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Topological and magnetic phases of interacting electrons in the pyrochlore iridates
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We construct a model for interacting electrons with strong spin-orbit coupling in the pyrochlore iridates. We
establish the importance of the direct hopping process between the Ir atoms, and use the relative strength of
the direct and indirect hopping as a generic tuning parameter to study the correlation effects across the iridates
family. We predict quantum phase transitions between conventional and/or topologically nontrivial phases. At
weak coupling, we find topological insulator and metallic phases. As one increases the interaction strength,
various magnetic orders emerge. The topological Weyl semimetal phase is found to be realized in these different
orders, one of them being the all-in/all-out pattern. Our findings establish the possible magnetic ground states for
the iridates and suggest the generic presence of the Weyl semimetal phase in correlated magnetic insulators on
the pyrochlore lattice. We discuss the implications for existing and future experiments.
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I. INTRODUCTION

Topological insulators1–3 (TIs) have provided theorists and
experimentalists alike with a new family of topologically
nontrivial systems. In these materials, a sufficiently strong
spin-orbit coupling (SOC) leads to a peculiar band structure
that can not be adiabatically deformed to that of a flat band
insulator without closing the bulk gap. This leads to robust
boundary states that display momentum-spin locking. The
materials in which these gapless helical surface states have
been observed are weakly interacting semiconductors, for
which the above theory was constructed. An inviting question,
therefore, relates to the kinds of quantum ground states that
would arise in the presence of interactions in these systems
or to interaction-driven TIs. For instance, several studies
examined various kinds of fractionalized TIs.4–10

In this context, transition-metal oxides with 5d

transition-metal elements may be ideal systems to search for
TIs and new topological phases in the presence of interactions.
In these systems, the strength of the interaction and that of the
SOC are comparable, providing a playground for the interplay
between two effects. In particular, the pyrochlore iridates
A2Ir2O7 have been suggested to host various topologically
nontrivial states.4,5,11–14 Here, A is a lanthanide or yittrium,
the size of which affects the effective bandwidth of the 5d

electrons of Ir via the Ir-O-Ir bond angle, thereby tuning the
effective strength of the interaction. Experiments on these
compounds reveal metal-insulator transitions upon variation
of temperature or chemical15 and external16 pressure, as well
as indications of magnetism.17,18

In this work, we present a Hubbard-type model for the
interacting electrons in the pyrochlore iridates and determine
the ground-state phase diagram using mean-field and strong-
coupling methods. We find that it is important to include both
the indirect hopping of 5d electrons of Ir through oxygens
and the direct hopping between Ir sites. This is because the
5d orbitals of Ir are spatially extended, and the nature of
the ground state is sensitive to the relative strength of these
hopping amplitudes. In the weakly interacting limit, both TIs
and (semi)metallic states are realized depending on the relative
strength of different hopping amplitudes. This is in contrast to

a previous work4 where only the indirect hopping process was
considered and only the TI phase was obtained in the large
SOC limit (with the ideal cubic crystal field). The interactions
between electrons lead to two different magnetically ordered
ground states in different parameter regions. In particular,
for intermediate interactions, the topological semimetal11,12,19

(TSM) state with Weyl-type fermions appears in both kinds
of antiferromagnetic (AF) phases. Our results suggest that the
TSM state and the related Mott insulating state can have differ-
ent magnetic ordering patterns depending on the choice of the
A-site ion or upon application of hydrostatic pressure, leading
to the possibility of quantum phase transitions in the iridates.

II. MODEL AND APPROACH

In the atomic limit, the oxygen octahedra surrounding the
Ir4+ ions create large cubic crystal fields that split the 5d

orbitals into t2g and eg multiplets. The five 5d electrons of
Ir4+ occupy the t2g levels, leaving the high-energy eg levels
empty. The angular momentum operator projected into the
t2g levels is effectively � = 1 with an extra negative sign,
i.e., Pt2g

LPt2g
= −Leff

�=1. The onsite SOC leads to a further
splitting into an effective pseudospin jeff = 1/2 doublet and
a jeff = 3/2 quadruplet, the former lying higher in energy.20

For sufficiently large SOC, the half-filled jeff = 1/2 doublets
form a low-energy manifold as the fully occupied jeff = 3/2
levels are sufficiently far from the Fermi level.

In going to a tight-binding description, we need to take
into account the different orientations of the local oxygen
octahedra at each of the four sites in the unit cell [see
Fig. 1(a)]. Previous studies4,14,21 considered nearest-neighbor
Ir-Ir hopping mediated by the oxygens. In this work, we also
include the direct hopping between the Ir atoms, which is
expected to be significant due to the large spatial extent of
iridium’s 5d orbitals. We consider only the π and σ overlaps
between the t2g orbitals, neglecting the usually smaller δ

overlap. This leaves us with two direct hopping parameters:
tσ and tπ . The resulting kinetic Hamiltonian reads as

H0 =
∑

〈Ri,R′i ′〉,αα′

(
T ii ′

o,αα′ + T ii ′
d,αα′

)
d
†
RiαdR′i ′α′ , (1)
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FIG. 1. (Color online) (a) Pyrochlore lattice of Ir atoms (large).
The oxygens (small) bridging the Ir’s in one unit cell are shown
together with the local axes they define. (b) Phase diagram of the
hopping Hamiltonian H0. We set toxy = 1. The dashed line is tπ =
−2tσ /3.

where R denotes the sites of the underlying Bravais fcc lattice
of the pryrochlore lattice of Ir’s, while i = 1, . . . ,4 labels the
sites within the unit cell. The operator dRi↑(↓) annihilates an
electron in the pseudospin ↑ (↓) state at site Ri. The two sets
of matrices To and Td correspond to the oxygen mediated4 and
direct hopping, respectively.

We include interactions via an onsite Hubbard repulsion
between iridium’s d electrons:

H = H0 + HU, (2)

HU = U
∑

Ri

nRi↑nRi↓, (3)

where nRiα is the density of electrons occupying the
|jeff = 1/2,α〉 state at site Ri, with α = ↑,↓. As
we are interested in the magnetic phases expected
at finite U , we perform a Hartree-Fock mean-field

decoupling HU → −U
∑

Ri(2〈 jRi〉 · jRi − 〈 jRi〉2), where
jRi = ∑

αβ=↑,↓ d
†
Riασ αβdRiβ/2 is the pseudospin operator,

the expectation value of which will be determined self-
consistently. We consider magnetic configurations preserving
the unit cell so that 〈 jRi〉 = 〈 j i〉, i = 1, . . . ,4, are the four
order parameters under consideration. These are directly
proportional to the local magnetic moment carried by the
d electrons. This follows from the fact that the projections
of the spin and orbital angular momentum operators onto
the jeff = 1/2 manifold are proportional to the pseudospin
operator: P̃ †SP̃ = − j/3 and P̃ †LP̃ = −4 j/3 with P̃ =
Pt2g

P1/2, where Pt2g
projects onto the t2g subspace and P1/2

projects onto the jeff = 1/2 subspace. This allows us to
treat 〈 j i〉 as the spontaneous local magnetic moment of the
electrons.

III. PHASE DIAGRAM

A. Metal and topological insulator at U = 0

We first examine the model at U = 0. Figure 1(b) shows
the resulting phase diagram in terms of tσ and tπ (we set
toxy = 1 throughout). Notice that both insulating and metallic
phases exist. By virtue of the inversion symmetry of the
crystal, we use the Fu-Kane formulas22 for the Z2 invariants
in terms of the parity eigenvalues of the occupied states at
the time-reversal-invariant momenta (TRIMs) to determine
the topological class of each insulating phase. We find that
both insulating phases are TIs with indices (1; 000). The TI
phase adiabatically connected to tσ = tπ = 0 corresponds to
the large spin-orbit limit of Ref. 4 and is robust to the inclusion
of weak direct hopping. As one tunes the direct hoppings, a
metallic phase eventually appears by means of a gap closing
at the � point. In the metal, the degeneracies at � become
2-4-2 compared to 4-2-2 in the TI (with time-reversal and
inversion symmetries, all bands are doubly degenerate). A
similar situation occurs in Refs. 14 and 21, where a trigonal
distortion of the oxygen octahedra drives the transition, not
direct hopping as is the case here. The metallic phase is, strictly
speaking, a semimetal characterized by a point Fermi surface.
Finite pockets can be generated by including very weak
next-nearest-neighbor (NNN) hopping, as we have explicitly
verified. Although we do not consider trigonal distortions here,
the direct hoppings alone can lead to qualitatively similar
effects, e.g., the metallic phase resulting from the change in
degeneracies at the � point.

B. Magnetic and topological phases at U > 0

We now turn to the U > 0 case. For convenience, we
restrict our attention to a one-dimensional cut in the (tσ ,tπ )
space defined by tπ = −2tσ /3, as shown in Fig. 1(b). This is
physically motivated since we expect tσ and tπ to have opposite
signs, with the σ overlap being the strongest. Moreover, the
cut is representative as it intersects all the phases. In obtaining
the finite U diagram, we performed an unconstrained analysis
sampling over the space of all possible magnetic configurations
preserving the unit cell.

The resulting ground-state phase diagram appears in Fig. 2.
First, we note that the TI is more resilient to the magnetic
instability than the metal, as expected due to the presence of the
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FIG. 2. (Color online) Mean-field phase diagram (toxy = 1) as
a function of U , the Hubbard coupling, and the direct hopping
parameters. The magnetic transitions from the TIs (metal) are first
(second) order.

bulk gap in the former. Second, the magnetic phase transition
resulting from increasing U in the metal (TI) is second (first)
order. Also, the magnetic order emerging from the TIs differs
from the one found upon increasing U in the metal. In the
latter case, we find an all-in/all-out configuration, while in
the former, the ground state is threefold degenerate (modulo
the trivial degeneracy j → − j ): all three states result from the
all-in/all-out state by performing π/2 rotations on the moments
in the unit cell. These rotations occur within either one of the
planes bisecting the three triangles meeting at each corner
of the tetrahedron. The order emergent in both TI states is the
same. In Sec. IV, we discuss how the different magnetic orders
and the position of the transitions are actually connected to the
corresponding ordering in the spin model obtained at large
U : as tσ is tuned, the induced Dzyaloshinskii-Moriya (DM)
interaction alternates between the only two symmetry-allowed
possibilities on the pyrochlore lattice, leading to different
ordering.

C. Topological semimetal

By examining the spectra of the ordered phases, we discover
that the so-called topological semimetal (TSM) is realized23

in the range tσ � −1.67 and for a finite window of U .
This semimetallic phase has a Fermi “surface” composed of
points, each with a linearly dispersive spectrum of Weyl or
two-component fermions, and may be considered as a three-
dimensional (3D) version of the Dirac points of graphene. The
Hamiltonian near one such Weyl point takes the form

H = v0 · q +
3∑

i=1

vi · qσi , (4)

where q = k − k0 is the deviation from the Weyl point at k0.
The Pauli matrices σi represent the two bands involved in the
touching, not (pseudo)spin. One can assign a chiral “charge” to
these fermions via the triple product of the three velocities: c =
sgn(v1 · v2 × v3). The massless nature of the two-component
Weyl fermions is robust against local perturbations, which is
not the case in two dimensions (2D). As explained in Ref. 11,

FIG. 3. (Color online) Evolution of the spectrum as a function of
U . At intermediate U , in (a), we can see a Weyl point along the � − L

line, while in (b), the spectrum naively seems insulating because the
Weyl points lie away from high-symmetry k points. The dashed line
is the Fermi level.

the only way to introduce a gap is to make two Weyl fermions
with opposite chirality meet at some point in the Brillouin zone
(BZ). For this reason, they are topological objects (see also the
discussion below regarding the surface states). Further details
relating to the TSM can be found in Refs. 11,12,19,24, and 25.

The TSM appears in for both AF orders. In both cases, we
find a total of eight Weyl points coming necessarily in four
inversion-symmetry related pairs. The location and migration
of these Weyl points depends on the magnetic order. Let us
first examine the TSM phase present in the all-in/all-out state.
In this case, the eight Weyl points are born out of the quadratic
touching at the � point as the local moments spontaneously and
continuously acquire a finite value with increasing U > Uc.
Each pair of Weyl points lies on one of the four high-symmetry
lines joining � to the four L points, as can be seen in Fig. 3.
For this reason, we only get 8 touchings, in contrast to Ref. 11,
where 24 Weyl points are obtained. In their case, they live off
the high-symmetry lines so that each point is tripled by the
threefold rotational symmetries about the � − L lines. Weyl
points of opposite chirality annihilate at the four L points as U

is increased. As they annihilate and create a gap, the parities
of the highest occupied states at these TRIMs change sign.

Let us now consider the TSM arising from the TI, where
we again have eight Weyl points. The major difference is that
they do not occur along high-symmetry lines, as can be seen
in Fig. 3. We do not get 24 Weyl points because the magnetic
order breaks the threefold rotational symmetries, which are
preserved by the all-in/all-out state. We have explicitly located
the Weyl points by looking at both the spectrum and density
of states, which shows a characteristic (E − EF )2 scaling.

The Weyl points do not annihilate at TRIMs, in contrast
to the noncollinear TSM. As a result, there is no parity flip
associated with the termination of the TSM phase when, upon
increasing U , the system becomes insulating.
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FIG. 4. (Color online) Spectrum for a slab that is finite along the
(110) direction, with tσ = 0.25 and U = 2.8, which corresponds to a
TSM. The inset shows the 2D BZ including the Fermi arcs connecting
the projections of the Weyl points, where half of the Fermi arcs are
located on the top surface, while the rest are on the bottom one. The
blue (red) [dark (light)] points correspond to Weyl bulk points with
chiral charge +1/ − 1.

Surface states: The nontrivial band topology of the TSM
[each Weyl point is a monopole of the U(1) Berry connection]
leads to chiral surface states on certain surfaces, in analogy
with the TI. In contrast with the latter, the surface states of
the former do not form closed Fermi surfaces, but rather open
Fermi arcs. As argued in Ref. 11, the Fermi arcs join the
projections of bulk Weyl points of opposite chirality. As bulk
Weyl points forming a pair are made to move toward each
other by increasing U , the corresponding Fermi arc shrinks,
collapses to a point, and disappears.

In the TSM found at large tσ , which we use to illustrate
the Fermi arcs, there are no surface states along surfaces
perpendicular to the (100), (010), or (001) directions. For these
surfaces, the projection process onto the 2D BZ maps 3D Weyl
points of opposite chirality onto the same 2D k point. This leads
to the absence of gapless surface states emanating from the 2D
k point in question. For a surface perpendicular to the (110)
direction, however, the projection is injective and Fermi arcs
exist, as we illustrate in Fig. 4.

IV. STRONG-COUPLING EXPANSION

In this section, we discuss the large-U limit of our Hubbard
Hamiltonian Eq. (2). We show how the effective spin-1/2
model obtained in that limit sheds light on the orders found
in the mean-field calculation as well as on the location of
the phase transitions. In taking the limit where U is much
larger than all hopping amplitudes (toxy,tσ ,tπ ), we can use
second-order perturbation theory to obtain the low-energy spin
Hamiltonian

H ′ =
∑

ij

[
J Si · Sj + Dij · (Si × Sj ) + Sa

i �ab
ij Sb

j

]
, (5)

where the terms are, in order, the AF Heisenberg coupling,
the Dzyaloshinskii-Moriya interaction, and the anisotropic
exchange. These correspond to the trace, antisymmetric and
symmetric traceless parts of the spin-spin interaction matrix,
respectively. Let us focus on the bond between sites 1 and 2
[see Fig. 5(a)], as the spin interactions for all other bonds can
be determined using the crystal symmetries. We express the
hopping Hamiltonian between these two sites as

Ht = −c
†
1αhαβc2β − c

†
2αh

†
αβc1β, (6)

FIG. 5. (Color online) (a) D vectors corresponding to the “in-
direct” DM interaction. The “direct” type is obtained by changing
the sign of all vectors. (b) tvy as a function of the hopping strength
tσ . The sign of tvy determines the nature of the DM interaction:
tvy > 0 (tvy < 0) corresponds to the “indirect” (“direct”) type. The
red dots correspond to the metal-insulator transitions at U = 0, which
coincide with the points at which the nature of the magnetic order
changes for U above the ordering threshold.

where hαβ is a 2 × 2 complex matrix. Time-reversal symmetry
restricts the matrix elements as follows:

h = tσ 0 + iv · σ , (7)

where t and v are real, and σ 0 is the identity matrix. We note
that in order to derive the spin Hamiltonian, Eq. (5), we want
to use the same quantization axes for both sites, i.e., we want
the spin operators to be defined in the same coordinate system.

Given the hopping matrix in the form Eq. (7), it can be
shown quite simply that the Heisenberg, DM, and anisotropic
terms read as

J
U

4
= t2 − v2/3, (8)

D
U

4
= 2tv, (9)

�ab U

4
= 2(vavb − δabv2/3). (10)
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If we turn to our microscopic hopping Hamiltonian, for the
(1,2) bond we get

t = a + btσ , (11)

v = vy(0,1, − 1) with vy = a′ + b′tσ , (12)

where we have set toxy = 1 and tπ = −2tσ /3, as above. The
coefficients a,b,a′,b′ are positive rational numbers:

a = 130/243 ≈ 0.53, b = 785/2916 ≈ 0.27, (13)

a′ = 28/243 ≈ 0.12, b′ = 125/729 ≈ 0.17. (14)

We note that the v vector, hence D, is parallel to the opposite
bond (3,4) [see Fig. 5(a)]. This is a generic property of the
pyrochlore lattice: as a consequence of crystal symmetry, a D
vector for any given bond must be parallel to its opposite bond
(in the sense that the four sites form a tetrahedron).26 Moreover,
if we know the DM vector for a single bond, crystal symmetries
determine the DM vectors for all other bonds in the lattice.
Hence, there are only two possible sets of DM vectors {Dij },
called “direct” and “indirect.” They are determined by the sign
of tvy for bond (1,2). (We could have picked another bond
as the representative of the whole set.) The indirect (direct)
type is defined as having the D vector for the bond between
sites 1 and 2 point along ±(0,1, − 1). See Fig. 5(a) for the
configuration of D vectors corresponding to the indirect DM
interaction.

The nearest-neighbor Heisenberg model together with a
DM term on the pyrochlore lattice was studied by classical
Monte Carlo and mean-field methods.26 First, the Monte Carlo
study predicted a q = 0 ordering, justifying the ansatz used in
the main text. Second, it was found that different magnetic
orders arise depending on whether the DM interaction is of
direct or indirect type. For the direct type, the configuration was
found to be unique (up to time reversal): the all-in/all-out order
mentioned above. Whereas for the indirect type, a continuous
manifold of degenerate orders was found, containing both
coplanar and noncoplanar configurations.

For the bond (1,2), we can extract from our microscopic
Hamiltonian the value of the D vector

D4/U = 2tvy(0,1, − 1). (15)

Hence, if tvy = (a + btσ )(a′ + b′tσ ) > 0, we have an indirect
exchange, otherwise it is direct. It is easy to see that the
D vector changes direction when t = 0 and vy = 0, which
correspond to tσ ≈ −1.99 and tσ ≈ −0.67, respectively. For
tσ between these values, the DM interaction is of direct
type, otherwise it is indirect. The behavior of the DM
interaction as a function of the direct hopping tσ is shown
in Fig. 5(b). We note that the first value (−0.67) is almost
equal to the value at which the U = 0 ground state goes
from an insulator to a (semi)metal tσ = −0.65. The magnetic
orders we find for tσ > −0.65 belong to the continuous
manifold corresponding to the indirect DM term, while it
is all-in/all-out when tσ < −0.65, not too negative. Hence,
the magnetic orders we get from our mean-field calculation
match those obtained in the strong-coupling limit. The types
of magnetic orders at intermediate U are found to be related
to the type of DM interaction obtained in the large-U spin
model.

We further note that the DM interaction becomes of indirect
type for tσ < −1.99, which is sufficiently close to the second
transition in the U = 0 ground state, from the (semi)metal
to the TI, which happens at tσ = −1.67. For tσ < −1.67, we
get again the magnetic orders expected for an indirect DM
interaction, again consistent with the large-U limit. The bigger
discrepancy between the point at which the D vector changes
sign and the value of tσ at which we observe a different ordering
is probably due to the fact that the anisotropic exchange
increases in importance as tσ is increased, while it is smaller
than the DM interaction near the first transition in the vicinity
of tσ = 0. Hence, in that regime, we do not expect as good
of an agreement with a spin model neglecting anisotropic
exchange.

V. DISCUSSION

We have constructed a minimal (but sufficiently realistic)
model to describe quantum ground states that may arise in
the pyrochlore iridates. While not appreciated in previous
works, it is shown that the inclusion of both indirect and
direct hopping processes of 5d electrons of Ir is important
in describing different magnetically ordered states in the
presence of interactions and their parent noninteracting ground
states. A portion of our phase diagram is broadly consistent
with a recent ab initio calculation,11 where upon increasing
U , one encounters a metal, a topological semimetal in the
all-in/all-out magnetic configuration, and finally a magnetic
insulator. Since different choices of A-site ions in A2Ir2O7

lead to changes in both hopping amplitudes, our results
suggest that different magnetic and topological ground states
such as a topological insulator, the all-in/all-out and related
AF states, and various kinds of topological semimetals
may arise in a variety of pyrochlore iridates. High-pressure
experiments on these compounds may reveal the intimate
connection between the magnetic order in the stronger cor-
relation regime and TI/metal in the weak correlation limit,
as theoretically explored in this work. For instance, recent
transport measurements under high pressure16 on Eu2Ir2O7

indicate a continuous transition from an insulating ground
state to a metallic one, mimicking chemical pressure.15 This
could be connected to our continuous TSM-metal transition.
Also, as the existence of the TSM depends crucially on
the magnetic order, it would be desirable to examine the
effect of the magnetic fluctuations near the (semi)metal-
TSM transition on thermodynamic and transport proper-
ties.
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