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Recently, a diffusion Monte Carlo algorithm was applied to the study of spin-dependent interactions in
condensed matter [A. Ambrosetti, F. Pederiva, E. Lipparini, and S. Gandolfi, Phys. Rev. B 80, 125306 (2009)].
Following some of the ideas presented therein, and applied to a Hamiltonian containing a Rashba-like interaction,
a general variational Monte Carlo approach is here introduced that treats in an efficient and very accurate way
the spin degrees of freedom in atoms when spin-orbit effects are included in the Hamiltonian describing the
electronic structure. We illustrate the algorithm on the evaluation of the spin-orbit splittings of isolated C, Tl, Pb,
Bi, and Po atoms. In the case of the carbon atom, we investigate the differences between the inclusion of the spin
orbit in its realistic and effective spherically symmetrized forms. The method exhibits a very good accuracy in
describing the small energy splittings, opening the way for systematic quantum Monte Carlo studies of spin-orbit
effects in atomic systems.
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I. INTRODUCTION

In the last few decades, quantum Monte Carlo (QMC)
techniques were successfully applied to a large number of
systems in different fields of physics, quantum chemistry,
and materials science.1–3 The high accuracy obtained and the
possibility of treating a relatively large number of particles
within an affordable computational cost have certainly been
the key ingredients for such a success. A fundamental property
of QMC methods resides also in their scalability, which, due to
the introduction and recent proliferation of massively parallel
systems, makes a good case for a future applicability to large
quantum many-body systems, up to now mainly investigated
by means of density functional methods. Several years ago,
an extension of the diffusion Monte Carlo (DMC) algorithm,
employing an efficient recasting of Green’s function, was
applied to many nucleon systems with interactions depending
on the spin and isospin degrees of freedom.4 This seminal
paper has opened the way to studies of broad classes of systems
in which spin related effects play a fundamental role. Most
successful applications so far pertain to the field of nuclear
physics.5 However, in the last few years the method was
extended to many electron systems, and in particular to the
study of the two-dimensional homogeneous electron gas6,7

and parabolic quantum dots.8 These models are often used
to describe quasi-two-dimensional nanostructures built on
semiconductor heterojunctions, where the confining potential
shows an asymmetry giving rise to a transverse electric field
interacting with the moving electrons. This coupling can be
described by an effective Rashba spin-orbit Hamiltonian. The
next natural extension of the method in condensed matter
applications is the study of spin-orbit (SO) effects in atoms,
molecules, and solids. Preliminary estimations show that QMC
methods should be able to provide the necessary accuracy

and affordability for bringing to a completely new level the
theoretical investigation in this area. The extension is highly
nontrivial, mostly due to the technical issues that might in
principle limit the accuracy of a QMC calculation in presence
of a noncentral interaction.

One of the main issues concerning the DMC method is
the need for trial wave functions, i.e., accurate approxima-
tions to the exact solution of the Schroedinger’s equation.
The availability of a good trial wave function represents a
crucial challenge both at the computational and at a more
fundamental level. The trial wave function not only affects
the computational efficiency of the DMC calculation, but for
Fermionic systems, determines the accuracy of the final result
as a consequence of the necessity of applying the so-called
“fixed-node” approximation.9–11 An additional problem which
comes to the forefront in the case of spin-orbit interaction is
the necessity to deal with operators which do not necessarily
commute with the rest of the Hamiltonian.

Both these problems are usually tackled via a preliminary
variational Monte Carlo (VMC) approach. Regarding the first
challenge, VMC is an important, effective way of dealing
with optimization of trial wave functions including almost
arbitrarily complex many-body correlations.12,13 Concerning
the second issue, the DMC expectations of operators (denoted
as O) not commuting with the Hamiltonian is known to be
biased by errors depending on the trial wave function accuracy
as well, so that efficient optimization is again an important way
to alleviate this problem. In DMC, such errors stem from the
way DMC expectation values are computed:

〈O〉DMC = 〈φT |O|ψ〉
〈φT |ψ〉 . (1)

Here φT represents the trial wave function while ψ is the DMC
ground state of the system. If [O,H ] = 0 this in principle

045115-11098-0121/2012/85(4)/045115(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.80.125306
http://dx.doi.org/10.1103/PhysRevB.85.045115


A. AMBROSETTI et al. PHYSICAL REVIEW B 85, 045115 (2012)

introduces no bias since ψ is an eigenstate of H . If this is not
the case, the estimate is affected by a bias depending on φT ,
and it is usually corrected to the leading order by using the
formula

〈ψ |O|ψ〉 ∼ 2〈φT |O|ψ〉 − 〈φT |O|φT 〉, (2)

where integrals are normalized, and the last term corresponds
to the VMC estimate of the operator O over φT .

From these arguments it is possible to grasp how an efficient
VMC algorithm capable of explicitly dealing with spin degrees
of freedom is of significant importance, not only as a robust and
reliable numerical method itself, but also for the development
of the more sophisticated QMC algorithms.

In this paper we present the theory, the Monte Carlo
algorithm, and the results assessing the possibility of devel-
oping wave functions containing the necessary correlation
at the antisymmetric level (i.e., in the part of the wave
function which is usually described by a Slater determinant) by
means of a variational procedure. The many-body correlations
that are usually introduced in order to describe the short
range effects of the Coulomb interaction are neglected on
purpose for the C atom in order to make the peculiar aspects
of the spin-dependent algorithm clear. Two-body correlations
are instead introduced in calculations relative to the more
relevant cases of heavier atoms. The paper is organized as
follows. In Section II the VMC algorithm and the structure
of the spinorial wave functions used in the calculations are
illustrated. Section III presents applications to the evaluation
of spin-orbit splittings in C, Tl, Pb, Bi, and Po. Section IV is
devoted to conclusions.

II. METHOD

Variational Monte Carlo is a very efficient algorithm for
evaluating expectation values of observables over a given trial
wave function through the computation of integrals of the kind

〈ψT |O|ψT 〉
〈ψT |ψT 〉 . (3)

Its efficiency is basically due to a stochastic integration which
yields statistical errors for the integral estimate decreasing as
N

−1/2
iter (Niter stands for the number of iterations), irrespective

of the integral dimensionality.
When one is restricted to Hamiltonians or operators with

no explicit spin dependence, it is not necessary to perform the
summations over the spin degrees of freedom. These become
static variables, and can simply be treated as labels. As a
consequence, once a spin state and spin labels have been
specified, the equation above can be rewritten as∫

dRψ∗
T (R)ψT (R)OψT (R)

ψT (R)∫
dRψ∗

T (R)ψT (R)
, (4)

where R here represents the space coordinates for the system.
On the other hand, for Hamiltonians containing spin-orbit

interactions, the same simplification is not correct. The trial
wave function will be, in general, made up with Slater
determinants containing single particle spinors, and all the spin
variables should be in this case taken into account explicitly.
Spinors in general have nontrivial forms, and the spin state of

the single particles could change as a function of the space
coordinates. This means that in general one needs to perform
a summation over a complete spin basis:∫

dR
∑

S

〈ψT |R,S〉〈R,S|O|ψT 〉
〈ψT |ψT 〉 . (5)

Clearly, one way or another, one has to sample the relevant
degrees of freedom in order to evaluate the impact of the spin
on the expectation values. One possible way is to sum over the
spin variables, i.e., sample the 2N discrete space.

What is proposed here is an alternative approach in which
integration over auxiliary variables takes the place of the
discrete sum. Although the number of integration variables is
increased, exploiting the VMC algorithm this can be performed
without significant loss of computational efficiency.

The trial wave function which we employ in calculations
is a single Slater determinant of single-particle spinors. Let us
first consider the simple two-electron case in order to illustrate
the method. The spinors we will use are

�ψ1 =
(

ψ1
1

ψ1
2

)
�ψ2 =

(
ψ2

1

ψ2
2

)
. (6)

The spacial coordinates of the two electrons will be �r1 and �r2,
while the spin coordinates can be parametrized as follows:

�s1 =
(

sin(α1)eiδ1

cos(α1)

)
�s2 =

(
sin(α2)eiδ2

cos(α2)

)
. (7)

The Slater determinant can be written as

�(�r1,�s1,�r2,�s2) = det

(
〈�s1,�r1| �ψ1〉 〈�s1,�r1| �ψ2〉
〈�s2,�r2| �ψ1〉 〈�s2,�r2| �ψ2〉

)
. (8)

A complete spin basis for this system is ↑↑,↑↓,↓↑,↓↓, so that,
given a second wave function �′ of the same form as �, the
following equality holds:

〈�|�′〉 = 〈�|↑↑〉〈↑↑|�′〉 + 〈�|↑↓〉〈↑↓|�′〉
+ 〈�|↓↑〉〈↓↑|�′〉 + 〈�|↓↓〉〈↓↓|�′〉. (9)

The terms involved in this summation are

〈↑↑|�〉 = ψ1
1 ( �r1)ψ2

1 ( �r2) − ψ2
1 ( �r1)ψ1

1 ( �r2),

〈↑↓|�〉 = ψ1
1 ( �r1)ψ2

2 ( �r2) − ψ2
1 ( �r1)ψ1

2 ( �r2),
(10)

〈↓↑|�〉 = ψ1
2 ( �r1)ψ2

1 ( �r2) − ψ2
2 ( �r1)ψ1

1 ( �r2),

〈↓↓|�〉 = ψ1
2 ( �r1)ψ2

2 ( �r2) − ψ2
2 ( �r1)ψ1

2 ( �r2) .

Writing � explicitly as

�(�r1,�s1,�r2,�s2)

= [
ψ1

1 (�r1)eiδ1 sin(α1) + ψ1
2 (�r1) cos(α1)

]
·[ψ2

1 (�r2)eiδ2 sin(α2) + ψ2
2 (�r2) cos(α2)

]
− [

ψ2
1 (�r1)eiδ1 sin(α1) + ψ2

2 (�r1) cos(α1)
]

· [ψ1
1 (�r2)eiδ2 sin(α2) + ψ1

2 (�r2) cos(α2)
]
, (11)

it is possible to demonstrate how the summation (10) can be
exactly rewritten as an integral over the spin parameters α1,2
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and δ1,2 in the following way:

〈�|�′〉 = D
∫ [ ∫ 2π

0
�(�r1,�s1,�r2,�s2)∗

×�′(�r1,�s1,�r2,�s2)dα1dα2dδ1dδ2

]
d�r1d�r2, (12)

where D is a constant. In order to prove the above statement,
we take into consideration the terms corresponding to 〈�| ↑↑
〉〈↑↑ |�′〉, since all other terms can be obtained in the same
way. First of all we notice that∫ 2π

0
dαi

∫ 2π

0
dαj sin(αi) sin(αj ) = δi,j 2π2,

∫ 2π

0
dαi

∫ 2π

0
dαj cos(αi) cos(αj ) = δi,j 2π2, (13)

∫ 2π

0
dαi

∫ 2π

0
dαj sin(αi) cos(αj ) = 0.

This means that only those terms with pairs of sines and cosines
of the same angles will give a nonzero contribution. Using
these relations we can select only the interesting terms:∫ 2π

0
dα1dα2

[
ψ1

1 (�r1)∗e−iδ1 sin(α1)ψ2
1 (�r2)∗e−iδ2 sin(α2)

−ψ2
1 (�r1)∗e−iδ1 sin(α1)ψ1

1 (�r2)∗e−iδ2 sin(α2)
]

· [ψ ′1
1 (�r1)eiδ1 sin(α1)ψ ′2

1 (�r2)eiδ2 sin(α2)

−ψ ′2
1 (�r1)eiδ1 sin(α1)ψ ′1

1 (�r2)eiδ2 sin(α2)
]
, (14)

which give

π2[ψ1
1 (�r1)∗ψ2

1 (�r2)∗ψ ′1
1 (�r1)ψ ′2

1 (�r2)

+ψ2
1 (�r1)∗ψ1

1 (�r2)∗ψ ′2
1 (�r1)ψ ′1

1 (�r2)

−ψ1
1 (�r1)∗ψ2

1 (�r2)∗ψ ′2
1 (�r1)ψ ′1

1 (�r2)

−ψ2
1 (�r1)∗ψ1

1 (�r2)∗ψ ′1
1 (�r1)ψ ′2

1 (�r2)
]
, (15)

and this is precisely what one would obtain from the products
of the first row of Eq. (10). As mentioned above, all the other
terms of (10) can be obtained in the same way, proving the
equality Eq. (12). Furthermore, one can easily see how the
integration over the variables δi is not necessary since these
variables appear only as a phase, which exactly cancels out
in the nonvanishing terms. Besides this, though the proof of
(13) was explicitly given for the particular N = 2 case, it
can be shown that the same relation holds for any N . This
property holds due to the relations (14), which actually ensure
a correct selection of all the necessary terms. The basic idea
is that up (down) states of any particle will only be matched
to the corresponding up (down) states of the same particle,
and this precisely corresponds to projection over a fixed spin
state. Since all combinations are taken into account by the
presence of both up and down states for all particles, we have
accomplished the summation over the entire basis set.

All interesting observables O which can be estimated with
VMC, when acting on a Slater determinant, require at most the
use of a linear combination of some new Slater determinants.
This can be expressed as

〈R,S|O|�〉
∑

i

〈R,S|�′
i〉, (16)

and for linearity the expressions we found can easily be
applied. At this point, Eq. (5) can be rewritten as∫

dRdαψ∗
T (R,α)ψT (R,α)OψT (R,α)

ψT (R,α)∫
dRdαψ∗

T (R,α)ψT (R,α)
, (17)

where the spin coordinates of the system S have been rewritten
in terms of the parameters set α using (8).

Mapping the sum over the discrete 2N -dimensional spin
space into an integration over N continuous auxiliary variables
allows for a direct VMC integration in an extended space.
The overall scaling of the method will not be affected by the
presence of additional spin variables, and the computational
cost will still show a cubic dependence on N . Furthermore, the
possibility of treating correlations within a N3 scaling appears
very appealing if compared to other costly quantum chemistry
methods.

As mentioned earlier, the proposed algorithm does not
represent the only possibility for spin summation. A possible
alternative could be that of a VMC-sampled sum over the
possible spin states, and this would also represent an efficient
algorithm.

III. APPLICATIONS

A broad class of problems exists in which the method
discussed above can be applied. Nevertheless, it must also
be stressed that it is not always easy to find a good trial wave
function when an interaction of the spin-orbit kind is included
in the Hamiltonian. This is mainly due to the nonlocality of
the spin-orbit interactions.

In order to test the applicability of the method to atomic
systems in presence of spin-orbit interactions, we chose to
test this method on isolated C, Tl, Pb, Bi, and Po atoms.
By investigating both a light atom like carbon and heavier
elements, diverse spectra showing very different energy
splittings are considered, corresponding to the two distinct
limits of LS and jj coupling.15

A. Carbon atom

The carbon atom has six electrons and can be considered
as a light element. Although the spin-orbit effects are known
to be very small and of little relevance for most properties,
they still induce observable splittings in the energy spectrum.
Furthermore, the computation of these very small energy
differences represents a good starting test for the efficiency of
the method. The all-electron Hamiltonian which was employed
in the calculations concerning the carbon atom is given by

H =
∑
i=1

(
P2

i

2m
+ V i

SO − Z

ri

)
+

∑
i<j

1

rij

, (18)

where V i
SO accounts for the spin-orbit interaction for the

ith electron. It should be noted that the spin-orbit potential
is the only relativistic effect contained in this Hamiltonian.
The rest of the relativistic corrections were neglected since
they do not contribute to the level splittings if we assume
the wave functions given below. The trial wave functions
employed in the calculations were linear combinations of
Slater determinants of single-particle Hartree-Fock orbitals.14
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Since the interest, regarding the C atom, was focused on
providing a good test for the method using a well-known
type of wave function, no optimization was performed, and
the combinations of Slater determinants were fixed by the
imposed spin-spatial symmetries in the LS coupling.

The spin-orbit interaction in atoms comes from an approx-
imated form of the Dirac equation and can be written (for the
ith particle) as

V i
SOψ = − h̄2

4m2c2
i �σi · [( �
iV ) × �
iψ], (19)

where V in this case is the total potential felt by the considered
particle. This potential contains both the attractive contribution
from the nucleus and the sum of the repulsive interactions with
all other electrons. What is commonly done is approximating
V with an effective potential Veff having spherical symmetry.
Within this approximation, Eq. (19) can be rewritten as

1

2m2c2

1

r

dV i
eff

dr
�Li · �Siψ. (20)

In case the Coulomb repulsion among electrons is neglected,
one is left with a sum of single particle Hamiltonians, and if
the factor in Eq. (20) multiplying �Li · �Si is substituted by
a constant, the problem can be exactly solved in analytic
form. The term �Li · �Si in fact commutes with the rest of
the Hamiltonian, which is spherically symmetric. However, as
soon as the electron-electron Coulomb interaction is taken into
account the exact solution is unknown. As already mentioned,
since the SO interaction in C is known to yield very small
energy splittings, it is reasonable to treat it within the LS

coupling procedure. This is done by writing the Hamiltonian
(19) as H = H1 + H2 where H2 = ∑

i V
i
SO and combining

eigenstates of H1 (which are eigenstates of both L and S) in
order to obtain eigenstates of J. Calling the eigenstates of H1

as |γLSMLMS〉 (γ stands for all residual quantum numbers),
it may be shown by using the Wigner-Eckart theorem that

〈γLSMLMS |H2|γLSM ′
LM ′

S〉
= A〈γLSMLMS |L · S|γLSM ′

LM ′
S〉, (21)

where A is a constant depending on γLS. The eigenstates of
J can be obtained as linear combinations of the |γLSMLMS〉
states and can be denoted as |γLSJMJ 〉. At this point it is
easily shown that

〈γLSJMJ |H2|γLSJMJ 〉
= 1

2
A[J (J + 1) − L(L + 1) − S(S + 1)]. (22)

Notice how the expectation value of a sum of single-particle
terms H2 is related to that of L · S (S and L are the total
spin and angular momentum, respectively) by the constant
A. This constant contains the effect of the effective potential
Veff , and in general it cannot be determined analytically.
However, when the SO interaction (20) is approximated by
CLi · Si with C constant, A can be calculated exactly. A
first test for our method consisted in verifying the relations
above and comparing the numerical result for A with the
analytically computed value. In Table I numerical and ana-
lytical results are compared for three different states, showing

TABLE I. Analytical and numerical results for the mean value of
the SO interaction (C = 1) and effective coupling constant A over
the three lowest energy states given by fixed L = 1, S = 1, and J =
0,1,2. Results are reported in atomic units.

Numerical Analytical Numerical Analytical
L S J 〈∑i Li · Si〉 〈∑i Li · Si〉 A A

1 1 0 −1.001(2) −1.0 0.5005(1) 0.5
1 1 1 −0.5004(7) −0.5 0.5004(7) 0.5
1 1 2 0.4997(5) 0.5 0.4997(5) 0.5

excellent agreement with the predictions of the Wigner-Eckart
theorem.

A second set of calculations was then performed, including
this time a SO interaction of the form (21) in order to obtain
an estimate of the energy splitting induced by the effective
spherical potential Veff . The only contributions to the SO
splitting in the C atom come from the two occupied 2p orbitals;
therefore it was only necessary to take the effective potential
Veff for 2p electrons into account. Following Slater,15 in a
single-particle picture one could write the effective potential
for the particle i as

V i
eff(r) = Zi

eff(r)

r
,

(23)

Zi
eff(r) = Z −

∫ r

0

∑
j �=i

|φj (r)|2dr.

VMC calculations were done for the energy splittings of
the lowest energy states (L = 1, S = 1). The results (see
Table II) are in qualitatively good agreement with experimental
data.16 The relative energy differences between (J = 0, J = 1)
and (J = 1, J = 2) states follow the theoretical ratio 1/2,
though they both are too large. The fact that splittings from
experimental data do not show the theoretical 1/2 ratio makes
the result for the larger splitting worse. In order to check
whether our VMC method would give a correct description
also in the case of a realistic SO interaction, further testing
was done: in case Veff is substituted by Z/r2, and the radial
parts of the 2p single-particle wave functions are given by a
single orbital of the Slater type:

Sjl(r) = Njlr
njl−1 exp(−zjlr),

(24)
Njl = (2zjl)

njl+1/2/[(2njl)!]
1/2,

(nij = 1,2,3, . . . and zij are fitting parameters), one can obtain
an exact analytical form for the SO splitting. Also in this case
the numerical results were in excellent agreement with the
theoretical predictions.

TABLE II. Numerical results for the mean value of the realistic
(20) and effective SO interactions (21) per electron for the three
lowest energy states. Results are reported in atomic units.

L S J Realistic VSO Effective VSO

1 1 0 −2.9(2) ×10−5 −3.3(2) ×10−5

1 1 1 −1.4(1) ×10−5 −1.6(1) ×10−5

1 1 2 1.4(1) ×10−5 1.7(2) ×10−5
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TABLE III. All electrons SO splittings [defined as E(J ) − E(1)]
for C. In the second and third columns VMC predictions relative to
the effective SO and realistic SO, respectively. Experimental values
in the fourth column. Results are reported in atomic units.

J VMC (effective VSO ) VMC (realistic VSO ) Experimental

0 −10(1.5) × 10−5 −9(1.5) × 10−5 −7.5 × 10−5

1 0.0 0.0 0.0
2 20(1) × 10−5 17(1) × 10−5 12.3 × 10−5

In order to check the effects of the approximations con-
tained in the effective spherical potential, calculations were
done substituting (21) in the Hamiltonian with the realistic
SO interaction (20). Once more, SO potential expectation
values were computed for the three lowest energy levels.
In this case the energy splittings are reduced with respect
to the previous case, becoming closer to experimental data
(see Table III). The relative spacings retain the theoretical
ratio 1/2 predicted for spherical potentials as before, but the
effective SO coupling constant is close to the experimental
one, at least for the smaller splitting (J = 0, J = 1). It
remains however about 30% too large in the (J = 1, J = 2)
case.

In the first case the effective screening of the inner electrons
appeared to be not effective enough, and one could be led
to the conclusion that Hartree-Fock (HF) orbitals do not
provide an accurate charge distribution. However, this last
calculation showed how, at least for the lowest splitting, the
screening effects affecting the SO coupling are reasonably well
reproduced in the C atom already at the HF level.

B. Tl, Pb, Bi, and Po atoms

In order to give a more complete picture of the applicability
of the algorithm, the VMC method was also applied to the Tl
(Z = 81), Pb (Z = 82), Bi (Z = 83), and Po (Z = 84) atoms,
which exhibit sizable SO interaction effects. While for C the
LS coupling was employed, due to the increased strength of
the SO interaction, a better approximation for the description
of the energy splittings in heavier atoms is given by the jj

coupling scheme. For this reason, the wave function is obtained
by combining single-particle Ji (for the ith particle) states into
the eigenstates of the total angular momentum J .

Due to the large number of electrons in the Tl to Po atoms,
and the very deep ionic potential, it is customary to limit the
explicit degrees of freedom to valence electrons by introducing
an effective description in terms of pseudopotentials (or
effective core potentials). Although there is no a priori
limitation in the number of electrons that can be managed
in a VMC calculation, very large energy fluctuations coming
from the core states are very expensive to average out and
are of marginal interest in determining the quantities we are
interested in, given that SO splitting is only related to the
presence of occupied valence p states. The pseudopotential
employed was taken from Kuechle et al.,17 leading to a
Hamiltonian (in atomic units) of the following form:

−(1/2)
∑

i


2
i + Vpp +

∑
i<j

1

rij

, (25)

where the indices i,j run over the valence electrons, and Vpp is
the sum of a spin-orbit averaged ab initio pseudopotential Vav ,
an SO operator Vso, and a term representing effective charge
of the pseudonucleus.

The use of this pseudopotential has the additional benefit
of making possible the comparison to the HF results reported
in the same reference. In our calculations, the radial parts
of s and p orbitals were represented by an expansion
in four uncontracted Gaussians. The single-particle orbitals
optimization was performed with a variational approach using
an adapted implementation of the Fast Inertial Relaxation
Engine (FIRE) algorithm.18 This simple algorithm is based on
a molecular dynamics approach to the search in the variational
parameters space. The parameter evolution is driven by the
forces induced by the total energy partial derivatives, while
appropriate cooling is introduced as parameters’ motion is
stopped whenever the velocities’ directions are opposite to the
forces. The forces, in turn, are computed during the VMC
runs through a sampling of the wave function derivatives with
respect to the parameters. Given the form of the trial wave
function ψT , the corresponding differentiation of the energy
expectation according to a parameter α is given by

∂αEψT
= ∂α

〈ψT |H |ψT 〉
〈ψT |ψT 〉 (26)

and can be evaluated following the method also employed by
Sorella13,19 as

−2
〈ψT |H |ψT 〉〈ψT |∂α|ψT 〉

(〈ψT |ψT 〉)2
+ 2

〈ψT |H∂α|ψT 〉
〈ψT |ψT 〉 . (27)

Given the physical relevance of SO splittings in the heavy
atoms here considered, the influence of correlation effects was
investigated by introducing in the wave function a Jastrow
factor2 of the Pade’ form:

J (R) = exp

⎛
⎝ N∑

i,j

V (rij )

⎞
⎠ ,

(28)
V (riij ) = − rij

4(1 + arij )
,

with a being a variational parameter. This factor introduces
two-body correlations, which in VMC calculations are usually
necessary to obtain a realistic description of the correlation
energy. In principle, the Jastrow factor should depend on the
relative spin state of the electron pair. In presence of SO
interactions inducing a spin rotation, this requirement would
lead to a correlated wave function of the form

∏
i,j fσσ (rij )�σi ·

�σj , which would in turn imply the necessity of computing a
sum over all the possible two-electron spin states. This sum
grows as 2N , and becomes very quickly unmanageable. For
this reason we prefer, for the moment, to completely neglect
the spin dependence in the two-body wave function, focusing
on the gross effect of introducing the short range correlations
induced by the Coulomb potential. We stress, however, that
the introduction of correlation effects already implies a huge
improvement with respect to the HF method, keeping the
computational cost at a reasonable level.

In computing the SO splittings, the lowest states cor-
responding to the total angular momentum J eigenvalues,
obtained from the multiple occupation of single-particle p
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TABLE IV. SO splittings for Tl, Pb, Bi, and Po. The second
and third columns contain uncorrelated and correlated VMC results,
respectively. The fourth and fifth columns report HF results by
Kuechle and the relative experimental values.20 States associated with
zero splitting values are taken as a reference. Results are reported in
atomic units.

J VMC uncorrelated VMC+Jastrow HF Experimental

Tl
1/2 0.0 0.0 0.0 0.0
3/2 0.030(5) 0.031(5) 0.033 0.035

Pb
0 0.0 0.0 0.0 0.0
1 0.032(4) 0.033(4) 0.029 0.035
2 0.044(5) 0.045(5) 0.046 0.048

Bi
3/2 0.0 0.0 0.0 0.0
3/2 0.054(4) 0.048(6) 0.057 0.052
5/2 0.074(5) 0.070(4) 0.078 0.070

Po
2 0.0 0.0 0.0 0.0
0 0.049(8) 0.043(8) 0.042 0.034
1 0.080(6) 0.077(5) 0.071 0.076

orbitals, were considered for each atom. Comparing for in-
stance Pb and C, despite the equal number of valence electrons,
due to the diverse couplings (jj and LS, respectively), these
show different splitting patterns. In particular, for Pb the
(J = 0, J = 1) splitting is larger than the difference between
(J = 1, J = 2).

VMC results are reported in Table IV together with the
HF results of Kuechle17 and the corresponding experimental
values.20 Calculations were also performed in absence of
correlation by removing the Jastrow factor. Since in this
case the trial function is given by the Slater determinant of
spinors, we can compare our results with the corresponding
HF calculation. A good compatibility is found. Interestingly,
correlation effects on the SO splittings appear to be smaller
than the statistical error, suggesting that SO effects are mainly
determined by the single-particle properties of the wave
function. From the comparison among the different data sets
we confirm that our VMC calculation shows the correct
ordering of the SO splittings among the states considered.

Indeed, our energy differences agree with the other two data
sets essentially within the statistical error bars.

IV. CONCLUSIONS

We introduced an extension of the VMC method capable
to realistically describe spin-orbit splittings in heavy atoms.
Calculations were tested first in the light C atom, and then
extended to a set of heavier open p-shell atoms (Ti to Po). We
demonstrated that the algorithm provides the correct evaluation
of the underlying integrals and, remarkably, leads to sufficient
accuracy for resolving the small SO energy differences.

For the case of the carbon atom the small SO splitting
is already reasonably well captured within a nonrelativistic
Hartree-Fock wave function, although an even more accurate
description would require the use of a better variational
wave function. Interestingly, the investigation of the effects
of the spherical effective SO term showed an appreciable
improvement when the more realistic version of the SO
coupling operator was employed.

Calculations of SO energy splittings carried on in heavier
atoms required a wave functions based on jj rather than
LS coupling. In these systems the possibility of a direct
optimization of wave functions was investigated. The effects
of electron-electron correlations have been studied by intro-
ducing in the wave function an explicit, though simplified,
two-body Jastrow factor. At this level dynamical quantum
correlations seem not to have a huge effect on the SO splittings
estimation.

We believe that the obtained results are encouraging,
and the method can be applied to more complex systems
while retaining the efficiency and robustness of the VMC
implementation.
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