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Comprehensive theoretical and numerical studies of the effects of dispersion and absorption on the
Anderson localization of classical waves in weakly disordered, one-dimensional stacks composed of dispersive
metamaterials and normal materials are presented. An asymptotic analysis for studying the effects of dispersion
and absorption is developed. It is shown that the localization of waves in random stacks composed entirely
of either metamaterial or normal dielectric layers is completely suppressed at frequencies where the magnetic
permeability or the dielectric permittivity is zero. In mixed stacks of alternating layers of normal and metamaterials
with disorder present in either the dielectric permittivity or the magnetic permeability, localization is substantially
suppressed not only at these frequencies but in essentially wider frequency ranges. When both the permittivity
and the permeability are random, the localization behavior is similar to that in monotype stacks. At the transition
from a double negative metamaterial to a single negative metamaterial, the transmission length drops dramatically
in a manner that might be useful in optical switching. Polarization effects are also considered and it is shown that
localization is suppressed at the Brewster angle, in a manner dependent on both the polarization and the nature
of the disorder. Theoretical predictions are in excellent agreement with numerical calculations.
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I. INTRODUCTION

Anderson localization1 is one of the most fundamental
concepts in physics.2 Localization of light in random media
has been investigated intensively during the last few decades,
with one-dimensional (1D) strong localization receiving
the most comprehensive study. Recently, the emergence
of metamaterials—a new class of artificial materials with
negative refractive index—has sparked considerable interest
from researchers and engineers; see, for example, Refs. 3–7.
Metamaterials are also referred to as double-negative materials
(DNMs), associated with permittivity and permeability whose
real parts are both negative, in contrast with single-negative
materials (SNMs), in which either the real part of the dielectric
permeability or the real part of the magnetic permittivity is
negative.

Since, today, all available metamaterials are manmade,
they usually contain technological imperfections or faults.
The first consideration of manufacturing defects in magnetic
metamaterials showed that imperfections could have a strong
impact on propagation.8 Further studies showed that Anderson
localization in metamaterials is suppressed, either partially or
completely, compared to localization in conventional materi-
als. A rich vein of new phenomena related to such suppression
has been revealed recently. In one-dimensional stacks com-
prising alternating layers of normal and metamaterials, with
only thickness disorder, delocalization can occur at a single
frequency at which the impedances of layers match.9 Disorder
in the dielectric permittivity of the layers (in the absence of
thickness disorder) also gives rise to a startling suppression
of localization at long wavelengths.10 This suppression is so

strong that there is a change in the functional dependence
l ∼ λκ of the localization length at long wavelengths. From the
well-known, classical value of κ = 2, this exponent increases
to a much larger value, estimated in Ref. 10 as κ ≈ 6, i.e., the λ6

anomaly. In mixed stacks with weak, long correlated disorder
of the layer thicknesses, the frequency regions corresponding
to complete delocalization (pass bands) are essentially wider
than those for conventional right-handed stacks.11 Complete
delocalization occurs at special frequencies and special angles
of incidence corresponding to the Brewster anomaly.12

While further studies12–14 confirmed the λ6 anomaly, more
detailed numerical calculations for very long stacks15 showed
that the exponent κ may increase to larger values, up to
κ ≈ 8.78, for a stack of approximately 1012 layers. As is
reported in Ref. 12, off-axis incidence, by a a small angle, can
affect this functional dependence. However, the introduction of
correlation in the disorder has little effect.14 The consideration
of layers with different thicknesses,16 or the introduction
of the layer thickness disorder, in addition to the material
parameters disorder, strongly enhances localization.15,17 In
Ref. 17 it is shown that because of specific, nonuniform phase
distribution, in the second order of disorder, localization is
completely destroyed for long waves, and that fourth-order
calculations are required. Eventually, in a recent paper,18 the
long-wave dependence of l ∼ λ8 was analytically established,
showing that the anomaly which was discovered numerically in
Refs. 10 and 15 was actually a λ8 anomaly.

Localization in SNMs has also been considered,19 with
it being shown that the localization length can be smaller
than the decay length of the corresponding periodic structure.
The suppression of localization has been reported also in
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one-dimensional metamaterial superlattices with thickness
disorder.12

All metamaterials inherently exhibit dispersion and absorp-
tion, and this has to be taken into account in any realistic study
of localization. While the dispersive effects on localization
in normal materials have been considered in Ref. 20, the
corresponding study for metamaterials has only started.13,14

The first of these papers is devoted to light propagation
through one-dimensional photonic disordered quasiperiodic
superlattices, composed of alternating layers with random
thicknesses of air and a dispersive metamaterial. In the
second one, the effects of disorder correlations on light
propagation and Anderson localization in one-dimensional
dispersive metamaterials are studied.

Of particular interest are dispersive materials, in which
real parts of the dielectric permittivity or magnetic per-
meability may vanish at some frequencies. Structures con-
taining metamaterials with ε ≈ 0 have been studied most
intensively.21–23 It has been shown in particular that energy
may propagate through ultranarrow waveguide channels in
such structures.24,25 It is thus interesting and important to in-
vestigate localization in samples with ε-near-zero (ENZ), i.e.,
with ε ≈ 0, and in μ-near-zero (MNZ) materials, with μ ≈ 0.

In this paper, we examine transport and localization in
one-dimensional disordered systems with different types of
dispersive metamaterials, and predict a new instance of
delocalization. We prove theoretically, and through numerical
simulations, that, in systems with ε = 0 or μ = 0, the field is
delocalized in the presence of either dielectric permittivity dis-
order, magnetic permeability disorder, or thickness disorder.
This is in contrast to delocalization at the Brewster angle that
occurs in the presence of solely thickness disorder.

In Sec. II, we describe the theoretical model and present
the asymptotic analysis based on the extension of the approach
developed in Ref. 15. The analysis of delocalization in ENZ or
MNZ disordered stacks and the study of polarization effects
are presented in Secs. II C 1 and II C 2, respectively. Numerical
simulations and comparisons with the asymptotic predictions
are presented in Sec. III, comprising the characterization of
localization in monotype stacks (Secs. III A and III B) and in
mixed alternating stacks (Sec. III C).

II. THEORETICAL CONSIDERATION

A. Description of the model

We consider a one-dimensional stack which consists of an
even number N of layers. The stack may be either monotype,
in which case each layer is either a metamaterial (A) layer or
a normal material (B) layer, or mixed, comprising alternating
A and B layers, as shown in Fig. 1. All layers have the same
thickness d = 0.003 m, which is consistent with manufactured
metamaterials.26

The dielectric permittivity and the magnetic permeability
of the metamaterial layers as functions of a circular frequency
f are described by the Lorentz oscillator model

ε(f ) = 1 − f 2
ep − f 2

e

f 2 − f 2
e + iγf

, (1)
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FIG. 1. (Color online) The geometry of the model. θ denotes the
angle of incidence from free space.

μ(f ) = 1 − f 2
mp − f 2

m

f 2 − f 2
m + iγf

. (2)

Here fm and fe are the resonance frequencies and γ is
the absorption parameter. In our model, disorder enters the
problem through random resonance frequencies so that

fe = f̄e(1 + δe), fm = f̄m(1 + δm), (3)

where f̄e,m = 〈fe,m〉 are the mean resonance frequencies (with
the angle brackets denoting ensemble averaging) and δe,m are
independent random values distributed uniformly in the ranges
[−Qe,m,Qe,m]. The characteristic frequencies fmp and fep are
nonrandom. Therefore, in lossless media (γ = 0), both the
magnetic permeability and the dielectric permittivity vanish
with their mean values, ε̄(f ) = 〈ε(f )〉 and μ̄(f ) = 〈μ(f )〉, at
frequencies f = fep and f = fmp, respectively; i.e.,

μ(fmp) = μ̄(fmp) = 0, ε(fep) = ε̄(fep) = 0. (4)

Following Refs. 26 and 27, in our numerical calculations
we choose the values of characteristic frequencies fmp =
10.95 GHz, fm0 = f̄m = 10.05 GHz, fep = 12.8 GHz, fe0 =
f̄e = 10.3 GHz, and γ = 10 MHz, which fit the experimental
data given in Ref. 26. That is, we are using a model based on ex-
perimentally measured values for the metamaterial parameters.
Then we choose the maximal widths of the distributions of the
random parameters δe,m as Qe,m � 5 × 10−3, corresponding
to weak disorder.

We focus our study on the frequency region 10.40 GHz <

f < 11.00 GHz. In the absence of absorption and disorder, for
these frequencies the dielectric permittivity and the magnetic
permeability of the metamaterial layers vary over the intervals
−26.9 < ε < −2.9 and −1.64 < μ < 0.055. The refractive
index is negative in the frequency range 10.40 GHz < f <

fmp = 10.95 GHz, as shown in the inset of Fig. 2. However,
at fmp = 10.95 GHz, the magnetic permeability changes sign
and the metamaterial changes from being double negative
(DNM) to single negative (SNM). As we show later, such
changes have a profound effect on the localization properties.

In generic normal dielectric layers with a similar dispersion,
the values of the dielectric permittivity and the magnetic
permeability are set to be −ε∗(f ) and −μ∗(f ), respectively,
where ε(f ) and μ(f ) are given by Eqs. (1) and (2) and
the asterisk (∗) denotes complex conjugation. In the region
10.40 GHz < f < 10.95 GHz, the refractive index is positive
and at higher frequencies 10.95 GHz < f < 11.00 GHz the
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magnetic permittivity becomes negative and so the material
becomes a SNM.

In Sec. III B 2, we consider a specific model for which
the dielectric permittivity coincides with that of normal ma-
terial, −ε∗(f ), in the range of frequencies 10.40 GHz < f <

11.00 GHz, while the magnetic permeability coincides with
−μ∗(f ) only in the region 10.40 GHz < f < 10.95 GHz, and
at higher frequencies, 10.95 GHz < f < 11.00 GHz, is equal
to μ(f ). As a consequence of this exotic choice, the refractive
index is positive in the entirety of the studied frequency region,
aside from f = 10.95 GHz at which it vanishes.

B. Analytical treatment

In what follows, we study the transmission of a plane wave
incident on a random stack from free space, as shown in Fig. 1.
The plane wave may be either s or p polarized where we adopt
the conventional definition for polarization, in which s and p

polarizations refer respectively to the cases where the electric
and magnetic fields are perpendicular to the plane of incidence.
Due to Anderson localization, the transmission coefficient
TN of a plane wave propagating through a sufficiently long
stack exponentially decays with its length Nd. This decay is
described by the transmission length lT , measured in units of
the mean thickness d of each layer (for details see Ref. 15),
and which we define as

lT (N ) = − N

〈ln |TN |〉 . (5)

In the limit N → ∞, the transmission length lT coincides with
the localization length l:

l = lim
N→∞

lT .

Accordingly, in numerical simulations for calculating the
localization length, it is necessary to generate random real-
izations that are sufficiently long for the condition N 	 lT to
hold.

In Refs. 10, 15 and 28 an effective method for studying the
transport and localization in random stacks composed of the
weakly reflecting layers has been developed. In the dispersive
case considered in the present paper, the reflection from a layer
located in free space is not necessarily weak, in which instance
the method is inapplicable.

However, as localization properties of a random stack are
intrinsic properties of the stack, they cannot, and must not,
depend on the material properties of the exterior medium, i.e.,
free space in this case. Accordingly, the localization length can
be calculated from

l = − lim
N→∞

2N

ln |TN |2 = − lim
N→∞

2N

ln |T̂N |2 , (6)

where T̂N is the transmission coefficient of a stack embedded
in an exterior medium with permittivity and permeability given
by the mean values of ε and μ, respectively. The connection to
the outside medium through the “leads” (a circuit theory term
borrowed to describe thin coupling layers) can only change the
coupling conditions to the random stack through the angle of
incidence. The proof of this statement is given in the Appendix
to this paper.

Therefore, instead of vacuum, we consider that the layers
are embedded in an effective medium with the dielectric
permittivity ε̄(f ) ≡ 〈ε(f )〉 and magnetic permeability μ̄(f ) ≡
〈μ(f )〉. In such circumstances, the reflection coefficient is
always small and we may apply the method derived in Refs. 10,
15 and 28. It is important to note that while in the localized
regime the input and output media are of no significance, they
do play a crucial role when localization breaks down (see the
following Sec. II C).

Following Refs. 10 and 15 we employ the exact recurrence
relations for the total transmission (Tn) and reflection (Rn)
coefficients

Tn = Tn−1tn

1 − Rn−1rn

, (7)

Rn = rn + Rn−1t
2
n

1 − Rn−1rn

, n � 2, (8)

with the initial conditions T0 = 1 and R0 = 0. Here rn

and tn are the reflection and the transmission coefficients
of the single nth layer embedded in the effective medium
with mean dielectric permittivity ε̄(f ) ≡ 〈ε(f )〉 and magnetic
permeability μ̄(f ) ≡ 〈μ(f )〉. That is,

rn = ρn(1 − e2iβn )

1 − ρ2
ne

2iβn
, (9)

tn =
(
1 − ρ2

n

)
eiβn

1 − ρ2
ne

2iβn
. (10)

In Eqs. (9) and (10), βn = kdνn cos θn, νn = √
εnμn, k is the

free-space wave number k = 2π/λ0, and the interface Fresnel
reflection coefficient ρn is given by

ρn = Zb cos θb − Zn cos θn

Zb cos θb + Zn cos θn

. (11)

The impedances Zb and Zn are

Zb =
{√

μ̄/ε̄ p polarization,
√

ε̄/μ̄ s polarization,
(12)

Zn =
{√

μn/εn p polarization,
√

εn/μn s polarization.
(13)

The angles θb and θn satisfy Snell’s law

νn sin θn = ν̄ sin θb = sin θa, ν̄ = √
ε̄μ̄, (14)

sin θb = sin θa√
ε̄(f )

√
μ̄(f )

, (15)

where θa is the external angle of incidence from free space.
These expressions are equally applicable for both normal and
metamaterial slabs29 with the corresponding choice of the
square root branch. Note, however, that for a fixed angle of
incidence θa [from free space (air)], it follows that the angle
θb will vary with frequency, due to dispersion (15).

In the limit of weak disorder (|rn| � 1), Eqs. (7) and (8)
can be linearized and written as

ln Tn = ln Tn−1 + ln tn + Rn−1rn, (16)

Rn = rn + Rn−1t
2
n , n � 2. (17)

For this case, the localization length has been calcu-
lated in Ref. 15 for monotype-stack (composed of either
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double-negative metamaterial layers or normal material layers)
samples

1

l
= −Re 〈ln tn〉 − Re

〈rn〉2

1 − 〈
t2
n

〉 , (18)

and for mixed stacks of alternating normal and metamaterial
layers,

1

l
= −Re 〈ln tn〉 − |〈rn〉2| + Re

(〈rn〉2
〈
t2
n

〉∗)
1 − ∣∣〈t2

n

〉∣∣2 . (19)

C. Suppression of localization in disordered stacks

Dispersion affects dramatically the transport properties of
the disordered medium. In particular, the localization can be
suppressed either at some angle of incidence or at a selected
frequency, or even in a finite frequency range. The first two
cases are studied below (Secs. II C 1 and II C 2), while the third
one is considered in Sec. III C.

1. Power decay of the transmission coefficient at normal
incidence in the vicinity of μ- or ε- near-zero points

The localization length in a lossless, nondispersive, mono-
type meta- or normal-material random stack increases in the
long-wave region as ∼λ2; see Ref. 15. In the presence of
dispersion, the first term in Eq. (18) is dominant, and the
long-wave asymptotic of the localization length manifests the
same behavior according to

1

l
= π2d2

2λ2(f )

( 〈μ2〉
〈μ〉2

+ 〈ε2〉
〈ε〉2

− 2

)
, (20)

in which we have omitted the subscript n.
The distinctive property of dispersive media is that the

wavelength λ(f ) in the medium given by

λ(f ) = λ0(f )√
ε(f )μ(f )

(21)

is frequency dependent, and can be large even when the
wavelength of the incident signal, λ0(f ) = 2π/k = c/f , is
small.

Accordingly, the inverse localization length

l−1 ∝ f 2ε(f )μ(f ) (22)

becomes small not only at low frequencies f → 0 but also
in the vicinity of μ- or ε-zero points. For example, as
the frequency approaches the μ-zero point from below, i.e.,
f → f −

mp, in a monotype stack of random metamaterial layers,
μ(f ), for any realization, is proportional to the difference
(fmp − f ) and the expression for localization length diverges
as (fmp − f )−1. Formally, this divergence can be treated as
delocalization; however, the limiting value 1/l = 0 means
nothing but the absence of exponential localization. Moreover,
when the localization length becomes larger than the size
of the stack, ballistic transport occurs and the transmission
coefficient is determined by transmission length, (5), rather
than by the localization length.

To calculate the transmission coefficient for this case we
consider, for the sake of simplicity, a stack with only ε disorder.

Here the transfer matrix of the nth layer at f = fmp has the
form

Tn ≡ T (εn) =
(

1 + εn εn

−εn 1 − εn

)
, εn = ikdεn

2
.

As a consequence of the easily verified property

T (ε1)T (ε2) = T (ε1 + ε2), (23)

it follows that the stack transfer matrix T is

T =
N∏

n=1

T (εn) =
[

1 + E E
−E 1 − E

]
,

where

E = ikL

2

1

N

N∑
n=1

εn, L = Nd. (24)

In a sufficiently long stack, E ≈ 1
2 ikLε̄ and the transmittance

T = |T11|−2 is given by

T = 1

1 + (
kLε̄(f )

2

)2 . (25)

Thus, at the frequency fmp, the transmittance of the sample is
not an exponentially decreasing function of the length L (as is
typical for 1D Anderson localization). It decreases much more
slowly, namely, according to the power law T ∝ L−2.

There are two physical explanations for the delocalization
described above. First, at a μ-zero point (f = fmp), the
refractive index νn vanishes together with the phase terms
βn = kdνn cos θn across the layer, thereby weakening the
interference, which is the main cause of localization. Second,
the effective wavelength inside the stack tends to infinity when
μ → 0 and exceeds the stack length. Obviously, such a wave
is insensitive to disorder and therefore cannot be localized.

In the limit as the frequency approaches the μ-zero
frequency, from above, i.e., f → f +

mp, the medium is single
negative and εμ < 0. For frequencies f not too close to fmp,

the radiation decays exponentially inside the sample due to
tunneling, and in the absence of dissipation the decay rate is

l = 1

kd
√−〈μ〉〈ε〉 . (26)

Thus, as we approach the μ-zero frequency from the right,
the formally calculated localization length diverges as l ∝
(f − fmp)−1/2, i.e., much more slowly than for the left-hand
limit for which l ∝ (fmp − f )−1. The transport properties in
the vicinity of the ε-zero frequency fep can be considered
in a similar manner. Waves are also delocalized in the more
exotic case when both dielectric permittivity and magnetic
permeability vanish simultaneously. The vanishing of both μ

and ε simultaneously can happen at Dirac points in photonic
crystals.30

The use of off-axis incidence from free space for fre-
quencies for which μ or ε are zero is not an appropriate
mechanism for probing the suppression of localization. In such
circumstances, tunneling occurs and the localization properties
of the stack are not “accessible” from free space. Nevertheless,
suppression of localization can be revealed using an inter-
nal probe, e.g., by placing a plane-wave source inside the
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stack, or by studying the corresponding Lyapunov exponent.
Both approaches show total suppression of localization at
the frequencies at which dielectric permittivity or magnetic
permeability vanish.

In such circumstances, each layer which is embedded
in a homogeneous medium with material constants given
by the average values of the dielectric permittivity and
magnetic permeability is completely transparent, with this
manifesting the complete suppression of localization. However
the “delocalized” states at the zero-μ or zero-ε frequencies are
in a sense trivial, corresponding to fields which do not change
along the direction normal to the layers.

2. Brewster anomaly

We now consider another example of the suppression of
localization, this time related to the Brewster anomaly. It has
been shown in Ref. 28 that in a one-dimensional nondispersive
mixed stack with only thickness disorder, delocalization of
p-polarized radiation occurs at the Brewster angle of inci-
dence. At this angle, the Fresnel coefficient ρ [Eq. (11)] and,
therefore, the reflection coefficient [Eq. (9)] as well, vanish for
any frequency, thus making each layer completely transparent.

In the presence of dispersion, the same condition ρ = 0
leads to more intriguing results. In this instance, frequency-
dependent angles, at which a layer with the dielectric permit-
tivity ε(f ) and magnetic permeability μ(f ) embedded in the
effective medium with mean dielectric permittivity ε(f ) and
magnetic permeability μ(f ) becomes transparent, exist not
only for p polarization but also for an s-polarized wave. This
means that the Brewster anomaly occurs for both polarizations,
with the corresponding angles, θp and θs, being determined by
the conditions

tan2 θp = ε(εμ − εμ)

ε(εμ − ε μ)
, (27)

tan2 θs = μ(εμ − εμ)

μ(εμ − μ ε)
. (28)

It can be shown that the right-hand sides of these equations
(the Brewster conditions) always have opposite signs. From
Eqs. (27) and (28) one can find either the Brewster angle for
a given frequency or the Brewster frequency for a given angle
of incidence.

While for a stack with only thickness disorder, the condition
ρ = 0 can be satisfied for all layers simultaneously, when
ε and/or μ fluctuate, the conditions (27) or (28) define
the frequency-dependent Brewster angles which are slightly
different for different layers. These angles occupy an interval
within which both homogeneous or mixed stacks are not com-
pletely transparent, but have anomalously large transmission
lengths.28,31

When only the dielectric permittivity is disordered and μ =
μ, the Brewster conditions (27), (28) simplify to

tan2 θs = −1, (29)

tan2 θp = ε

ε
≈ 1. (30)

Hence, in the presence of only permittivity disorder, the Brew-
ster condition is satisfied only for p polarization. Since the
disorder is weak, i.e., ε ≈ ε, the Brewster angle of incidence

from the effective medium is θp ≈ π/4. The corresponding
angle from free space, θa , is related to the Brewster angle
θp through Snell’s law, and for the given θa , the Brewster
frequency fp follows from√

ε(fp)μ(fp) = sin θa

sin θp

=
√

2 sin θa. (31)

Note that this equation may be satisfied at multiple frequencies
depending on the form of the dispersion.

In the case of only magnetic permeability disorder, ε = ε,
the Brewster conditions (27), (28) reduce to [compare with
Eqs. (29) and (30)]

tan2 θs = μ

μ
≈ 1, (32)

tan2 θp = −1, (33)

and the Brewster anomaly is observed for s polarization at the
Brewster frequency fs given by√

ε(fs)μ(fs) = sin θa

sin θs

=
√

2 sin θ. (34)

For disorder in both the permeability and the permittivity, the
existence of a Brewster anomaly angle depends, in accordance
with Eqs. (27) and (28), on the sign of the quantity ξ =
(εμ − εμ)/(εμ − εμ). If ξ > 0, the Brewster angle exists for
s polarization, while if ξ < 0, it exists for p polarization.
In the case ξ = 0, the layer and the medium in which it
is embedded are impedance matched, and thus the layer is
completely transparent.

III. NUMERICAL RESULTS

A. Metamaterial stack

Along with the analytical calculations a comprehensive
numerical study of the properties of the transmission length
as a function of wavelength and angle of incidence has been
carried out. We first consider the case of normal incidence
on a stack of N = 107 layers, in which we randomize only
the dielectric permittivity (Qm = 0) with Qe = 0.5 × 10−2.
Figure 2 displays the transmission length lT as a function
of frequency f . The upper curves present the case in which
absorption is neglected, while the lower curves show the effects
of absorption. The red solid curves and the blue dashed curves
display results from numerical simulations and the theoretical
prediction (18), respectively. The top curves represent the
genuine localization length for all frequencies except those in
the vicinity of f ≈ fmp = 10.95 GHz where the transmission
length dramatically increases.

In the absence of absorption, for frequencies f >

10.95 GHz, the metamaterial transforms from being double
negative to single negative (see inset in Fig. 2). The refractive
index of the metamaterial layer changes from being real to
being purely imaginary, the random stack becomes opaque,
and the transmission length substantially decreases. Such a
drastic change in the transmission length (by a factor of 105)
might be able to be exploited in a frequency-controlled optical
switch.

The theoretical result (18) is in excellent agreement with
simulation based on the exact recurrence relations (7) and
(8) across the frequency interval 10.4 GHz < f < 11.0 GHz.
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FIG. 2. (Color online) Transmission length lT vs frequency f

at normal incidence (θa = 0) for a metamaterial stack without
absorption (top curve) and in the presence of the absorption (bottom
curves). Red solid curves display numerical simulations while blue
dashed curves show the analytical predictions. Inset: The real (red
solid line) and imaginary (green dashed line) part of the metamaterial
layer refractive index.

Moreover, the first term in Eq. (18), corresponding to the
single-scattering approximation, dominates for all frequencies
except in the region 10.4 GHz < f < 10.5 GHz where both
terms in Eq. (18) are necessary to describe the localization
length. Quite surprisingly, the asymptotic equations (20) and
(26) are in excellent agreement with the numerical results over
the frequency range 10.9 GHz < f < 11.0 GHz, including in
the near vicinity of the frequency fmp = 10.95 GHz at which
μ vanishes.

Absorption substantially influences the transmission length
(the lower curve in Fig. 2) and smooths the nonmonotonic
behavior of the transmission length for f < 10.5 GHz. The
small dip at f ≈ 10.45 GHz correlates with the corresponding
dip in the transmission length in the absence of absorption. The
most prominent effect of absorption occurs for frequencies
just below the μ-zero frequency fmp = 10.95 GHz. While in
the absence of absorption, the stack is nearly transparent in
this region, turning on the absorption reduces the transmission
length by a factor of 102–103 for f > 10.7 GHz. In contrast,
for frequencies f > 10.95 GHz, the transmission lengths in
the presence and absence of absorption are nearly identical
because here the stack is already opaque and its transmittance
is not much affected by an additional small amount of absorp-
tion. Again, the simulations and the theoretical predictions are
in excellent agreement and show that the theoretical form (18)
accounts accurately for dissipation.

The transmission length spectrum in the case where
both disorders of the dielectric permittivity and magnetic
permeability are present, i.e., Qe = Qm = 0.5 × 10−2, is qual-
itatively similar to that of the single-disorder case considered
above, and so we do not present these results here.

In the case of oblique incidence, polarization effects
become important. In Fig. 3, we display the transmission
length frequency spectrum for a homogeneous metamaterial
stack with only dielectric permittivity disorder for the angle
of incidence θa = 30◦. For frequencies f < 10.55 GHz, the
transmission length is largely independent of the polarization.
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FIG. 3. (Color online) Transmission length lT vs frequency f for
θa = 30◦ for a metamaterial stack: without absorption, p polarization
(top curves), s polarization (middle curves); in the presence of
absorption (bottom curves). Results for numerical simulations (red
solid curves) and analytical predictions Eq. (18) (blue dashed curves)
are shown.

Moreover it does not differ from that for normal incidence
(compare with the top curve in Fig. 2). This is due to the high
values of the refractive indices at these frequencies (|νn| > 4),
resulting in almost zero refraction angles (14) for angles of
incidence that are not too large.

As noted previously, true delocalization, such as in the
presence of only thickness disorder, cannot occur for material
disorder (i.e., permittivity or permeability disorder). Neverthe-
less, the transmission length manifests a sharp maximum at an
angle close to the Brewster angle, as commented upon in Refs.
28 and 31. This is indeed apparent in Fig. 3 for the frequency
f ≈ 10.85 GHz. Because only ε fluctuates, the Brewster
condition is satisfied only for p polarization (30) at a single
frequency fp ≈ 10.852 GHz. The introduction of additional
permeability disorder (not shown) reduces the maximum value
of the localization length by two orders of magnitude.

Comparison of Figs. 2 and 3 shows that the frequency of the
maximal suppression of localization decreases as the angle of
incidence increases. At normal incidence it coincides with the
μ-zero frequency fmp while for oblique incidence at θa = 30◦
it coincides with the Brewster frequency fp for p polarization.

Absorption strongly diminishes the transmission length.
In Fig. 3, we display results of numerical simulations of the
transmission length for p polarization (bottom red solid curve)
and the corresponding theoretical prediction (18) (blue dashed
curve). Both curves are almost identical, with absorption
providing the main contribution to the transmission length,
and with the permittivity disorder having little influence on the
transmission length. The results for s polarization are therefore
practically indistinguishable from those for p polarization.

The transmission properties of a stack with only magnetic
permeability disorder at oblique incidence are similar to those
for the case of only dielectric permittivity disorder. In Fig. 4
we plot the transmission length as a function of frequency at
the incidence angle θa = 30◦. The key difference is that there
is a Brewster anomaly for s polarization (top curves in Fig. 4)
while for p polarization (middle curves in Fig. 4) the Brewster
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FIG. 4. (Color online) Transmission length lT vs frequency f

at θa = 30◦ for a metamaterial stack with the magnetic permeability
disorder: without absorbtion, s polarization (top curve), p polarization
(middle curve); in the presence of the absorbtion (bottom curves). Red
solid curves are simulation results while the blue dashed curves are
analytical predictions, Eq. (18).

anomaly is absent. The effect of absorption (the bottom curves)
is also similar to that of the preceding case.

We finally consider the dependence of the transmission
length on the angle of incidence at a fixed frequency. The
results for both polarizations are displayed in Fig. 5. Here we
have plotted the transmission length of the stack with only
dielectric permittivity disorder with Qe = 0.5 × 10−2 at the
frequency f = 10.90 GHz, as a function of the angle of inci-
dence. The upper and middle curves correspond to the results
for p- and s-polarized waves, respectively, in the absence
of absorption. For s-polarized light, the transmission length
decreases monotonically with increasing angle of incidence,
while for p-polarized waves it increases with increasing angle
of incidence. Such behavior reflects the existence of a Brewster
angle for p polarization at the Brewster angle θa = 15◦. The
red solid curve shows the results of simulations, while the blue
dashed line is the analytic prediction based on Eq. (18).

As in the previous cases, in the presence of absorption,
the results for both polarizations are almost identical (the
lower curves in Fig. 5). For angles θa < 30◦, the transmission
length is dominated by absorption, while for angles θa >

30◦ tunneling is the dominant mechanism. The results for
permeability disorder (not presented) are very similar to those
for permittivity disorder.

B. Normal-material stacks

1. Standard normal stacks

According to the definitions of Sec. II A, in a homogeneous
normal layer the dielectric permittivity and the magnetic
permeability are defined as −ε∗(f ) and −μ∗(f ), respectively,
with ε(f ) and μ(f ) given by Eqs. (1) and (2). For such a layer
the refractive index is positive in the region 10.40 GHz <

f < 10.95 GHz. At higher frequencies 10.95 GHz < f <

11.00 GHz, the magnetic permittivity becomes negative and
we now deal with a SNM. The transmission length in this case
manifests exactly the same behavior as for stacks comprised
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FIG. 5. (Color online) Transmission length lT vs angle of inci-
dence for a homogenous metamaterial stack at f = 10.7 GHz with
permittivity disorder: in the absence of absorption—upper curve and
for p polarization; middle curve is for s polarization and in the
presence of absorption; and for both polarizations, lower curves. The
solid red lines are the numerical simulations and the blue dashed lines
are the theoretical predictions, Eq. (18).

of metamaterial layers that were considered in the previous
Sec. III A.

2. Exotic normal stacks

The most unusual features of the transmission length appear
in the vicinities of the μ-zero and/or ε-zero frequencies and at
the Brewster frequency. In this section, we consider a model,
which although being rather artificial, offers extraordinary
transport properties that could be useful for designing optical
switching devices. Within this model, the dielectric permittiv-
ity coincides with that of the normal material, −ε∗(f ), over
the entire frequency range 10.40 GHz < f < 11.00 GHz,,
while the magnetic permeability coincides with that of normal
material, −μ∗(f ), only in the region 10.40 GHz < f <

10.95 GHz, with its values at higher frequencies, 10.95 GHz <

f < 11.00 GHz, being given by Eq. (2) (metamaterial). It
is easy to see that the refractive index is always positive
and is practically symmetric [μ(f ) ∝ |f − fmp|] about the
frequency fmp = 10.95 GHz, at which it vanishes. As a
consequence, when this frequency is crossed, the transmission
length of a random stack of such layers manifests an abrupt
switching from complete transparency (at normal incidence) to
strong localization (i.e., strong reflection) at oblique incidence.
Therefore, the transmission length, in the case of normal
incidence, must manifest the same symmetry in the vicinity
of this frequency. Note that qualitatively the transmission
behavior would have been the same as observed here if
the frequency model for μ behaved according to the form
μ(f ) ∝ (f − fmp)2 rather than μ(f ) ∝ |f − fmp|. Note that
the former does not violate the Kramers-Kronig condition
and as a consequence the transmission characteristics depicted
below are possible.

The normal incidence transmission length, as a function of
wavelength, is plotted in Fig. 6 for stacks of N = 107 layers
with only dielectric permittivity disorder Qe = 0.5 × 10−2,
Qm = 0. The upper and lower curves display lT (f ) for lossless
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FIG. 6. (Color online) Transmission length lT vs frequency f

at normal incidence for a homogeneous stack: without absorption
(upper curve), and in the presence of absorbtion (lower curves). The
red solid curves are the numerical simulations and the blue dotted
lines are Eq. (18).

and absorbing stacks, respectively. The red solid curves and
the dashed blue curves display, respectively, the results of
numerical simulations and the theoretical prediction (18). The
upper curves, corresponding to an absence of absorption,
represent the genuine localization length for all frequencies
except for the vicinity of f ≈ fmp = 10.95 GHz, where the
transmission length drastically increases. For frequencies f <

fmp = 10.95 GHz, the transmission length coincides with that
of the normal or metamaterial stack (see Fig. 2), while for
frequencies f slightly exceeding the characteristic frequency
fmp the symmetry mentioned above is clearly manifest.
Absorption (lower curve in Fig. 6) has a similar effect on
the transmission length as that shown for metamaterial stacks.

We have plotted (see Fig. 7 top curve) the same curve for an
angle of incidence θa = 5◦. The corresponding curve demon-
strate a deep dip (four orders of magnitude) in the transmission
length over the narrow frequency range 10.93 GHz < f <
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FIG. 7. (Color online) Transmission length lT vs frequency f for
s-polarized, off-axis incidence θa = 5◦ top curve and for θa = 30◦

bottom curve for a normal material stack in the absence of absorbtion.
The red solid curves are numerics and the blue dashed curves are the
theoretical predictions, Eq. (18).

10.97 GHz. The origin of the dip is related to the tunneling
nature of wave propagation at these frequencies.

The width of the strong localization region (where the
transmission length becomes comparatively small) increases
with increasing angle of incidence. For θa = 30◦ and s

polarization, this range is 10.85 GHz < f < 11 GHz (lower,
dashed, blue line in Fig. 7) and corresponds to the tunneling
regime. For frequencies f < 10.85 GHz, the localization
length coincides with the localization length for a metamaterial
stack (see middle curve in Fig. 2).

The results for p polarization are similar to those for s

polarization (with the exception that the transmission length
has its maximum at θ = 30◦ at f ≈ 10.85 GHz), and thus we
do not present them here.

C. Mixed stacks

The case of mixed stacks without thickness disorder is very
interesting. It is shown in Ref. 10 that, for a nondispersive
mixed stack with fluctuating refractive indices and constant
layer widths, localization of long-wavelength radiation is
strongly suppressed. This suppression manifests itself as the
anomalous, l ∝ λ6, growth of the localization length in the
long-wave region instead of the usual dependence l ∝ λ2.
To study how dispersion influences this effect we consider
transmission through mixed stacks with only dielectric
permittivity disorder.

In Fig. 8(a), we plot the transmission length spectrum in the
case of normal incidence, for a small permittivity disorder of
Qe = 0.5 × 10−2, and observe significant (up to four orders
of magnitude) suppression of localization in the frequency
region 10.50 GHz < f < 10.68 GHz. However, in this case
the localization length grows with increasing frequency,
while, in Ref. 10, similar growth has been observed with
increasing incident wavelength. This is shown in Fig. 8(b)
where the same transmission length spectrum is plotted as
a function of free-space wavelength. Thus, the localization
length decreases by four orders of magnitude, manifesting as
an enhancement, rather than the suppression, of localization
with increasing wavelength.

Although at first sight these findings are in sharp contrast,
both are correct and physically meaningful. In the model
studied in Ref. 10, the wavelength of the incident radiation
largely coincided with the wavelength inside each layer. In
the problem that we consider here, these two wavelengths
differ substantially. Accordingly, in Fig. 8(c), we plot the
transmission length as a function of wavelength within the
stack and obtain results which are very similar to those in
Ref. 10. To emphasize the similarity with Fig. 3 in Ref. 10,
we have plotted the transmission length spectrum for three
different stack lengths: N = 105,106,107. It is easily seen
that the suppression of localization in the dispersive media
is qualitatively and quantitatively similar to that predicted in
Ref. 10. Indeed, the suppression observed there was described
by a power law lT ∝ λ6, with subsequent more detailed
calculations15 correcting the estimate of this power from 6
to 8.78. The results in Fig. 8(c) correspond to a power of 8.2.
The lower curves in Figs. 8(a)–8(c) correspond to samples with
both types of disorder Qe = Qm = 0.5 × 10−2 and are very
well described by the analytical prediction (19) with l ∝ λ2.
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FIG. 8. (Color online) (a) Transmission length lT vs frequency f

for a mixed stack with N = 107 layers (top dotted blue curve), and
only dielectric permittivity disorder. The bottom curves on all three
panels are for a stack with N = 107 layers with both permittivity and
permeability disorder (the cyan solid curve displays simulation results
while the dashed black curve is for the analytic prediction, Eq. (19);
(b) is the same as in (a) but plotted as a function of the free-space
wavelength λ0 while on panel (c) we plot the transmission length as
a function of the averaged wavelength inside the stack normalized to
the thickness of the layer, for N = 107 layers (blue dotted top curve),
N = 106 layers (dashed green curve), and for N = 105 layers (red
solid curve).

Combining the results of this section with those obtained
previously,10,15 we may conclude that dielectric permittivity
disorder in mixed stacks having constant layer thickness is

not sufficiently strong to localize low-frequency radiation.
To obtain the “typical” long-wavelength behavior of the
localization length, ∝λ2, one has to “switch on” additional
disorder—either thickness disorder as in Refs. 10 and 15 or
magnetic permeability disorder as in the present work.

The transmission length obtained here remains very large
up to the μ-zero frequency fmp = 10.95 GHz [Fig. 8(a)].
This leads us to hypothesize that suppression of localization
in the model considered here is related to the vanishing of
the effective magnetic permeability at f = fmp. In this case,
one should expect a substantial increase of the localization
length with increasing frequency and a sharp peak of the
localization length at f = fmp. However, the stack of N = 107

layers is too short for this to occur, and thus its localiza-
tion regime is bounded from above by the frequency f =
10.65 GHz. Therefore, we do not observe the expected peak
at f = 10.95 GHz. However, we do observe the abrupt drop
of the localization length as we approach this frequency from
the right. Thus, we conclude that we are dealing with the same
effect of delocalization at μ-zero frequency as was observed
in monotype samples (see Fig. 2). However, in contrast to the
latter case, the corresponding growth of the localization length
begins essentially earlier and occurs substantially faster.

IV. CONCLUSION

Transport and localization of classical waves in one-
dimensional disordered systems containing dispersive, lossy
metamaterials have been studied analytically and numerically.
It has been shown that the field can be delocalized in one-
dimensional μ-near-zero or ε-near-zero media—a new form
of delocalization that occurs in one dimension in the presence
of short-correlated disorder. We have also demonstrated
disspersion-induced suppression of Anderson localization in
mixed stacks with either dielectric permittivity or magnetic
permeability disorder. The presence of both forms of disorder,
however, enhances localization. The effects of polarization in
the presence of different forms of disorder have been studied
and Brewster anomalies have been demonstrated at angles (or
frequencies) that depend not only on the polarization of the
radiation, but also on the type of disorder. The theoretical
predictions are in excellent agreement with the results of
numerical simulations.
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APEENDIX: DERIVATION OF EQ. (6)

Here we provide an outline of the derivation of Eq. (6)
and assume that the disordered stack with N layers is em-
bedded in a homogeneous infinitesimal medium with material
parameters given by ε = 〈ε〉 and μ = 〈μ〉, where ε and μ

are given by Eqs. (1) and (2), respectively. The impedance
and refractive index of the medium are Zb = √

μ/ε and
νb = √

μ
√

ε, respectively.
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FIG. 9. (Color online) The disordered stack is embedded in a
homogeneous medium with averaged material parameters ε, μ.

This random stack is sandwiched between two leads
connecting the outside free space and the homogeneous
medium (ε, μ) (see Fig. 9). The right lead reflection coefficient
for left-hand incidence is

ρ̂23 = Zb cos θb − Za cos θa

Zb cos θb + Za cos θa

, (A1)

and

cos θb =
√

1 − sin2 θa

ν2
b

, (A2)

while the transmission coefficient is given by τ̂23 = 1 + ρ̂23.
The front (left) “lead” reflection and transmission coefficients
for incidence from the left side are given by ρ̂12 = −ρ̂23 and
τ̂12 = 1 + ρ̂12, respectively.

The total transmission coefficient TN (θa) through such a
structure with both Fresnel “leads” in place can be calculated
from

TN (θa) = τ̂23T̂N (θb)τ̂12

(1 − R̂N ρ̂21)(1 − R̂′
Nρ̂23) − ρ̂21T̂N ρ̂23T̂

′
N

, (A3)

where T̂N (θb) is the transmission of a random stack with N

layers embedded in homogeneous medium with ε and μ, for
plane-wave incidence from the left with incident angle θb,
and with ρ̂21 = ρ̂23. The terms R̂N and R̂′

N are reflection
coefficients for the random stack for plane-wave incidence
from the left/right sides, while the T̂ ′

N is the transmission
coefficient for incidence from the right.

In the localized regime as N → ∞, the transmission
coefficient TN (θa) = T̂ ′

N (θb) → 0 and therefore the final term
in the denominator of Eq. (A3) vanishes. Accordingly,

ln TN (θa) = ln T̂N (θb) + ln τ̂23 + ln τ̂12

− ln(1 − R̂N ρ̂21) − ln(1 − R̂′
N ˆρ23). (A4)

As N → ∞, the last four terms in Eq. (A4) are bounded and
we deduce

lim
N→∞

ln TN (θa)

N
= lim

N→∞
ln T̂N (θb)

N
. (A5)

Thus, the localization length for a stack embedded in free
space for plane-wave incidence at an angle θa is equivalent
to calculating the localization length for a stack of N layers
embedded in a medium with the refractive index νb with plane-
wave incidence at an angle θb. The angles θa and θb are related
by Snell’s law [Eq. (14)]. From Eq. (A5), we thus deduce the
relation in Eq. (6).
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