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Magnetic phase diagram of MnSi in the high-field region
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The high-field region of the magnetic phase diagram of MnSi is probed by magnetization, resistivity, and
magnetoresistance measurements carried out in the temperature range 1.8–300 K for magnetic fields up to 8 T. It
is shown that the phase boundary between the paramagnetic (PM) phase and the spin-polarized (SP) phase has
no positive slope as was suggested previously, and appears to be practically vertical at the transition temperature
Tc ∼ 30 K. We argue that the broad maxima of the resistivity and magnetization derivative, which develop in
the range T > Tc, are determined by the specific form of functional dependences of these quantities in the PM
phase and do not correspond to any “diffuse” SP-PM transition. A universal relation between magnetoresistance
and magnetization �ρ/ρ = −a0M

2 found in the PM phase of MnSi is shown to hold in a wide temperature and
magnetic field range where magnetoresistance varies by more than two orders of magnitude. The analysis of the
transport and magnetic resonance data favors the explanation of the magnetic properties of MnSi by Heisenberg-
type localized magnetic moments rather than within the magnetism of itinerant electrons. A low-temperature
anomaly at T ∼ 15 K corresponding to the features of magnetoresistance and g factor is reported.
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I. INTRODUCTION

Manganese monosilicide, MnSi, has attracted attention for
decades as an example of an itinerant magnet with helicoidal
ordering.1–8 The onset of the quantum criticality under high
pressure9–11 together with the formation of the skyrmion
state12,13 and topological Hall effect in the so-called A phase14

lie in the focus of modern studies of this material. All
these interesting phenomena are observed in moderate (less
than 1 T) magnetic fields in the vicinity of the magnetic
transition.

According to magnetic, transport, and neutron scattering
data,1–14 the transition to the helical state in zero magnetic
field occurs at the critical temperature Tc0 ∼ 29 K. The increase
of magnetic field B at T < Tc0 results in a sequence of phase
transitions from helical to conic structure at B ∼ 0.1 T and then
from conical to ferromagnetic spin alignment at B = Bc ∼
0.6 T.2 The latter magnetic state is also referred as the spin-
polarized (SP) phase.15 The mostly debated A phase exists in
a narrow interval of temperatures (from 0.97Tc0 to Tc0) and
magnetic fields (0.1 < B < 0.2 T).14

The region B > Bc is considered to be less interesting as
long as only the transition from PM to SP phase is expected in
the high-field range. It was earlier suggested from AC magnetic
susceptibility χ (B,T ) data15 that (i) this PM-SP transition
in a fixed magnetic field corresponds to a broad maximum
of χ (B = const,T ), (ii) the phase boundary BSP (T ) has a
positive slope, and (iii) the PM-SP transition is smooth and
should be considered as a crossover phenomenon rather than
a sharp transition. However, some recent results show that the
high-field region of the MnSi magnetic phase diagram deserves
more attention. For example, high-frequency electron spin
resonance (ESR) data16 indicate that at B ∼ 2 T the physical
picture of dynamic magnetic properties surprisingly more
closely matches Heisenberg-type localized magnetic moments
and is hardly consistent with the standard understanding of
MnSi as an itinerant magnet.1 Probably this behavior reflects
the field-induced suppression of spin fluctuations dominating

in the low-magnetic-field region, which may affect the PM-SP
transition.

In the present work the phase boundary between PM
and SP phases has been probed by means of resistivity,
magnetoresistance, and magnetization measurements. The
ESR data reported in Ref. 16 were revised and considered
together with the aforementioned physical properties. We
argue that the BSP (T ) phase boundary located at Tc∼
30 K in magnetic fields up to B ∼ 8 T is almost vertical
(field independent), in contrast to previous findings. Moreover,
this transition may be considered to be sharp, although some
physical properties demonstrate broad peculiarities. It is found
that magnetoresistance in the PM phase of MnSi is controlled
by magnetic scattering on the Heisenberg-type localized
magnetic moments and may be quantitatively described by the
Yosida model.17 The low-temperature anomaly, which seems
to correspond to a transition at T ∼ 15 K inside the SP phase,
is examined.

II. EXPERIMENTAL DETAILS

Single crystals of MnSi were grown by the Bridgman
method from a stoichiometric melt. The quality of crystals
was controlled by x-ray and chemical analysis. The resistivity
at B = 0 and magnetization data for the samples studied were
very close to the MnSi characteristics reported previously in
Refs. 18 and 19. The transition temperature in zero magnetic
field was Tc0 = 29.15 ± 0.03 K. Temperature and field depen-
dences of the resistivity ρ(B,T ) were measured by the standard
DC four-probe technique in the temperature range 1.8–300 K
for magnetic fields up to 8 T. The accuracy of temperature
stabilization in the field scans at T = const was better than
0.01 K. The magnetization data in magnetic fields up to
5 T were obtained with the help of a superconducting quantum
interference device (SQUID) magnetometer (Quantum Design
MPMS-5). The original experimental technique for studying
magnetic resonance, which allows one to find the absolute
values of the oscillating part of magnetization, is described
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in previous papers.16,20,21 The magnetic field was applied
along the 〈100〉 direction for both resistivity and magnetization
measurements, while current was directed parallel to the 〈011〉
axis of the MnSi crystal. The test measurements performed for
various orientations of magnetic field showed no anisotropy
of transport and magnetic properties within the experimental
accuracy.

III. RESISTIVITY, MAGNETIZATION, AND
MAGNETORESISTANCE DATA

The temperature dependence of resistivity ρ(T ) for the
samples studied is shown in Fig. 1(a). The magnitude of
the resistivity jump at the magnetic transition �ρ0 is about
�ρ0/ρ(Tc0) ≈ 2.5% [inset in Fig. 1(a)]. Following Ref. 18
it is convenient to analyze the derivative ∂ρ/∂T [Fig. 1(b)].
In zero magnetic field, the ∂ρ/∂T temperature dependence
demonstrates a universal structure consisting of a narrow peak
B superimposed by a broad maximum A. This type of the
∂ρ/∂T curve, which is typical for various physical properties
measured in the vicinity of magnetic phase transition, has been
earlier examined in detail by Stishov et al.18 Although peak B
is unambiguously related to the magnetic transition at Tc, the
nature of the broad maximum A is not completely clarified in
the available literature.

The increase of the magnetic field to 0.5 T induces
broadening and shifting of peak B to lower temperatures, so
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FIG. 1. (Color online) Temperature dependences of zero-field
resistivity (a) and the derivatives ∂ρ/∂T calculated from the experi-
mental data in various magnetic fields (b) for MnSi. The dashed line
in panel (a) denotes the approximation used in simulations (Sec. V).
The inset shows the jump in resisitivity in the vicinity of Tc0.
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FIG. 2. (Color online) Magnetization M in μB per Mn ion (a) and
derivatives ∂M/∂B (b) of MnSi. Numbers on the curves correspond to
temperature in K in panel (a) and to magnetic field in T in panel (b). In
panel (a) open circles for T � 35 K correspond to experimental data,
while black lines are approximations used in numerical simulations
(Sec. V). Experimental M(B) data for T � 30 K are denoted by solid
lines. In panel (b) arrows mark positions of the ∂M/∂B maxima.

that this feature is not observed for B >1 T [Fig. 1(b)]. At
the same time the maximum A shifts to higher temperatures
at higher magnetic fields, and this feature becomes more wide
and shallow [Fig. 1(b)]. This behavior qualitatively agrees with
that reported previously for the susceptibility of MnSi.15

The field dependences of MnSi magnetization M at various
temperatures are shown in Fig. 2(a). These data are in
good agreement with the results reported in the literature,
including the saturation value at liquid-helium temperatures,
M ∼ 0.4μB/Mn. The accuracy of the magnetization M(B,T )
measurements performed in the temperature/magnetic field
domain of 4.2–60 K at 5 T has allowed us to find temperature
dependences of the derivative ∂M/∂B for various magnetic
fields. It is obviously seen from the data of Fig. 2(b) that this
effective susceptibility exhibits a maximum that broadens and
shifts to higher temperatures when magnetic field increases.
The positions of the maximum [arrows in Fig. 2(b)] are in fair
agreement with the previous data.15 It is worth noting that the
maximum of ∂M/∂B should correspond to the transition from
the SP to PM phase according to Ref. 15.
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FIG. 3. (Color online) Field (a) and temperature (b) dependences
of magnetoresistance in MnSi. In panel (b) numbers near curves
correspond to magnetic field in T. Arrows mark the magnetoresistance
minima and the dashed line indicates the position of the low-
temperature anomaly.

Magnetoresistance is another quantity that may indicate a
position of the PM-SP phase boundary. We found that for MnSi
the magnetoresistance �ρ/ρ = ρ(B)/ρ(0) − 1 is negative in
magnetic fields up to 8 T [Fig. 3(a)]. For T < 30 K there
are kinks on the field dependences �ρ/ρ = f (B,T = const)
marking positions of the known phase boundaries in the
low-field (B < 0.6 T) region of the magnetic phase diagram.
The temperature cuts �ρ/ρ = f (B = const,T ) show broad
minima in the vicinity of Tc [Fig. 3(b)]. However, the
characteristic temperature of the magnetoresistance minima
does not significantly depend on magnetic field. For B < 2 T
it is located at T ∼ 30 K, and the position of this feature
changes by ∼1 K only when the magnetic field reaches
6–8 T [Fig. 3(b)]. This structure of �ρ/ρ = f (B = const,T )
was earlier reported but not examined in detail.3

The points corresponding to various extrema for ∂ρ/∂T ,
∂M/∂B, and �ρ/ρ are put together in the magnetic phase
diagram of MnSi (Fig. 4). It is interesting that the position of
peak B in the magnetic field (red crosses in Fig. 4) perfectly
coincides with the phase boundary between conical and SP
phases. The situation is completely different for the broad
features found in the high-field region of the magnetic phase
diagram (Figs. 1–3). Contrary to the phase boundaries dividing
helical, conical, and spin-polarized phases, where the changes
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FIG. 4. (Color online) The magnetic phase diagram of MnSi
restored from the experimental data. The hatched area marks helical
phase, conical phase, and A phase, with the corresponding phase
boundaries taken from the literature.2,14 Points with error bars denote
experimental positions of the ∂ρ/∂T , ∂M/∂B, and �ρ/ρ extrema;
diamonds show result of simulations of ∂ρ/∂T with the help of
experimental magnetization and resistivity data using Eq. (3). Dashed
lines are the results of calculations with the help of the analytical
model described in Sec. V. The dash-dotted line marks the position
of the low-temperature anomaly.

of magnetic and transport properties agree rather well,2,14,18,19

the critical SP-PM lines from (∂ρ/∂T )max, (∂M/∂B)max, and
(�ρ/ρ)min data do not coincide. For example, a discrepancy
between the positions of (∂M/∂B)max and (�ρ/ρ)min extrema
reaches ∼10 K at 2 T and ∼20 K at 5 T (Fig. 4). Therefore,
there is no obvious reason for associating the SP-PM tran-
sition just with the maximum of ∂M/∂B, as was previously
supposed,15 so the problem of the correct determination of this
phase boundary appears to be nontrivial.

IV. MAGNETIC SCATTERING AND THE YOSIDA MODEL

The qualitative similarity between the evolution of ∂M/∂B

and ∂ρ/∂T temperature dependences in magnetic fields
(Figs. 1 and 2) suggests a certain link between resistivity and
magnetization in MnSi. The negative sign of magnetoresis-
tance also indicates the importance of magnetic scattering. The
simplest theoretical description of negative magnetoresistance
for a medium containing magnetic ions, on which band
electrons are scattered, is given by Yosida’s model.17 The
following relation between �ρ/ρ and M was obtained for
a system with the s-d exchange:17

�ρ/ρ = −a0(S,y)(M/M∞)2, (1)

where M∞ denotes the saturation value of magnetization. The
coefficient a0 in Eq. (1) depends on the spin S of the magnetic
ion and the model parameter y, which is given by the ratio of
the Fourier amplitudes of exchange energy J0 and electrostatic
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FIG. 5. (Color online) The absolute values of negative magnetore-
sistance versus the squared magnetization taken in μB per Mn ion:
(a) the universal relation in PM phase (T > Tc) and (b) nonuniversal
behavior in the SP phase (T < Tc). The straight line is the best fit for
T > Tc.

scattering potential V0 :y ∼ (J0/V0)2.17 For the spin S = 1/2
the expression for a0 may be reduced to17

a0 = y
1 + 2/(1 + 3y/4)

2(1 + 3y/4)
. (2)

In this way, it is expected for the Yosida model that the
temperature and field dependences of magnetoresistance are
determined by temperature and field dependences of magne-
tization; i.e., for a material under consideration the relation
between �ρ/ρ and M2 should be linear and universal.

The plot of −�ρ/ρ as a function of M2 for MnSi is shown
in Fig. 5. The universal scaling suggested by Eq. (1) is valid
for T > 30 K, whereas for lower temperatures the relation
between the magnetoresistance and the squared magnetization
becomes nonlinear and nonuniversal. It is worth noting that
in the range T > 30 K the linear relation between �ρ/ρ

and M2 holds when �ρ/ρ varies by more than two orders
of magnitude (Fig. 5). This result means that above 30 K
in MnSi the magnetoresistance is predominantly controlled
by magnetic scattering, and all other possible contributions
to magnetoresistance are negligible. Moreover, a very good
applicability of the Yosida model in the studied case forces us

to revisit its physical grounds to elucidate the basic physics,
which determines the high-field region of the magnetic phase
diagram.

Before discussing this point, we wish to point out that the
empirical relation �ρ/ρ = −aM2 allows us to find ∂ρ/∂T in a
magnetic field by straightforward calculation of the derivative

∂ρ(B,T )

∂T
= ∂ρ(0,T )

∂T
{1 − a[M(B,T )]2}

− 2aρ(0,T )M(B,T )
∂M(B,T )

∂T
. (3)

The above expression is valid as long as the maximum of
∂ρ/∂T occurs in the range T > 30 K (Fig. 4). Actually, using
the ρ(0,T ) and M(B,T ) data and their derivatives (Figs. 1–2)
as well as the value a = 2.79 ± 0.02μ−2

B determined from the
slope of the universal dependence in Fig. 5, it is possible to
calculate the position of the ∂ρ/∂T maximum for various mag-
netic fields. The result of the estimation (Fig. 4) demonstrates a
perfect coincidence between experimental data (open circles)
and the calculated results (filled diamonds). Therefore, it is
reasonable to conclude that these two lines at the magnetic
phase diagram [(∂ρ/∂T )max and (∂M/∂B)max] are essentially
the same due to the universal link between magnetoresistance
and magnetization. However, the above analysis does not
allow us to find a “true” boundary between the SP and PM
phases.

In our opinion, the universal relation (1) appears as
a consequence of the specific physical situation assumed
within the Yosida model.17 First, there are localized magnetic
moments (LMMs), which scatter band electrons. Second, the
scattering on LMMs is divided into two channels, one of which
corresponds to the parallel alignment of electron spin and
LMMs and another that corresponds to the antiparallel one.
The scattering probability in the latter channel will decrease
with the enhancement of magnetic field so that a lowering
of temperature makes a scattering center more transparent,
thus giving rise to negative magnetoresistance. Third, each
localized magnetic moment acts as an individual independent
scatter, and no interference occurs. Therefore, it is naturally to
expect that magnetoresistance will depend on the average spin
polarization rate M/M∞ and, as magnetoresistance is the even
function of magnetic field, the relation −�ρ/ρ ∼ (M/M∞)2

should be valid, in agreement with the result of the exact
calculation.17

At first glance the applicability of the aforementioned
suggestion17 to MnSi looks very surprising, and the validity
of Eq. (1) and universal scaling (Fig. 5) cannot be foreseen.
Indeed, the standard understanding of MnSi as an archetypal
itinerant magnet with strong spin fluctuations seems to exclude
any LMMs.1 However, a recent study of magnetic resonance16

showed that the physical picture in MnSi is in quantitative
agreement with magnetic oscillations of Heisenberg-type
LMMs, leaving a little room for any itinerant aspects of
magnetism. This finding agrees well with the results of LDA
calculations,22 according to which the spin density in MnSi
is localized on the Mn sites rather than being distributed
over the unit cell. Therefore the presence of LMMs in MnSi
could be considered to be at least a possible approximation.
A more serious objection is the requirement of independent
(noninterferent) scattering on LMMs. The Yosida model was
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initially developed for the case of magnetic impurities, i.e., for
a diluted case, where interference effects may be neglected.17

At the same time four Mn4+ (S = 1/2) ions in the B20 unit cell
cause the magnetic system to be apparently concentrated. In
this respect, to satisfy the Yosida model validity requirements
[confirmed by the good fitting of the experimental data using
Eq. (1)], we need to postulate the local character of the
interaction of the band electron with the magnetic center in
the presence of strong coupling between free and localized
spins.

Interestingly, the experimental value of a = a0/M
2
∞ =

2.79 together with M∞ ∼ 0.4μB/Mn results in y ≈ 0.81,
which corresponds to J0/V0 ∼ 0.9. This estimate shows that
the magnetic interaction contribution to the scattering process
is really strong for MnSi. It is worth noting that the above
hypothesis agrees well with the qualitative model suggested
in Ref. 16 in order to reconcile the possible experimental and
theoretical evidence for LMMs with the facts supporting the
presence of strong spin fluctuations in MnSi. In order to explain
reduction of the saturated magnetic moment M∞, it was
supposed16 that the bare magnetic moment of Mn4+ (S = 1/2)
is screened by band electrons, which form a quasibound
short-range spin-polaronic state in the vicinity of manganese
magnetic ions. The transition rate between these states and
band electrons is high and results in strong spin fluctuations,
which, for instance, define the ESR line width.16 Therefore the
simplest process corresponding to the supposition16 is a two-
electron process wherein one band electron enters and another
one leaves the vicinity of the magnetic center. The probability
of such a process depends on the spin-polarization rate and, if
the fine details of the LMM screening are omitted, could be
considered to be a scattering process, which could be treated
within the Yosida model.17 However, in this case the parameter
J0 becomes an effective one and should be enhanced due to
the formation of the quasibound state. The increase of the ratio
J0/V0 leads to increase of the �ρ/ρ absolute values [Eqs. (1)
and (2)] and agrees with the large negative magnetoresistance
amplitude observed experimentally (Figs. 3 and 5).

The above arguments concerning the Yosida model applica-
bility to the case of MnSi are valid when scattering processes
on each Mn site are not correlated and controlled by an average
spin-polarization rate; i.e., in the case of the PM phase. In the
magnetically ordered phase the situation is very different.17

In particular, it is reasonable to expect for the ferromagnetic
phase that both localized and moving spins are already
polarized. For that reason the basic assumption about two spin
dependent scattering channels17 fails, and magnetoresistance
does not depend on spin states. As a result, the universal
magnetoresistance scaling [Eq. (1)] is no longer valid, and any
temperature dependence of the spin-dependent contribution
to magnetoresistance in the SP phase is likely caused by
thermal fluctuations destroying the “ideal” polarized state, so
�ρ/ρ → 0 for T → 0. Therefore, it is expected that in the
PM phase the magnitude of the negative magnetoresistance in a
fixed magnetic field first increases with decreasing temperature
(as long as magnetization also increases), reaches a maximal
absolute value at the transition between PM and SP phases,
and then drops in the SP phase. In addition, a universal relation
between magnetoresistance and magnetization holds in the PM
phase.

Comparison with experiment shows that the aforemen-
tioned scenario exactly meets the case of MnSi. Indeed, the
maximum of −�ρ/ρ is observed at Tc ∼ 30–31 K (Fig. 3).
Besides, the universal relation (1) is valid for T > Tc (Fig. 5).
At first glance such a coincidence is unexpected, as only the
spin-dependent contribution to magnetization is considered.
In metallic systems such as MnSi it is possible to expect a
standard Drude-type positive magnetoresistance, estimated to
be �ρ/ρ ∼ (1/2)(μHB)2 (here μH denotes the mobility of
charge carriers). Our study of the Hall effect in MnSi showed
that the mobility depends on temperature as μH ∼ 1/T ,
and hence the positive contribution to magnetoresistance can
increase at low temperatures, compensating for the negative
contribution and leading to formation of a �ρ/ρ = f (T )
minimum. However, the absolute values of μH are very low,
for example, μH (60 K) ≈ 2 cm2/(V s) and μH (4.2 K) ≈ 28
cm2/(V s). Thus for B = 8 T and T < 60 K the magnitude
of the positive magnetoresistance is practically negligible,
�ρ/ρ ∼ (1/2)(μHB)2 ∼ 2.5 × 10−4–1.2 × 10−6, and there-
fore magnetic scattering dominates in MnSi. Consequently it
is possible to associate the minimum of �ρ/ρ = f (T ) with
the transition between PM and SP phases, and therefore the
corresponding phase boundary is almost vertical (Fig. 4). At
temperatures above minimum the universal scaling �ρ/ρ =
−a0M

2 is observed, in agreement with the prediction of the
Yosida model,17 providing an additional argument in favor of
the suggested interpretation.

Another interesting feature of the magnetoresistance tem-
perature dependences is a shoulder of �ρ/ρ = f (T ) observed
at TL ∼15 K. This feature becomes more pronounced when
magnetic field is increased [Fig. 3(b)]. Additionally, the shape
of the �ρ/ρ = f (B) dependences changes for temperatures
below 10 K, and a positive contribution to magnetoresistance
is added to the negative one at low temperatures [Fig. 3(a)].
The above observations allow us to suggest that the regions
of T < TL and TL < T < Tc are qualitatively different. In
the framework of the approach used, this low-temperature
anomaly may be explained by the change of spin polarization
rate and hence may be related to some changes in the LMM
system of MnSi.

V. MODELING THE MAGNETIC PHASE DIAGRAM

In order to check the idea about the field-independent PM-
SP transition temperature Tc, we consider the simple model
in which magnetization in the paramagnetic phase may be
expressed as

M = M∞ tanh[μ∗B/kB(T − Tc)]. (4)

The fitting of the experimental M(B,T ) curves shows that
for T > 30 K and B < 3–5 T, Eq. (4) provides a reasonable
approximation of experimental data with a constant value of
M∞ ≈ 0.28μB/Mn [see the black solid lines in Fig. 2(a)].
When Tc = 30 K is fixed, the parameter μ∗ becomes a smooth
function of temperature, increasing from μ∗ ≈ 4.9μB at T =
35 K to μ∗ ≈ 5.7μB at T = 60 K. It is worth noting that the
combination M∞μ∗(T )/kB reproduces within 5% accuracy
the values of the Curie constant C(T ) = [∂(χ−1)/∂T ]−1

deduced from the temperature dependence of the MnSi
magnetic susceptibility χ (T ) in a weak magnetic field. This

045131-5



S. V. DEMISHEV et al. PHYSICAL REVIEW B 85, 045131 (2012)

finding confirms the correctness of the above approximation.
However, both M∞ and μ∗ are nothing but model parameters,
and their interpretation as any real physical quantities may be
misleading.

It follows from formula (4) that position of the maximum
of ∂M/∂B is given by

Bmax = z∗kB(T − Tc)/μ∗(T ), (5)

where z∗ = 0.772 is the root of equation

z tanh(z) = 1/2. (6)

In order to calculate the ∂ρ/∂T maxima from Eq. (3), which
already satisfies Yosida universal scaling, it is necessary to take
into account derivatives ∂μ∗/∂T and ∂ρ(B = 0,T )/∂T . For
simplicity we will assume linear approximations: ρ = ρ0(1 +
T/Tρ) with Tρ = 12.9 K and μ∗ = μ0(1 + T/Tμ) with Tμ =
29.7 K. These functional dependences follow from the linear
fits of the resistivity at T < 60 K [dashed line in Fig. 1(a)]
and of the model parameter μ∗(T ). The position of the ∂ρ/∂T

maxima will be again given by formula (5), but in this case z∗
becomes a temperature-dependent root of the equation

ϕ(T ) + z

[
1

tanh z cosh2 z
− 2 tanh z

]
= 0. (7)

With the above linear approximations, Eq. (7) does not depend
on any of parameters a = a0/M

2
∞, ρ0, μ0, and M∞, and

function ϕ(T ) acquires the form

ϕ(T ) = 2[(Tμ + T )/(Tρ + T )][(Tρ + Tc)/(Tμ + Tc)].

The data calculated from Eqs. (4)–(7) together with the
vertical phase boundary Tc = const are shown in Fig. 4 by
dashed lines. The suggested simple model reproduces well the
experimental data. Consequently it is possible to conclude that
the PM-SP phase boundary in MnSi may be almost vertical, as
suggested by the qualitative analysis of the Yosida model,
and could be associated with neither ∂M/∂B nor ∂ρ/∂T

maxima. Moreover, this successful application of the simple
interpolation (4) shows that the PM-SP transition in MnSi
may be treated as occurring at well defined temperature Tc

rather than as a broad crossover phenomenon as supposed
previously.15 At the same time the variation of the resistivity
and magnetization in high magnetic field around Tc is smooth,
and the singularity related with the denominator of the
hyperbolic tangent may be observed only in the limit B → 0.

VI. MAGNETIC RESONANCE AND LOCALIZED
MAGNETIC MOMENTS

The above consideration supports the idea that the magnetic
properties of MnSi are governed by Heisenberg-type LMMs
rather than itinerant electrons. A similar supposition was made
previously in Refs. 16 and 22. Particularly, a new technique
for studying the magnetic resonance in strongly correlated
metals developed in Refs. 20 and 21 was recently applied
to investigate ESR in MnSi.16 This method includes special
geometry of cavity measurements and data analysis schema,
which allow one to find the full set of spectroscopic parameters
(g factor, line width, and the oscillating part of magnetization,
Mosc). The latter quantity may be determined in absolute units,
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FIG. 6. (Color online) Static magnetization (open circles) and
dynamic magnetization (filled circles) in μB per Mn ion, and g factor
(open triangles) in MnSi. Lines are guides to the eye.

which distinguishes the new technique from standard ESR
experiments.20,21

The ESR line-shape analysis performed in Ref. 16 suggests
that in the whole temperature range uder investigation the
observed magnetic oscillations are caused by LMMs, and
possible spin diffusion is negligible. At the same time the
temperature dependence of the line width exhibits a minimum
at Tc ∼ 30 K, which gives us way to connect this parameter
with the magnitude of spin fluctuations in accordance with
Moriya theory.1,16 However, we report here some data process-
ing errors found in Ref. 16, which are relevant to the problem
of itinerant magnetism. In the present work (i) a computation
error that affected g-factor values reported previously16 is
corrected and (ii) the temperature dependence of Mosc, which
is missing in Ref. 16, is represented in comparison with the
data of static magnetization M .

Measurements of magnetic resonance were carried out
at frequency of ∼60 GHz; the resonant field was about
Bres ∼ 2.2 T. The results obtained are summarized in Fig. 6.
For T > 40 K, the g factor does not depend on temperature:
g(T ) = const. This behavior agrees well with the localized
nature of the oscillating magnetic moment in MnSi.1,16

Around Tc (20 < T < 40 K) the g(T ) curve demonstrates
a weak maximum, its amplitude being comparable with the
error in the g-factor determination. Below T ∼ 15–20 K
the g factor starts to increase, showing ∼7% enhancement
at 4.2 K.

The comparison of Mosc(T ) and static magnetization data
at the resonant field M(Bres,T ) indicates that these quantities
coincide within experimental error in the whole temperature
range T < 60 K where magnetic resonance may be detected.
This observation deserves special discussion. Indeed, the
equivalence of Mosc and M means that total spin density
contributes to magnetic oscillations. So this situation seems
to be natural for itinerant magnetism. In the case of MnSi the
suggestion about LMMs means that there are two contributions
to entire magnetization: one, MMn, results from the Mn LMMs,
and another, MPauli, is induced by band electrons. Taking into
consideration a standard expression for Pauli susceptibility
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χPauli = 3μ2
ene/2EF , it is possible to obtain the following

estimates:

MPauli

MMn
∼ 3

2

neμ
2
e

CkB

kB(T − Tc)

EF0

m∗

m0
(T > Tc) (8a)

and

MPauli

MMn
∼ 3

2

ne

nMn

(
μe

μMn

)
μeBres

EF0

m∗

m0
(T < Tc). (8b)

Here C is the Curie constant for T > Tc; μe, ne and μMn,
nMn are the magnetic moments and concentrations of band
electrons and Mn ions, respectively; EF stands for the Fermi
energy EF ∼ p2

F /2m∗; parameter EF0 = EF m0/m∗; pF is
the Fermi momentum; and m∗ and m0 are the effective
masses of band and free electrons, respectively. It is sup-
posed here that MMn ∼ nMnμMn saturates below Tc and the
magnetization of the Mn ions follows the Curie-Weiss law
MMn ∼ CB/(T − Tc) above Tc.

In MnSi the effective mass depends on temperature and
increases with decreasing temperature from m∗ ∼ 1.5m0 at
T = 75 K to m∗ ∼ 17m0 at T = 10 K.23 As long as the
contribution to magnetization from band electrons corresponds
to the strongest spin fluctuations, it may not be observed in
magnetic resonance measurements due to a strong broadening
of the corresponding line width. The increase of m∗(T ) leads
to the enhancement of MPauli, which may result in a difference
between Mosc = MMn and M = MMn + MPauli.

However, the calculation within Eqs. (8) does not confirm
this hypothesis. For MnSi our measurements of the Hall effect
result in ne/nMn = 0.89, so that the parameter EF0 may
be estimated as EF0 ∼ 4.1 eV. Magnetization and magnetic
susceptibility data suggest that the averaged value of the
product CkB equals 1.66μ2

B/Mn in the range 30 < T <

60 K. Assuming μe ∼ μB and μMn ∼ 0.4μB it is easy to
find that MPauli/MMn ∼ 10−3 for the whole temperature range
studied. Therefore, in the case when contributions from the
LMMs and band electrons are treated separately, the total
magnetization determined by the LMMs of Mn and MPauli

is much less than the accuracy in evaluation of Mosc (Fig. 6).
Note that the real situation in MnSi may be more compli-

cated than the scenario of Mn LMM screening by the band elec-
trons, which is considered above (see Sec. V). This hypothesis
allows estimation of the magnitude of the renormalized static
magnetic moment for T < Tc. The Curie constant in the PM
phase gives the value of LMM for a bare (unscreened) Mn S =
1/2 ion, μMn = √

CkB/nMn = 1.29μB , and the magnitude of
the averaged value of screened Mn localized magnetic moment
will be μ∗ = μMn + μBne/nMn ≈ 0.4μB . This estimate is in
good agreement with the low-temperature magnetization data
for MnSi (Fig. 2) and thus the model suggested in Ref. 16 at
least does not contradict the experiment. Moreover, based on
a semiclassical approach24 it is possible to show that the idea
about a complex “composite” nature of Mn LMMs allows
explanation of the dynamic magnetic properties of MnSi as
well16 including the observed weak variation of the g factor at
the PM-SP phase boundary (Fig. 6). It is worth noting that there
is only one magnetic contribution in the considered model for
T < Tc. So the contribution of screened LMMs and hence the
static and dynamic magnetizations should lead to M = Mosc

as observed experimentally (Fig. 6).

Therefore, it is possible to conclude that both itinerant
magnetism and LMM models are consistent with our ob-
servations, in which M and Mosc coincide in SP and PM
phases of MnSi. Some additional arguments are required
for discrimination between these aforementioned possibilities.
However, the analysis of ESR line shape,16 the temperature
independent g factor for T > 15 K (Fig. 6), and the good
applicability of the Yosida model (Fig. 5) favor the explanation
based on classical Heisenberg-type magnetism.

In concluding this section we wish to point out a correlation
between the onset of the low-temperature growth of the g factor
(Fig. 6) and the shoulder on the magnetoresistance temperature
dependence at TL ∼ 15 K (Fig. 3). At the moment neither low-
temperature changes in the g factor nor nonmonotonous �ρ/ρ

dependence may be consistently interpreted in any models of
MnSi magnetism. The low-temperature anomaly observed at
TL ∼ 15 K could possibly correspond to a transition inside
the SP phase. The nature of this possible transition requires
additional clarification and will be discussed elsewhere.

VII. CONCLUSIONS

The study of the high-field region of the MnSi magnetic
phase diagram shows that the temperature of the transition
between PM and SP phases is well defined and is almost
independent of magnetic field, equaling Tc ∼ 30 K. As a result,
the phase boundary BSP (T ) appears to be practically vertical
and has no positive slope as was suggested previously.15

At the same time the broad maxima of the resistivity and
magnetization derivatives, which develop in the range T > Tc,
could not be associated with a “diffuse” SP-PM transition
and appear to be due to the specific form of the functional
dependences of these quantities in the PM phase. This
experimental result is confirmed within a simple analytical
model.

A universal relation between magnetoresistance and mag-
netization �ρ/ρ = −a0M

2 found in the PM phase of MnSi
holds in a wide range of temperatures and magnetic fields
where magnetoresistance varies by more than two orders of
magnitude. The observed behavior is shown to be explained
by scattering of the band electrons on the Mn LMMs within
the Yosida model.17

It is shown that the shape of the field dependences of
magnetoresistance changes qualitatively in the SP phase
of MnSi at TL ∼15 K, with the low-temperature g factor
growing simultaneously below TL. The nature of this low-
temperature anomaly remains unclear, indicating the need for
further development of the theory of magnetic properties of
manganese monosilicide.
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