt, by restricting the
exciton in-plane motion to a large circle of radius R and in
this way discretizing the continuum. The asymptotic boundary
conditions Eq. (18) are now replaced by

φn(R) = 0 , φn(R − �ρ) = An, (23)

where the new amplitudes An satisfy the same Eq. (21) with
matrix Mnm(E) being redefined accordingly.

It is convenient to normalize the radial components of the
WFs introducing expansion coefficients Cn:

φn(ρ) = Cnφ̃n(ρ), (24)

where φ̃n(ρ) is normalized to 2π
∫ ∞

0 |φ̃n|2ρdρ = 1 and,
therefore,

N∑
n=1

|Cn|2 = 1, (25)

due to orthogonality of the e-h pair states 
n(ze,zh) and
normalization of the total exciton WF 	(ze,zh,ρ).

Finally, for each excitonic state, the oscillator strength per
unit area is calculated as37

f = 2m0EX |dcv|2
h̄2

∣∣∣∣
∫ zmax

zmin

	(z,z,ρ = 0) dz

∣∣∣∣
2

, (26)

where dcv is the basic dipole matrix element between the
valence and conduction bands, and the overlap integral in
Eq. (26) accounts for the spatial distribution of the excitonic
recombination. The exciton radiative linewidth is then given
by

�R = πe2h̄√
εbm0c

f, (27)

where c is the speed of light.

III. RESULTS AND DISCUSSION

In the presence of EF, the energy levels of the electron and
hole single-particle states in a CQW structure experience Stark
shifts Ẽ

e(h)
1,2 (F ) ≈ Ẽ

e(h)
1,2 (0) ∓ dF/2 as demonstrated in Fig. 1,

where d = Lw + Lb is the center-to-center distance between
the QWs. Concentrating on these two lowest levels for the
electron and two for the hole we are, thus, dealing with four
e-h pair states. For two of them, e1h2 and e2h1, the energies
E

(0)
2,3 [see Eq. (17)] remain almost unaffected by the EF as the

Stark shift for the electron is compensated by that for the hole,
while the other two pair states, e1h1 and e2h2, have Stark shifts
that are 2 times larger than the single-particle states: E(0)

1,4(F ) ≈
E

(0)
1,4(0) ∓ dF . Even though our CQW is symmetric, at nonzero

EF the ground and the first excited single-particle states are
localized in different wells of the CQW structure; see Fig. 2(b).
That is why the pair states with electron and hole in the same
QW (n = 2 and n = 3) are electrically neutral and can be
called direct states while the other two, n = 1 and n = 4,
with electron and hole in different QWs, have nonzero dipole
moment and are called indirect states. As for excitonic states,
they are, strictly speaking, neither direct nor indirect, since the
exciton WF is always a combination of different pair states.

A. Crossover from direct to indirect exciton

In the absence of the Coulomb interaction, all four pair
states are nearly degenerate at zero EF: Due to a rather weak
tunneling through the middle barrier of the CQW, the energy
splittings are small compared to the Coulomb energy (2.3
and 0.05 meV splitting for electron and hole, respectively,
versus 4- to 9-meV binding energy). The Coulomb interaction
splits further and strongly mixes the direct and indirect e-h
pair states. To understand these splitting and mixing, let us
consider the Coulomb matrix elements in more detail.

Figure 3 shows an example of the Coulomb matrix elements
for F = 4 kV/cm, though this picture does not change much
when the EF increases or decreases. The direct and indirect pair
states have different charge separation, and, thus, their diagonal
Coulomb matrix elements also differ markedly: Potentials
V22 ≈ V33 for the direct pairs are a few times stronger than
V11 ≈ V44 for the indirect ones. This difference brings in
a considerable splitting between the direct and indirect pair
states at F = 0: The indirect doublet is found almost 5 meV
above the direct one; see Fig. 4. Among off-diagonal elements,
the largest are V13 ≈ V24, due to a considerable overlap
between the electron ground and excited states. All other
matrix elements are two to three orders of magnitude smaller,
because of a much larger effective mass of the hole and,
consequently, much smaller overlap integrals. All off-diagonal
elements drop quickly at large ρ due to the orthogonality of
WFs.

The Coulomb coupling matrix elements V13 ≈ V24 are
responsible for the mixing of direct and indirect pair states
and, in particular, for a crossover of the ground exciton state
from direct to indirect type as the EF grows. Due to this
off-diagonal coupling, the Stark red-shifted indirect state e1h1
(n = 1) has a remarkable anticrossing with the direct pair state
e2h1 (n = 3), weakly dependent on the EF. This anticrossing
takes place at about F = 5 kV/cm and is clearly seen in
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FIG. 4. (Color online) Electric field dependence of the optical
transition energy EX for different exciton states in a 8-4-8-nm
GaAs/Al0.33Ga0.67As symmetric CQW structure, calculated using the
exciton confinement radius R = 200 nm (a) and 800 nm (b). The
circle area is proportional to the exciton oscillator strength f .

Fig. 4. Indeed, the exciton ground state (X-GS) experiences
a crossover from direct to indirect exciton: The oscillator
strength of the X-GS has its maximum at F = 0 and then drops
quickly with increasing EF as seen in Fig. 4. Since all other
matrix elements including V12 are generally much smaller, the
other direct pair state e1h2 (n = 2) remains unaffected and is
only Coulomb shifted by the diagonal element V22. Although
it is strongly coupled via V24 to the other indirect state e2h2
(n = 4), the latter is Stark blue shifted and, thus, significantly
detuned from e1h2 having a minor effect on it. As a result, the
energy position of the brightest exciton excited state (X-ES),
which has the maximum oscillator strength in the excitonic
spectrum, remains practically unchanged.

The excitonic states shown in Figs. 4(a) and 4(b) are
calculated with different in-plane exciton confinement radius,
R = 200 nm and 800 nm, respectively [see Eq. (23)]. In
the latter case the excitonic continuum has a much finer
discretization that makes more clear which states belong to
the continuum and which are the true bound states having
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FIG. 5. (Color online) Probability distributions∫ ∞
0 |
(ze,zh,ρ)|2 2πρdρ calculated for the exciton ground

state X-GS [(a)–(e)] and excited state X-ES [(f)–(j)] for different
values of the electric field.

more or less isolated positions, weakly dependent on R. For
example, the 2S and 3S states of the indirect exciton are clearly
identified in Fig. 4(b): They lie just below the discretized
continuum onset and are down-shifted with F almost parallel
to the exciton ground state. Higher excited states of the direct
exciton are also well seen in Fig. 4: They are deep in the
continuum (7–8 meV above the brightest direct state) and are
weakly dependent on the EF.

Let us consider the properties of the X-GS and X-ES and,
in particular, the direct-to-indirect (D-I) crossover in more
detail. The contour plots in Fig. 5 show localization of the
X-GS and X-ES across the CQW structure for different values
of F . At zero EF, due to the symmetry of the system, both
states have two identical maxima on the main diagonal ze = zh

[Figs. 5(a) and 5(f)], which refer to the direct nature of both
excitonic states. With increasing EF one of the two peaks
becomes smaller and then vanishes; see Figs. 5(b) and 5(c)
and Figs. 5(g) and 5(h). The states become asymmetric, having
both carriers localized either in the right QW (in X-GS) or
in the left QW (in X-ES). Further increase of the EF up to
F = 6 kV/cm leads to the X-GS switching from a direct to an
indirect state: The peak moves away from the main diagonal
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FIG. 6. (Color online) Radial components 2πρ|φn(ρ)|2 of the
exciton wave function calculated for the ground state X-GS [(a)–(d)]
and excited state X-ES [(e)–(h)] for different values of the electric
field.

toward the bottom right corner; see Figs. 5(c)–5(e). This result
is in good agreement with previous theoretical findings28,29

and experimental observations.30 At the same time the X-ES
remains unchanged. The dominant hole component in the X-
ES changes from h2 to h3 and from h3 to h4 when the system
passes through the anticrossings of the hole levels at F =
27.8 kV/cm and 74 kV/cm, respectively. The X-ES remains
the brightest state in the excitonic spectrum having at the same
time a very weak dependence on the EF that emphasizes its
direct nature.

The D-I crossover of the X-GS is demonstrated also in
Fig. 6 where different radial components φn(ρ) of the X-GS
and X-ES WFs are plotted. At F = 2 kV/cm the direct e-h
pair state n = 3 has the dominant contribution to the X-GS.
This state is strongly coupled to the indirect pair state n = 1
via the Coulomb matrix element V13, as discussed above. As
a result of this anticrossing, φ1 grows and φ3 reduces with
the EF. Nothing similar happens to the X-ES. The latter is
always dominated by the n = 2 pair state which is coupled
to the significantly detuned n = 4 state. Therefore, only a
minor contribution of the φ4 to the X-ES can be seen in
Figs. 6(f)–6(h). The picture differs completely for smaller
EFs. At F = 0 the symmetric n = 1 pair state is Coulomb
coupled to the other symmetric state (n = 4), producing bright
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FIG. 7. (Color online) Coefficients Cn of the expansion of the
exciton wave function into e-h pair states calculated for the ground
state X-GS (a) and excited state X-ES (b) as functions of the electric
field F .

X-GS and dark X-ES. These symmetric pair states do not
interact with the antisymmetric states (n = 2 and 3) that
are, in turn, coupled to each other. The transition from such
symmetric coupling to the above considered D-I coupling
has a rather narrow interval of small values of the EF and
involves interaction of all four e-h pair states. In fact, for
F = 0.1 kV/cm one can see in Figs. 6(a) and 6(e) that
all four components have comparable contributions to the
X-GS and X-ES WFs. Figure 7 summarizes our analysis
showing the field dependence of the e-h pair amplitudes Cn

introduced in Eq. (24). It demonstrates the prominent D-I
crossover in the X-GS, a much weaker D-I coupling in the
X-ES, and a very quick transition from symmetric coupling to
D-I coupling, seen in the WFs of both X-GS and X-ES.

Figure 8 shows the field dependence of the optical transition
energies EX and binding energies Eb of X-GS and X-ES, as
well as their in-plane exciton Bohr radii r

B
=

√
〈ρ2〉 and the

radiative linewidths �R . The latter are calculated via Eq. (27)
assuming dcv = 0.6 nm.38,39 While all these parameters for
the X-GS change dramatically when the EF increases from
2 kV/cm to 8 kV/cm, the X-ES remains practically unaffected.
The X-GS energy exhibits a considerable Stark shift, for F >

6 kV/cm almost linear in F [Fig. 8(a)], due to the electron-hole
separation typical for the indirect exciton. The X-ES in turn has
a very weak field dependence due to a much smaller dipole
moment of the direct exciton, but in a larger range of the
EF values, the X-ES transition energy is also red shifted (by
12 meV at F = 100 kV/cm), as a result of an EF-induced
electron-hole separation within the same QW.

The X-GS binding energy, Eb = E
(0)
1 − EX, drops from

8 meV to 4 meV [Fig. 8(b)], as a result of the transition from
direct to indirect Coulomb coupling. For the X-ES the binding
energy is defined as the energy distance from X-ES to its
own continuum onset: Eb = E

(0)
2 − EX. This is done because

the lowest-energy pair state, e1h1, has a negligible (for F >

1 kV/cm) contribution to the X-ES, and, thus, this exciton state
remains bound even though its energy EX is higher than the
first continuum onset E

(0)
1 . The X-ES binding energy is almost

unchanged, as the EF has no effect on the direct nature of this
state. The Bohr radius [Fig. 8(c)] is fully correlated with the
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(d) radiative rate �R of the exciton ground state X-GS (solid lines)
and excited state X-ES (full squares) as functions of the electric field
F . Dashed lines are the single-state-basis calculation of the X-GS.

binding energy, increasing with the EF almost by a factor of 2
for the X-GS and showing no change for the X-ES.

The D-I crossover is accompanied by a dramatic decrease
of the radiative linewidth of the X-GS (proportional to its
oscillator strength); see Fig. 8(d). This happens because the EF
makes the electron-hole separation larger, reducing the overlap
of the electron and hole WFs. The X-ES, in turn, being strictly
dark at F = 0, becomes bright in a finite EF, and its linewidth
quickly increases with the EF up to the half of the maximum
linewidth of the X-GS. Further increase of the EF does not
change the X-ES radiative rate much but �R experiences some
influence of higher ESs; see the fluctuations in Fig. 8(d).

To reproduce some previous simulations21 and to compare
them with our full calculation, we have restricted our basis to

the electron and hole GSs only, neglecting any ESs quantized
in the growth direction. In other words, we have taken into
account only one e-h pair state, e1h1, choosing N = 1 in the
expansion Eq. (12). This single-state basis (SSB) calculation
shows considerably different results compared to the full
calculation in all four plots in Fig. 8; see the dashed curves.
The reason for such a difference is obvious: Figure 7(a) clearly
demonstrates the importance of taking into account higher e-h
pair states for a proper description of the D-I crossover of
the X-GS and, in particular, the role in such a crossover of
state e2h1, which is missing in the SSB calculation. This
state is a direct pair state (at least for F > 0.5 kV/cm), so
neglecting it in the X-GS calculation, as done, e.g., in Ref. 21,
underestimates the exciton binding energy by a factor of 1.5
and the exciton radiative linewidth by an order of magnitude.
Nevertheless, at larger EFs (F > 10 kV/cm) the SSB model
adequately describes the properties of the X-GS as such an
indirect exciton state is strongly dominated by e1h1.

Finally, Fig. 9 shows our simulation for an asymmetric
In0.08Ga0.92As/GaAs/In0.1Ga0.9As (10 nm/4 nm/10 nm) CQW
structure used in Ref. 8. As expected, the energy spectra are
asymmetric with respect to the EF direction. In the right part of
the exciton energy spectrum [Fig. 9(a)], at around 16 kV/cm, a
Coulomb-induced anticrossing is observed, which is similar to
that seen in Fig. 4 at F = 5 kV/cm. The physical mechanism
that causes this anticrossing is essentially the same as in the
case of symmetric CQWs, but the anticrossing takes place at
much higher values of the electric field. This is because at
around F = 12 kV/cm (4–5 kV/cm below the anticrossing)
the applied EF almost compensates the asymmetry in the
conduction band structure, and, thus, at this value of F the
properties of the asymmetric CQW can resemble those of
the symmetric CQW at F = 0. In fact, a repulsion of the
electron subbands is seen in Fig. 9(b) as well as a formation
of symmetric and antisymmetric electronic states, as is clear
from the inset in Fig. 9(a).

B. Indirect exciton lifetime

A CQW exciton can escape from the system using the
following two major channels: It can either recombine by
emitting a photon or the electron and/or hole can tunnel
through the external barrier with the help of the EF. We
concentrate here on the X-GS only, and, combining both
channels together, the total exciton lifetime takes the form

1

τ
= 1

τ
R

+ 1

τ
T

, (28)

where τ
R

= h̄/(2�R) is the exciton radiative lifetime. As for
the tunneling time τ

T
, we take into account the lowest pair state

only. This is a valid approximation because when other pair
states contribute to the X-GS and, thus, can have some effect
on the exciton tunneling, its lifetime is strongly dominated by
the radiative channel as can be seen in Fig. 10. In particular,
the tunneling lifetime τ

T
= h̄/(�e

1 + �h
1 ) is much longer

than the radiative one up to F = 80 kV/cm. The D-I crossover
of the X-GS is accompanied by a monotonous growth of
its radiative lifetime, in accordance with Fig. 8(d). Indeed,
a direct exciton has a short lifetime because the carriers are
in the same well, so they can easily recombine. Increasing the
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electron-hole separation leads to a dramatic increase of the
radiative lifetime. The probability of the electron and hole
tunneling also increases with EF. At some point the tunneling
time becomes comparable to the radiative lifetime and then
starts to dominate. We have also compared the calculated radia-
tive lifetime for the X-GS with the experimental results taken
from Ref. 30 where the low-temperature excitonic photolu-
minescence was measured in 8–4–8-nm GaAs/Al0.33Ga0.67As
CQWs. The inset to Fig. 10 demonstrates a quantitative
agreement between the experiment and the present theory.

C. Absorption spectrum

We also calculate the exciton absorption coefficient in a
8–4–8-nm GaAs/Al0.33Ga0.67As CQW at different frequencies
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FIG. 10. (Color online) Radiative (dotted curve), tunneling
(dashed curve), and total lifetimes (solid curve) of the exciton
ground state X-GS as functions of the applied electric field. (Inset)
Logarithmic plot of the X-GS total lifetime in comparison with
measured photoluminescence decay times (error bars) extracted from
Ref. 30.

of the incoming light. Using the Lorentzian model of absorbing
oscillators37,40 and leaving out a common prefactor, the
absorption of the exciton with zero in-plane momentum takes
the form

α(ω) =
∑

ν

�R,ν

�R,ν

(h̄ω − Eν)2 + �2
R,ν

, (29)

where the index ν labels all possible excitonic states calculated
in the theory and Eν and �R,ν stand for their energies and
radiative linewidths.

Figure 11(a) shows the absorption spectrum calculated
using Eq. (29) and in-plane exciton confinement radius
R = 800 nm. All lines in the absorption have very narrow
radiative widths (<0.1 meV) which are calculated according
to Eqs. (26) and (27). The Lorentzian model, however, has an
obvious artifact: Although the spectrum properly reproduces
the linewidths, all lines have the same peak height, and
the fact that not all of them are seen in Fig. 11(a) is due
only to the resolution of the plot. To improve on this and
also to take into account the effect of inhomogeneous line
broadening in realistic CQW structures, we make a Gauss
convolution of the spectrum: A(ω) = ∫ ∞

−∞ α(ω′)g(ω − ω′)dω′

with a normalized Gauss function g(ω) = (�
√

π )−1e−ω2/�2
.

The convoluted spectrum with the full width at half maximum
(FWHM) 2

√
ln 2� = 0.2 meV is shown in Fig. 11(b). All

lines now have almost the same width but their peak maxima
now reflect the optical strength of the corresponding exciton
states.

The two lowest excitonic states, X-GS and X-ES, are well
resolved in the spectrum up to F = 5 kV/cm. Then the indirect
exciton X-GS loses its optical activity. The bright direct X-ES
line superimposes with higher ESs and discretized continuum
of the indirect exciton, all line merging up together at higher
EFs.

045207-9



K. SIVALERTPORN et al. PHYSICAL REVIEW B 85, 045207 (2012)

0 5 10 15 20

44

45

46

 

P
ho

to
n 

E
ne

rg
y 

hω
 −

 E
g (

m
eV

)

(a)

No convolution

0 5 10 15 20

44

45

46

(b)

F (kV/cm) 

F (kV/cm)

P
ho

to
n 

E
ne

rg
y 

hω
 −

 E
g (

m
eV

)

0.2 meV Gauss convolution

FIG. 11. (a) Electric field dependence of the full excitonic ab-
sorption spectrum. (b) The same spectra convoluted with a Gaussian
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D. Numerical code

We have provided a freely available online software31

that calculates the optical properties of the direct and in-
direct excitons in a CQW structure in a perpendicular EF.
The software has a user-friendly interface and produces an
on-screen output of the requested calculation as well as a PDF
version of the same data and plots. For the input, the user
has an option either to choose a symmetric AlGaAs CQW,
inserting the required structural parameters (Lb, Lw, and x), or
an asymmetric InGaAs CQW, or to take other semiconductor

CQW by inserting its structural and material parameters. The
value of the EF is also needed for the input. In this numerical
code, we use four basis states for the exciton WF, taking
into account only the ground and the first excited states for
the electron and hole. The exciton confinement radius is set
to R = 200 nm. The transition energies and the oscillator
strengths of exciton excited states are also included in the
output file. The absorption spectrum is calculated with 0.1
meV FWHM Gaussian convolution.

IV. CONCLUSIONS

We have studied the effect the electric field has on excitonic
states in AlGaAs and InGaAs CQWs. To do this we have
developed an efficient numerical approach which is based
on expanding the exciton wave function into uncorrelated
electron-hole pair states and solving in the real space a
matrix Schrödinger equation for the CQW exciton. Using
this approach we have calculated the energies and the wave
functions of exciton states in the CQW and studied their optical
properties in the presence of electric field, by addressing such
important parameters of the exciton as its binding energy, Bohr
radius, radiative and tunneling times, and optical absorption
spectrum. While we are able to calculate a large number of
exciton states, we have concentrated on two most important
ones, the exciton ground state X-GS and the brightest excited
state X-ES. We have shown that the Coulomb coupling
between direct and indirect pair states leads to a prominent
effect in the presence of the electric field: a direct-to-indirect
crossover of the X-GS. At the same time, the properties of the
X-ES remain almost unchanged. Finally, we have calculated
the exciton lifetime which consists of two main components,
radiative and tunneling times, and shown that the latter reduces
the total lifetime at higher electric fields.
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