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We examine how the properties of the Kondo insulators change when the symmetry of the underlying crystal
field multiplets is taken into account. We employ the Anderson lattice model and consider its low-energy
physics. We show that in a large class of crystal field configurations, Kondo insulators can develop a topological
nontrivial ground state. Such topological Kondo insulators are adiabatically connected to noninteracting insulators
with unphysically large spin-orbit coupling, and as such may be regarded as interaction-driven topological
insulators. We analyze the entanglement entropy of the Anderson lattice model of Kondo insulators by evaluating
its entanglement spectrum. Our results for the entanglement spectrum are consistent with the surface state
calculations. Last, we discuss the construction of the maximally localized Wannier wave functions for generic
Kondo insulators.
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I. INTRODUCTION

Topological insulators are a novel class of materials in
which strong spin-orbit interaction leads to the inversion of
the band gap (see Refs. 1 and 2 and references therein). In
three dimensions (3D), this inversion results in chiral metallic
surface states due to a formation of a single Dirac cone inside
the gap.3–7 Among materials which exhibit this behavior,
for example, HgTe, Bi2Se3, Bi1−xSbx , Bi2Te3, and TlBiTe2,
the chiral structure of the surface states has been confirmed
experimentally.8–11

The emergence of surface modes in topological insulators
is a band structure effect which can be understood without
invoking interactions. There is great current interest in the
possibility of interaction driven topological phenomena. Up
until now there are no experimental examples of interaction-
driven topological insulators that preserve time-reversal sym-
metry. However, several theoretical proposals have been put
forward: 2D topological insulators via spontaneous symmetry
breaking in bilayer graphene and optical lattice systems,12–15

topological Mott insulating phase in Ir-based pyrochlore
oxides A2Ir2O7 with A = Nd, Pr,16–19 Kondo insulators with
the most salient example of SmB6

20 and insulating behavior
in filled skutteridites.21 In this paper we focus on general
principles governing the emergence of chiral metallic states
in Kondo insulators. Throughout this paper, we use the term
“Kondo insulator” in its broadest sense, including both mixed
valent materials22 such as SmB6 and YbB12 and those in the
more localized limit, such as Ce3Bi4Pt3.

Kondo insulators are a type of heavy fermion material,
first discovered 40 years ago,23 in which highly renormalized
f electrons hybridize with conduction electrons to form a
completely filled band of quasiparticles with excitation gaps
in the millivolt range.24–27 Because Kondo insulators appear
as a result of strong interactions, one might think that their
excitations and their ground states are adiabatically connected
to trivial noninteracting band insulators.28 However, before
jumping to this conclusion one needs to be careful, for in the

renormalization process the width of the heavy electron bands
drops far below the characteristic size of the spin-orbit interac-
tions, driving the physics to a new fixed point characterized by
infinite spin-orbit coupling in the localized bands. Indeed, we
shall show that topological Kondo insulators are adiabatically
connected to noninteracting topological insulators with an
unphysically large value of the spin-orbit coupling, and in
this sense, they are interaction-driven insulators.

One of the most important features of the f -electron
systems in general and Kondo insulators in particular is that the
f -electron states are classified with respect to their momentum
k, total angular momentum J , and its z-axis component M ,
while conduction electron states are described by a momentum
and a spin σ . When an f electron escapes into the conduction
sea, it hybridizes with a spin-orbit coupled Wannier state of
the conduction electrons that has the same symmetry as the f

state. The spin-orbit coupled Wannier states of the conduction
electrons are then decomposed in terms of plane-wave states
and this gives rise to momentum-dependent form factors
with symmetries that are uniquely determined by the local
symmetry of the f states. In this way, the form factors encode
the effect of the strong spin-orbit coupling. More importantly,
these form factors also define the underlying symmetry of
the hybridization amplitude and gap which develops below
the “Kondo temperature” TK at which heavy quasiparticles
develop. One of the key properties of the spin-orbit coupled
f state is an odd-parity wave function. It is the protected odd
parity of the f states that provides the driving force for the
formation of topological insulating states.

The dimension of the form factor matrix is determined
by the degeneracy of the underlying ground state f -ion
multiplet. In the crystalline environment the (2J + 1) multiplet
degeneracy is lifted by the crystalline fields. For half-integer
values of J the lowest possible degenerate multiplet is a
Kramers doublet, which means that the form factor is a 2D
matrix. For the integer values of J the crystal field can fully
lift degeneracy of the multiplet. This situation corresponds to
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the nonmagnetic state of the f ion and currently there are no
known examples of such Kondo insulators. Thus, in this article
we only focus on the magnetic ions with half-integer values of
the total angular momentum.

As mentioned above, the symmetry of the lowest-lying
multiplet determines the symmetry of the hybridization ampli-
tude. Generically, two possible scenarios can arise depending
on whether the hybridization contains nodes or not. For a
small, but important subset of these systems, the hybridization
contains nodes. In this case, the Kondo insulating state is
replaced by a heavy semimetal with a pseudogap, as in the case
of CeNiSn or CeRhSb. If the nodes correspond to touching of
the two nondegenerate bands with linear dispersion, the system
becomes a Weyl semimetal, where topologically protected
surface modes emerge.29 Note that the lifting of degeneracy
can only happen due to onset of magnetic order. The magnetic
moments may appear as a result of incomplete screening
similarly to what happens in CeCoIn5, for example.

In our previous work, we demonstrated within a mean-field
model that in the large class of systems without nodes in the
hybridization gap, Kondo insulators can develop topological
insulating ground states.20 In this paper we develop this idea
in detail, providing mathematical details of the construction of
the wave function and explicitly computing the surface modes
for a topological Kondo insulator.

Although attempts to establish the general principle deter-
mining the relative position of the crystal field multiplets have
been made,30–32 no such principle has yet been discovered.
Experimentally, however, the symmetry of the lowest-lying as
well as excited multiplets can be detected, for example, by
inelastic neutron scattering spectroscopy.33 Nevertheless, by
assuming a specific symmetry of the ground-state multiplet
one is able to theoretically predict the physical properties of
a Kondo insulator. In addition, it provides multiple ways to
verify them experimentally. To be more precise, the presence
of the chiral states on the surface of Kondo insulators will
allow one to indicate unambiguously the symmetry of the
lowest-lying multiplet.

Apart from going beyond the brief description of topo-
logical Kondo insulators reported in Ref. 20, we discuss the
topological properties of the eigenfunctions of the model
Hamiltonian describing the Kondo insulators. We start with
a short review of the model and recently obtained results. We
evaluate the entanglement spectrum for the simplest model of
the Kondo insulator corresponding to the nearest neighbors
tight-binding approximation for the conduction bands and a
Kramers doublet. We also discuss the choice of the proper basis
for construction of the maximally localized Wannier functions
for the Kondo insulators. We show that Wannier functions can
be constructed on the basis composed of the linear combination
between the conduction and f -electron states. Finally, we
provide a short review of available experimental data which
points toward the existence of the chiral surface states in Kondo
insulators.

II. ANDERSON LATTICE MODEL

We begin with writing the model Hamiltonian to describe
the physics of the Kondo insulators. In what follows we
consider the most general case by assuming that there are

Nc conduction bands, so that the Hamiltonian describing
conduction electrons is

Hc =
Nc∑
l=1

∑
k,σ

ξlkc
(l)†
kσ c

(l)
kσ , (1)

where ξlk is the dispersion of the lth band of conduction
electrons, σ is the spin index, and c

(l)†
kσ is a conduction

electron creation operator. Consequently, the Hamiltonian
which describes the f electrons is

Hf =
∑

j

N�∑
α=1

εf �f
†
jαfjα + U

∑
iαα′

f
†
iαfiαf

†
iα′fiα′ , (2)

where f
†
jα creates an f electron on site j in a state α of a

lowest-lying multiplet N�-degenerate multiplet denoted by �

(see below), εf is the f -electron energy, and U > 0 is the
strength of the Hubbard interaction between the f electrons.
We emphasize that index α is not a spin index due to the
presence of the strong spin-orbit coupling. Generally, states
belonging to the multiplet � are described by the total angular
momentum J and z component M or some linear superposition
of those states and in the second term of Eq. (2), the summation
is restricted to α �= α′.

Finally, the term describing how electrons in Nc conduction
bands are hybridized with localized f electrons is

Hh =
Nc∑
l=1

N�∑
j,α=1

[
V

(l)
iσ,jαc

(l)†
iσ fjα + H.c.

]
. (3)

Here V
(l)
iσ,jα is a nonlocal hybridization matrix element between

the conduction electrons in lth band and localized f electrons.
Thus, the periodic Anderson model Hamiltonian, which is the
basis for our subsequent discussion, reads

HPAM = Hc + Hf + Hh. (4)

The hybridization matrix elements V
(l)
iσ,jα can be written as

follows:

V
(l)
iσ,jα = Vl

∑
kσ

[��k]ασ eik·(Ri−Rj ), (5)

where Vl is the hybridization amplitude and the form factors
[��k]ασ are (2J + 1) × 2-dimensional matrices given by

[��k]ασ = 〈k�α|kσ 〉. (6)

Since in this paper we discuss the materials when an f ion
is in the valence state with J = 5/2 (f 1 for cerium or f 3 for
samarium) it follows that

[��k]ασ =
∑

m∈[−3,3]

〈
�α

∣∣∣∣3m,
1

2
σ

〉
Ỹ 3

m−σ (k) (7)

and

Ỹ 3
M (k) = 1

Z

∑
R�=0

Y 3
M (R̂)eik·R (8)

is a tight-binding generalization of the spherical Harmonics
that preserves the translational symmetry of the hybridization,
�(k) = �(k + G), where G is reciprocal lattice vector. Here
R are the positions of the Z nearest-neighbor sites around the
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magnetic ion. Note, that deriving (6) we have assumed that
the symmetry of the conduction electron amplitude coincides
with the symmetry of the f -ion multiplet.34,35 Consequently,
we treat the system with only one hybridization channel. Now
let us recall the definition of the form factors:

[�k̂]ασ =
5/2∑

M=−5/2

〈kα|JM〉〈JM|k̂σ 〉, (9)

where 〈JM|k̂σ 〉 is a (2J + 1) × 2 matrix whose elements

are given by σ

√
7
2 −Mσ

7 Y 3
M− 1

2 σ
(k̂). The elements of the matrix

〈kα|JM〉 are determined by the specific choice of the f -ion
multiplet and the corresponding wave functions denoted by
|�α〉. As we mentioned above, we focus our discussion on the
case of f ion with J = 5/2. This situation is relevant for all
known f -electron Kondo insulators. Consequently, in a cubic
crystal field environment, the magnetic ion multiplet is split
into a doublet,∣∣�(c)

1 ± 〉 = ±
√

5

6

∣∣∣∣ ± 3

2

〉
∓

√
1

6

∣∣∣∣ ∓ 5

2

〉
, (10)

and a quartet,∣∣�(c)
2 ± 〉 = ±

√
1

6

∣∣∣∣ ∓ 3

2

〉
±

√
5

6

∣∣∣∣ ± 5

2

〉
,

|�(c)
3 ±〉 = ±

∣∣∣∣ ± 1

2

〉
, (11)

so that for this case the matrix 〈kα|JM〉 is

〈kαi |JM〉 (12)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
√

1
6 0 0 0 −

√
5
6

0 0 1 0 0 0

0 0 0 −1 0 0√
5
6 0 0 0

√
1
6 0

0
√

5
6 0 0 0 −

√
1
6√

1
6 0 0 0 −

√
5
6 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

In a tetragonal crystal field environment, relevant for Ce-
based Kondo insulators, the Ce multiplet is split into three
doublets:∣∣�(t)

1 ± 〉 = | ± 1/2〉,∣∣�(t)
2 ± 〉 = cos(β)| ∓ 3/2〉 + sin(β)| ± 5/2〉, (14)∣∣�(t)
3 ± 〉 = sin(β)| ∓ 3/2〉 − cos(β)| ± 5/2〉,

where the mixing angle β defines orientation of the cor-
responding states. In an orthorhombic environment, the
Kramer’s doublets are generally described by a linear super-
position of all three wave functions30,32:

|�(ortho)±〉 = u| ± 1/2〉 + v| ∓ 3/2〉 + w| ± 5/2〉. (15)

Having provided the scheme for the computation of the form
factors we proceed with the discussion of the low-energy
properties of our model (4) of Kondo insulators.

III. LOW-ENERGY THEORY FOR Ce-BASED KONDO
INSULATORS

The low-energy properties of the model (4) are described
in terms of renormalized quasiparticles formed via strong
hybridization between the c and f states and on-site repulsion
U between the f electrons. In the regime where the f states
are predominantly localized, U ∼ W (W is the bandwidth),
we can neglect the momentum dependence of the f -electron
self-energy 	f (k,ω) 	 	f (ω).

Below we discuss the topological properties of the effective
low-energy model. To make our discussion more tractable,
we consider separately several experimentally relevant cases.
In what follows we discuss the simplest case of the single
conduction band and Kramers doublet as a ground-state
multiplet of the magnetic ion. This is done with an eye
toward the transport experiments on the Ce-based Kondo
insulators.36,37

A. Single conduction band hybridized with the Kramers
doublet: Ce-based Kondo insulators

In order to derive an effective low-energy model for
Kondo insulators, we first introduce the following correlation
functions for c and f electrons:

Gcc(k,τ ) = −〈T̂τ {ckσ (τ )c†kσ (0)}〉,
(16)

Gff (k,τ ) = −〈T̂τ {fkα(τ )f †
kα(0)}〉.

By writing equations of motion for the c-operators with
the Hamiltonian (4) and going into Matsubara frequency
representation we derive the following relation:

Gcc(k,iω) = G(0)
cc (k,iω) + |V |2�2

k

(iω − ξk)2
Gff (k,iω), (17)

with �2
k = 1

2 Tr[�†
�k��k] and G(0)

cc (k,iω) is a conduction
electron propagator in the absence of interactions. If we denote
the f -electron self-energy by 	f (k,ω) and keep in mind that
this self-energy appears as a result of Hubbard correlations
only, then it follows that

Gff (k,iω) =
[
iω − εf − 	f (k,iω) − |V |2�2

k

iω − ξk

]−1

. (18)

Next we assume that the self-energy is very weakly dependent
on momentum, 	f (k,iω) 	 	f (kF ,iω) (kF is the conduction
electron’s Fermi momentum) and expand it to the lowest order
in Matsubara frequency:

	f (k,iω) 	 	f (kF ,iω) + iω

[
∂	f (kF ,iω)

∂(iω)

]
iω→0

. (19)

Taking into account expressions (18) and (19), for the
correlators we find

Gcc(k,iω) = iω − εf

(iω − ξk)(iω − εf ) − |Ṽ |2�2
k

,

(20)

Gff (k,iω) = iω − ξk

(iω − ξk)(iω − εf ) − |Ṽ |2�2
k

,

where ξk = −2t
∑

a=x,y,z cos ka is the bare spectrum of con-
duction electrons taken relative to the chemical potential, εf =
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FIG. 1. Two topological classes can be realized in our model of
Kondo insulators for εf < 2t (see text). The first class with index ν =
(1; 000) corresponds to a strong topological insulator and is realized
when εf < −2t . The second class with index ν = (0; 111) is realized
for −2t < ε < 2t . When the renormalized position of the f level is
at the boundaries, εf = ±2t, ± 6t the system is metallic.

Z[εf + 	f (0)] is the renormalized f level, Ṽ = √
ZV , and

Z = (1 − ∂	f (kF ,ω)/∂ω)−1
ω=0. These propagators correspond

to the following effective Hamiltonian31:

Heff(k) =
(

ξk1 Ṽ �
†
�k

Ṽ ��k εf 1

)
. (21)

Here 1 denotes the unit 2 × 2 matrix. The KI is formed if
the chemical potential of the quasiparticles lies inside the
hybridization gap, separating the two bands with the spectra
E±(k) = 1

2 [ξk + εf ±
√

(ξk − εf )2 + 4|Ṽ �k|2].
To discuss the topological properties of our effective model

for the KI (21), we need to consider separately the form factors
for different �’s. It is convenient to distinguish these states
according to their orbital symmetry parameterized by the index
a = 1,2,3 and the pseudospin quantum number (α = ±).32

Hence, we have f
†
1±|0〉 = | ± 1/2〉, f

†
2±|0〉 = | ± 3/2〉, and

f
†
3±|0〉 = | ± 5/2〉.

The momentum-dependence of the hybridization gap
�a(k) follows from Eq. (7). At small momenta

k, �1(k) = 1
12

√
3
π
{12 cos(2θ ) + 5[3 + cos(4θ )]}1/2, �2(k) =

1
8

√
3
π
| sin θ |[17 + 15 cos(2θ )]1/2, and �3(k) = 1

4

√
15
2π

sin2 θ ,

where θ and φ define the direction of the unit vector k̂,
associated with the point on the Fermi surface. Note that the
hybridization gap has a line of nodes along the z axis for the
shapes a = 2,3, but generic combinations of all three form
factors characteristic of containing no nodes. The key results
of this section are most simply illustrated using the nodeless
a = 1 Kramers doublet as the ground state of the magnetic
ion.

To analyze the topology of the bands we use the fact
that topology is invariant under any adiabatic deformation
of the Hamiltonian. We begin our study with a tight-binding
model for a KI on a simple cubic lattice. Our choice of
hybridization ensures that the mean-field Hamiltonian [Eq.
(21)] is a periodic function satisfying Heff(k) = Heff(k +
G). The technical analysis is readily generalized to more
complicated cases as discussed below. The most important
element of the analysis is the odd parity form factor of the f

electrons, �a(k) = −�a(−k). This parity property is the only
essential input as far as the topological structure is concerned.

B. Calculation of topological indices

In Ref. 38, Fu and Kane demonstrate that in an insulator with
time-reversal and space-inversion symmetry, the topological
structure is determined by parity properties at the eight
high-symmetry points, k∗

m, in the 3D BZ which are invariant
under time reversal, up to a reciprocal lattice vector: k∗

m =
−k∗

m + G. In our case, these symmetries require thatHeff (k) =
PHeff(−k)P −1 and Heff(k)T = T Heff(−k)T −1, where the
parity matrix P and the unitary part of the time-reversal
operator T are given by

P =
(

1

−1

)
, T =

(
iσ2

iσ2

)
, (22)

where σ2 is the second Pauli matrix. For any space-inversion-
odd form factor, it follows immediately that �̂a(k) = 0 at
a high-symmetry point. Hence, the Hamiltonian at this high-
symmetry point is simply Heff(k∗

m) = (ξk∗
m

+ εf )I/2 + (ξk∗
m

−
εf )P/2, where I is the four-dimensional identity matrix.

The parity at a high-symmetry point is thus determined by
δm = sgn(ξk∗

m
− εf ). Four independent Z2 topological indices

(ν0; ν1,ν2,ν3),39 one strong (a = 0) and three weak indices
(a = 1,2,3) can be constructed from δm: (i) The strong topo-
logical index is the product of all eight δm’s: ISTI = (−1)ν0 =∏8

m=1 δm = ±1; (ii) by setting kj = 0 (where j = x,y,andz),
three high-symmetry planes, Pj = {k : kj = 0}, are formed
that contain four high-symmetry points each. The product of
the parities at these four points defines the corresponding
weak-topological index, I a

WTI = (−1)νa = ∏
km∈Pj

δm = ±1,
a = 1,2,3 with integers corresponding to the axes x, y, and
z. The existence of the three weak topological indices in 3D
is related to a Z2 topological index for 2D systems (a weak
3D TI is similar to a stack of 2D Z2 topological insulators).
Because there are three independent ways to stack 2D layers
to form a 3D system, the number of independent weak
topological indices is also three. A conventional band insulator
has all of the four indices ISTI = I x

WTI = I
y

WTI = I z
WTI = +1 or

equivalently (0;0,0,0). An index I = (−1) (νa = 1) indicates
a Z2 topological state with the odd number of surface Dirac
modes. In a KI the symmetry index δm of a particular
high-symmetry point m is negative provided ξk∗

m
< εf is lower

than the f energy εf . Thus, if ξk∗
m=0 < εf at the � point, while

ξk∗
m �=0 > εf for all other symmetry points, then ISTI = −1,

and hence the Kondo insulating state is a strong-topological
insulator, robust against disorder (Fig. 1). Weak topological
insulators and topologically trivial insulators can, in principle,
be found for different band structures and different values of
εf . A particularly interesting possibility is to tune topological
phase transitions between different types of insulators (e.g.,
by applying a pressure). Although we have been specifically
considering a tight-binding model with a primitive unit cell,
all our conclusions apply directly to systems adiabatically
connected to this model.
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C. Surface state calculation

In addition to the method discussed by us in Ref. 20,
this can be proven by the direct calculation of the band
spectrum together with the calculation of the entanglement
entropy (see below). In what follows, we assume that the
f electrons have very weak hole-like dispersion, that is,
εf → εf k = 2tf

∑
i=x,y,z cos ki + μf , where tf = 0.1t and

μf is a chemical potential. This implies, in particular, that
the boundary separating the WTI and STI are now given
by μ′

c = ±2(t + tf ) Here, as before, the value of μ′
c is

taken relative to the chemical potential of the conduction
electrons.

In order to demonstrate that there is a metallic surface state
in the spectrum described by the Hamiltonian (21) we consider
a stack of N = 30 planes along the z direction and diagonalize
the Hamiltonian. The resulting Hamiltonian matrix has blocks
along the diagonal, which describe the hopping and hybridiza-
tion within each plane and the off-diagonal parts describing the
hopping and hybridization between the planes. For the set of
the parameters corresponding to the strong topological Kondo
insulator we compute the spectrum numerically and show the
results in Fig. 2. For simplicity we have chosen the model form
factor, given by

� =
⎧⎨⎩V (sin kxσx + sin kyσz), within the planes,

iVzσz, between the planes (upward),
−iVzσz, between the planes (downward).

(23)

We see that for the case of strong topological insulator there
appears a Dirac point in the gap in the middle of the Brillouin
zone (BZ). For the set of parameters giving weak topological
insulators, there are two Dirac points located at the edges of
the BZ. We note that the Dirac node in the spectrum exists
not only for the simple cubic unit cell, but also for the more
complicated fcc- and bcc-unit cells.

D. Entanglement entropy and spectrum

In this section we independently rederive our results from
the previous subsections by employing the concept of the
entanglement entropy. In discussions on topological insulators
without electron-electron interactions it is implicitly assumed
that the presence of the gapless edge modes is a signature
of the topologically nontrivial insulating state. In fact, this
assumption is confirmed within our description of Kondo
insulators. It is interesting, however, to check the topological
properties of our model by discussing the properties of the
eigenfunctions only. Such an approach has been pioneered by
Freedman and collaborators,40 who showed that topologically
nontrivial states of matter can exist without exhibiting the
chiral edge modes. In this and the following section we discuss
in detail the topological properties of the eigenfunctions
governed by our effective model Hamiltonian (21).

As has been extensively discussed in the literature [for
the more recent accounts, see (Refs. 41–43) and references
therein], entanglement entropy can be used to distinguish
the topological phases from the nontopological ones. The
following criterion is used: The topologically nontrivial state
should have nonzero entanglement entropy when the latter
cannot be tuned to zero by an adiabatic change of the
parameters of the system.43

(a)

(b)

FIG. 2. (Color online) Single-particle band spectrum governed
by the mean-field Hamiltonian (21) along the x axis, k = kx,ky = 0.
(Top) The band structure for the weak topological insulator with the
two Dirac points at the Brillouin zone boundaries. Band structure for
the strong topological insulator with the Dirac point inside the band
gap (bottom).

As an aside, we note that our effective Hamiltonian (21)
is a single-particle Hamiltonian and therefore, by calculating
its entanglement spectrum we can also test the idea of adia-
batic connectivity between our interaction-driven topological
Kondo insulators and noninteracting topological insulators.
The latter, however, cannot be adiabatically connected to trivial
band insulators without making the system gapless. Note that
for the trivial insulators we adopt the following definition43:
Upon adiabatic change in the hopping elements to zero, a
trivial insulator goes into an atomic insulator without closing
the energy gap along the adiabatic path.

The entanglement entropy can be generally written as

Sent = −
∑

a

[ξa ln ξa + (1 − ξa) ln(1 − ξa)], (24)

where {ξa} are the single-particle entanglement eigenvalues
and subscript a labels the eigenstates. When the entanglement
eigenvalues are neither zero or one, the entanglement entropy
is nonzero and therefore the system is topologically nontrivial.
In particular, for translationally invariant topological insulator
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the spacial cut reveals the surface states and yields nonzero
entanglement entropy.42,43 In this case the entanglement
eigenvalues are also labeled by the conserved components
of the momentum, say, ξa(kx,ky) for the cut in the xy

plane. Thus, the problem of checking whether the insulator
is topological or not reduces to the problem of determining
the entanglement eigenvalues. For the case of the Kondo
insulators, the computation of the entanglement spectrum may
serve as an additional indicator of the nontrivial nature of
their ground state especially for the case of complicated lattice
structure when the simple approaches for the computation
of the Z2 indices do not apply. The procedure of how these
eigenvalues are computed is given below.

In this section we evaluate the entanglement entropy for the
mean-field Hamiltonians (21) using the Peschel’s method.42–44

The entanglement spectrum is determined by correlation
function

G
αβ

ij = 〈ψ̂†
iαψ̂jβ〉, (25)

where ψ̂iα creates an electron in state α = 1, . . . ,4 (conduction
or f electron with spin up or down) on site i and the expectation
value is evaluated in the ground state. Introducing the normal
operators γnk, where n is the number of the eigenvalues:

ψ̂iα =
Nb∑
n=1

eik·ri unα(k)γ̂nk, (26)

where Nb = 2 is the number of the occupied bands and unα(k)
are the eigenvectors. For the correlation function we find

G
αβ

ij =
∑

k

eik·(ri−rj )
2∑

n=1

u∗
nα(k)unβ(k), (27)

where the summation goes over all components of the
momentum k.

Let us imagine now that our system is cut in two halves
along a given spacial direction. To be specific, let us make the
cut along the xy plane, so that kx and ky are conserved. The
entanglement spectrum ξa(k⊥), k⊥ = (kx,ky) [Eq. (24)], are
then given by the eigenvalues of the following matrix:

G
αβ

ij (kx,ky) =
∑
kz

eikz·(zi−zj )
2∑

n=1

u∗
nα(k)unβ(k), (28)

where i,j are confined to the right (or left) part of the
system. Specifically, we need to solve the following eigenvalue
problem: ∑

j,β

G
αβ

ij (k⊥)ϕ(a)
jβ (k⊥) = ξa(k⊥)ϕ(a)

iα (k⊥). (29)

We show the results of our computation for the model
Hamiltonian (21) with Nb = 2 in Figs. 3 and 4. As we can see,
depending on the position of renormalized f level relative
to the bottom of the conduction band, we find either singe
node or two nodes in the entanglement spectrum. The number
of the nodes is equal to the number of nodes of the surface
states inside the insulating gap, in complete agreement with
our expectations.

To summarize, our results from this section confirm that
Z2-odd topological Kondo insulators cannot be adiabatically

(a)

(b)

(c)

FIG. 3. (Color online) Entanglement spectrum for the model of
Ce-based Kondo insulator. (a) Weak topological insulator (0; 111),
(b) strong topological insulator (1; 000), and (c) trivial insulator
(0; 000). For the presentation purposes we choose only two eigen-
values for each momentum k⊥.

connected to Z2-even insulators adiabatically without van-
ishing of the insulating gap along the adiabatic path. At the
same time we see one-to-one correspondence between the
Kondo insulators and noninteracting Z2 topological insulators
confirming the idea of adiabatic connectivity between the two
discussed in the Introduction.
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FIG. 4. (Color online) Evolution of the entanglement spectrum with the change in the position of the renormalized f level, εf . The top
four panels show the change in the entanglement spectrum as the system goes from the trivial insulator to the strong topological insulator. The
bottom four panels illustrate the changes in the spectrum as the system goes from strong to weak topological insulator. Note that when εf is
exactly at the boundary separating different insulating phases so that the bulk insulating gap vanishes, the vertical lines in the entanglement
entropy spectrum reflect the absence of the surface modes at the boundaries.

IV. CONSTRUCTION OF THE WANNIER WAVE
FUNCTIONS

Within our model of Kondo insulators we can also address
the problem of constructing maximally localized Wannier
functions (WFs). This question has several important applica-
tions in the general theory of topological insulators,45,46 such as
the calculation of the Z2 indices as well as the characterization
of the topological structure using first-principles calculations.

Generally, the construction of the WF proceeds in two
stages. The first stage has to do with the initial choice of the
basis set before specifying a particular choice of the gauge.
This needs be done in order to make the WF nonsingular
across the whole BZ. The gauge is then fixed by imposing
the certain criterion. As an example, maximum localization
criterion is typically used.47 Apart from the problem related to
the arbitrariness in the choice of WFs, there exists a topological
obstruction for constructing the WFs for Chern insulators
realized in systems with broken time-reversal symmetry.48,49

As it turns out, in the case of the Z2 topological insulators there
is also a topological obstruction, albeit a less severe one. As
was recently discussed in Ref. 45 for the Kane-Mele model,
it is impossible to construct the time-reversal invariant basis
set of the WFs, but one can construct the basis set consisting
of the non-Kramers pairs. The above-mentioned arbitrariness
in the definition of the WF is then fixed by the criterion of
maximum localization.46,47

In this section we specifically apply the prescription devel-
oped in Ref. 45 to construct the basis set which then can be used
to initialize the procedure to compute the maximum localized
WF. On one hand, this should provide another example of the
manifestation of the above-mentioned obstruction and the way
it can be resolved. On the other hand, it gives an insight into the
structure of the wave functions describing the quasiparticles
in the occupied bands.

A. Preliminaries

Below we follow almost verbatim the discussion in Refs. 45
and 47. For variety of applications (i.e., numerical calcula-
tions) it is required that the Bloch-like wave functions must
remain smooth across the whole BZ. The problem is that the
specific choice of the Bloch functions |ψnk〉 is not unique,
since these wave functions have an additional gauge freedom
originating from possibility of mixing with the wave functions
describing the occupied bands:

|ψnk〉 →
∑
m

Unm(k)|ψmk〉 (30)

(here the summation goes over the occupied bands). For all
practical purposes, however, the freedom of choosing the
proper gauge transformation must be removed by applying
some restrictions on choosing the specific gauge. The latter
uses the criterion of maximum localization of the WF.47 WFs
are defined by

Wn(r − R) = �

(2π )3

∫
BZ

e−ik·Rψnk(r), (31)

where � is a volume of the unit cell and ψnk(r) = 〈r|ψnk〉 are
the Bloch wave functions, n is a band index, and R is a position
of a lattice site.

The unitary transformation (30) can be initialized using the
following procedure. One first chooses the set of localized
trial wave functions |τik〉 and then forms a set of new basis
functions

|τ̃ik〉 =
N∑

n=1

|ψnk〉〈ψnk|τik〉, i = 1,N (32)

where N is the number of the occupied bands. Since this new
basis set is not orthonormal, one can adopt a Löwdin procedure
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and form the overlap matrix

Smn(k) = 〈τ̃mk|τ̃nk〉. (33)

Now we can use Eqs. (32) and (33) to form a set of Bloch-like
states,

|ψ̃nk〉 =
∑
m

[S−1/2(k)]mn|τ̃mk〉. (34)

These states, albeit not eigenstates of the Hamiltonian, should
be the smooth functions of the quasimomentum k and are used
to construct the localized set of the WFs:

W̃n(r − R) = �

(2π )3

∫
BZ

e−ik·Rψ̃nk(r). (35)

The above construction breaks of the determinant of the matrix
Smn(k) vanishes in some points of the BZ. Thus, the problems
consists in finding the proper set of trial states (32) such
that det[S(k)] �= 0. Finally, we note that the required degree
of localization can be achieved by employing the iterative
procedure.47

We now construct the WFs for our mean-field model
described by the Hamiltonian (21). For the Bloch wave
functions we write

|ψnk〉 =
4∑

s=1

Csnk|sk〉, (36)

where n = 1,2 labels the occupied bands, coefficients Csnk are
the components of the eigenvectors of the Hamiltonian (21),
and the summation goes over the components of generalized
spinor which includes spinful conduction (c) and f -elecron (f)
states:

|s = 1,k〉 = ĉ
†
k↑|0〉,|s = 2,k〉 = ĉ

†
k↓|0〉,

(37)
|s = 3,k〉 = f̂

†
k↑|0〉,|s = 4,k〉 = f̂

†
k↓|0〉.

In Eq. (36) the basis functions |sk〉 are defined on the each site
on the lattice R; that is,

|sk〉 = |s〉√
N

∑
r

eik·rδ(r − R). (38)

In what follows we adopt the method outlined above to
construct the WFs for our model Kondo insulators.

B. Choice of the basis

The onset of the coherence in the Kondo lattice can be
interpreted as an emergence of new quasiparticles which are
the linear superposition of the localized and conduction states.
Since the newly formed quasiparticle band is narrow, the
spectral weight is mostly governed by the f states. Thus, to
construct the WFs we first consider the basis on f states only:

|τ1k〉 = |3k〉, |τ2k〉 = |4k〉 (39)

[see Eqs. (37) and (38)]. For the new set of basis vectors (32)
with the help of Eqs. (36) and (39) this implies

|τ̃1k〉 = C∗
31k|ψ1k〉 + C∗

32k|ψ2k〉,
(40)

|τ̃2k〉 = C∗
41k|ψ1k〉 + C∗

42k|ψ2k〉.

0

0.2

0.4

0.6

0.8

1

non-Kramers mixed (c-f) basis
f-state Kramers basis
Kramers mixed (c-f) basis

RX R X

FIG. 5. (Color online) Plot of the dependence of det[Ŝ(k)] along
the path in the BZ. The elements of the matrix Ŝ(k) has been obtained
using the trial basis set, which consists of (a) a non-Kramers pair
of states each containing the superposition between the conduction
and f states, (b) a Kramers pair of f states, and (c) a Kramers pair
states with linear superposition of conduction and f -electron wave
functions. The determinant does not vanish anywhere in the BZ only
for the basis (c).

For the determinant of the matrix Ŝ(k) we find

det[Ŝ(k)] = (|C31k|2 + |C32k|2)(|C41k|2 + |C42k|2)

− |C31kC
∗
41k + C32kC

∗
42k|2. (41)

We present the results in Fig. 5. We see that the determinant
of the matrix (33) is zero near the � point, which means that
the choice (39) is not suitable for construction of nonsingular
Bloch functions and consequently WFs. The same result holds
for the trial basis built of the conduction states |1k〉 and |2k〉
as well as their linear combinations.

As we have mentioned above, the formation of the coher-
ence in the Kondo lattice can be seen as a formation of the
new states (or quasiparticles) as a result of the hybridization
between the conduction and f electrons. Motivated by this
observation, let us try the following two trial basis wave
functions:

|τ1k〉 = 1√
2

(|1k〉 + |3k〉), |τ2k〉 = 1√
2

(|2k〉 − |4k〉). (42)

Note that the trial basis functions do not transform into each
other by time reversal operator, so they do not form a Kramers
doublet. If follows that

|τ̃1k〉 = (C∗
11k + C∗

31k)√
2

|ψ1k〉 + (C∗
12k + C∗

32k)√
2

|ψ2k〉,
(43)

|τ̃2k〉 = (C∗
21k − C∗

41k)√
2

|ψ1k〉 + (C∗
22k − C∗

42k)√
2

|ψ2k〉.

The determinant of the matrix Ŝ(k) up to the numerical
prefactor is

det[Ŝ(k)] = (|C11k + C31k|2 + |C12k + C32k|2)

× (|C21k − C41k|2 + |C22k − C42k|2)

− |(C∗
11k + C∗

31k)(C21k − C41k)

+ (C∗
12k + C∗

32k)(C22k − C42k)|2. (44)
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We present the resulting dependence det[Ŝ(k)] on momentum
in Fig. 5. As we expected, the determinant does not vanish
anywhere within the BZ, which means we have succeeded in
constructing the wave functions |ψ̃nk〉 (34). In fact, we find
det[Ŝ(k)] = 1 for the non-Kramers basis set (43). Finally, we
note that, in agreement to the results of Ref. 45 obtained for the
Z2-odd phase in the Kane-Mele model, here our nonsingular
basis set also consists of the non-Kramers pair of states.
To summarize, we have demonstrated that the basis for the
Bloch wave functions can be chosen in such a way that no
singularities are generated across the BZ.

V. CONCLUSIONS

In this paper we have discussed the conditions for the
emergence of chiral surface states in semiconducting f -
electron systems. We considered an insulating state in heavy
fermion systems which appears at finite temperatures as a
result of strong interaction between the conduction and the
predominantly localized f electrons. Having started with
the periodic Anderson lattice model, we considered the
low-energy version of that model, which takes into account
the effect of Hubbard repulsion between the f electrons
on the level of renormalizations to the f -electron energy
and hybridization amplitudes. The key ingredient of our
model is momentum-dependent hybridization amplitudes. The
momentum dependence of the amplitudes originates from the
strong spin-orbit coupling interaction on f sites. The analysis
of the topological structure of the newly formed insulating state
is greatly simplified for the systems with simple cubic unit
cell. In that case, the form factors vanish at high symmetry

points of the BZ. This embeds the topological singularities
into the valence band, so that when the form factors have p-
or f -wave symmetry it immediately leads to the topological
insulator.

To describe the physics of Ce-based Kondo insulators, we
considered the simplest model containing single conduction
band hybridized with the Kramers doublet of f -states. We
find that there will always be chiral surface states when the
hybridization gap does not have nodes. The robustness of these
states with respect to disorder is determined by the position
of the renormalized f level relative to the bottom of the
conduction band. We then verify our results for both models
by calculating the entanglement entropy spectrum. Finally,
we also discuss how to choose the basis for constructing
Wannier wave functions, which are well defined everywhere
in the BZ. It is interesting to note that the required basis relies
on superposition between the conduction and the localized f

states. More importantly, this agrees with common view that a
heavy quasiparticle is the quantum many-body superposition
of conduction and f states.
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