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Monoclinic M1 phase of VO2: Mott-Hubbard versus band insulator
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We revisit the problem of the insulating ground state of the monoclinic M1 phase in vanadium dioxide and
argue that essential intersite correlation effects within vanadium dimers can be captured by the static mean-field
approximation. We propose the LDA + DMFT +V approach, which combines the density functional theory
within the local density approximation (LDA) with the extended Hubbard model. In this approach, the intersite
Coulomb interactions beyond the LDA are taken into account by the Hartree-Fock approximation, while the
on-site ones are described by the dynamical mean-field theory (DMFT). The proposed approach as well as the
cluster extension of the DMFT are used to study the spectral and magnetic properties of the M1 phase. According
to our results, taking into account intersite correlations in vanadium dimers enhances bonding-antibonding
splitting with respect to the LDA one, resulting in an insulating ground state, whereas on-site correlations only
slightly change the picture, leading to a renormalization of bands. The magnetic properties of the M1 phase can
be attributed to the singlet ground state of vanadium dimers. We conclude that the M1 phase is a correlated band
insulator and the Peierls scenario, enhanced by the intersite correlation effects, is the driving mechanism of the
metal-insulator transition in VO2.
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I. INTRODUCTION

Metal-insulator transitions (MIT) in transition-metal com-
pounds draw a lot of attention due to the accompanying
dramatic changes in structural and spectral properties. The
driving mechanisms of these transitions as well as the role
of correlation effects have been extensively investigated theo-
retically and experimentally for over half a century.1 Despite
substantial progress in this field, there are a lot of issues which
are still eagerly debated. MIT in vanadium dioxide, VO2, is of
great interest owing to application perspectives. Large changes
of resistivity and optical properties at almost room temperature
allow one to use this material for modern electronics devices,
in different optical and electric switches, and, in particular,
for so-called intelligent windows.2 The transition from a high-
temperature metallic rutile (R) phase to a low-temperature
insulating monoclinic (M1) phase is observed at 340 K and
ambient pressure.3 The crystal structures of both phases
are closely related. While in high symmetry the R phase
equidistant vanadium atoms form chains along the cR axis,
a unit cell of the M1 phase can be regarded as one of the R

phase doubled along the cR axis with dimerization and tilting
of vanadium atoms (Fig. 1).

The most intriguing challenge is to determine a scenario
of the transition and the role of correlation effects. The first
qualitative explanation of the transition was proposed by
Goodenough.4 In Goodenough’s picture, dimerization of vana-
dium atoms in the M1 phase results in bonding-antibonding
splitting. The d electrons occupy the bonding combination
leading to a band gap between the bonded and π states. The
system becomes nonmagnetic,5,6 which favors Peierls picture
of the transition. A different interpretation was proposed
by Rice et al.,7 who pointed out that in another insulating
monoclinic phase (M2), half of the vanadium chains behave

as the Heisenberg antiferromagnetic ones with spin 1/2. The
temperature dependence of magnetic susceptibility5 and recent
spectroscopy experiments8,9 for the high-temperature R phase
also show that correlation effects are essential.

Conventional band structure calculations10 do not reveal an
insulating behavior of the M1 phase. It is important to note that
for the R phase, the experimentally observed peak8,9 at −1 eV
is not also reproduced by the local density approximation
(LDA). Thus, the conventional band structure methods leave
the issue of the transition scenario open. The GW calculations
allow one to obtain an insulator,11 but many-body corrections
do not much affect the shape and the dispersion of the LDA
energy bands, enhancing the separation of the V 3d bands
into bonding and antibonding subbands. In the recent work of
Eyert,12 vanadium dioxide was investigated using the hybrid
density functional,13 which combines the nonlocal Hartree-
Fock expression with the generalized gradient approximation
(GGA). In this work, the insulating phases are well described in
terms of the band gap and long-range magnetic ordering, while
the comparison with spectroscopy and magnetic experimental
data for the R phase is less satisfactory. The account of
strong electron correlations was done in the calculations14,15

by the LDA + DMFT method, which combines the LDA
and dynamical mean-field theory (DMFT), and it was shown
that the short-range spacial correlations are essential for a
proper description of the M1 physics.16,17 Hence, most of
the computational results show the importance of spacial
intradimer (as minimum) correlations for the low-temperature
M1 phase.

The intersite Coulomb interactions simultaneously with
on-site ones in first-principles calculations have been taken
into account in Ref. 18. Recently, the DFT +U +V method,
which is an extension of the DFT +U approach,19 has been
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proposed.20 In this method, extra terms corresponding to
the on-site and intersite Coulomb interactions are added to
the density functional theory (DFT) functional. It has been
shown20,21 that including intersite Coulomb interactions is
important for systems where hybridization between orbitals
centered on different sites plays a significant role. This
is especially relevant for highly covalent transition-metal
compounds and, in particular, for VO2.

In this work, we go one step further and propose the
LDA + DMFT +V approach (although the LDA is used for the
notation, the GGA is also valid). In this scheme, the material
specific aspects come from the band structure calculations; the
strong on-site electron-electron correlations are treated with
use of the DMFT, while the intersite Coulomb interactions,
poorly described in the above-mentioned approximations,
are regarded in the static mean-field way. Therefore, this
method allows one to describe spacial correlations missed in
the conventional single-site LDA + DMFT and is an order
of magnitude faster than any available extension of DMFT
that considers spacial degrees of freedom. The proposed
approach as well as the cluster DMFT22 (CDMFT) was
used in the present work to study the spectral and magnetic
properties of the M1 phase of vanadium dioxide. The detailed
analysis of the CDMFT results validate the applicability of the
LDA + DMFT +V method. It is demonstrated that essential
intersite correlation effects within vanadium dimers can be
captured by the static mean-field approximation, and the
insulating ground state of the M1 phase can be properly
described.

We conclude that the M1 phase of VO2 is a correlated band
insulator and the Peierls scenario, enhanced by the intersite
correlation effects, is the driving mechanism of the MIT in
vanadium dioxide. This paper is organized as follows. In
Sec. II, the extended Hubbard model and DFT within the LDA
are combined in the LDA + DMFT +V method. In Sec. III, the
spectral and magnetic properties of the M1 phase are studied.
The obtained results are compared with those of previous
calculations and experimental data. In Sec. IV, the conclusions
and perspectives are discussed.

II. METHOD

The Hubbard model,23 due to its simplicity and sound
physical principles, has become one of the most important
models and a powerful tool in the theory of strongly correlated
electron system. It has been extensively used in many-body
systems studied by means of both model Hamiltonians with
adjustable parameters and the first-principles methods. In the
latter case, employing the Hubbard model resulted in the
LDA +U (Ref. 19) and more sophisticated LDA + DMFT24,25

methods, which have been introduced in order to improve the
description of Mott localizations.

The Hubbard model supplemented by the nearest-neighbor
interactions is usually referred to as the extended Hubbard
model26 (EHM), and its Hamiltonian reads as

ĤEHM = Ĥt + ĤU + ĤV , (1)

where the first term represents a kinetic-energy part, while the
last two are on-site and intersite interaction terms, respectively.
These terms, written in the second quantization notations

(for simplicity, angular momentum quantum numbers will be
omitted), have the form

Ĥt = −
∑
〈i,j〉

∑
{m},σ

t
ij

mm′(ĉ+
imσ ĉjm′σ + H.c.), (2)

ĤU = 1

2

∑
i

∑
{m}
σ,σ ′

V ii
mm′m′′m′′′ ĉ

+
imσ ĉ+

im′σ ′ ĉim′′′σ ′ ĉim′′σ , (3)

ĤV = 1

2

∑
〈i,j〉

∑
{m}
σ,σ ′

V
ij

mm′m′′m′′′ ĉ
+
imσ ĉ+

jm′σ ′ ĉjm′′′σ ′ ĉim′′σ , (4)

where ĉ+
imσ (ĉimσ ) denotes the creation (annihilation) op-

erator of an electron with spin σ (= ↑,↓) at the orbital
m of the site i; t

ij

mm′ is the hopping matrix element, and
V

ij

mm′m′′m′′′ ≡ 〈im,jm′|V̂ee|im′′,jm′′′〉 is the matrix element of
the Coulomb interaction between sites i and j (V̂ee is the
operator of the screened Coulomb interaction). The sum over
〈i,j 〉 means the summation over all nearest-neighbor sites,
and {m} denotes the set of magnetic quantum numbers. Being
a simple generalization of the Hubbard model, the EHM
has been extensively used to investigate electron-correlation
phenomena in solids. In many cases, an interplay between on-
site and intersite interactions has been shown to be important,27

leading to a charge density wave or antiferromagnetic order.
Special attention has been attracted to the high-temperature
superconductors, where the role of intersite interactions is still
under debate.28

In order to improve the description of the systems where
on-site and intersite interactions are significant, we combine
the DFT within the LDA and EHM in the LDA + DMFT +V

method, standing as a powerful tool for calculations in an
ab initio manner. In this method, the hopping integrals of
Eq. (2) are calculated by the DFT,24,29 the on-site Coulomb
interaction term [Eq. (3)] is considered in a precise way by the
DMFT, and the intersite Coulomb interaction term [Eq. (4)]
is treated in the static Hartree-Fock-like approximation. In the
framework of the DMFT, a lattice problem with many degrees
of freedom is mapped to the quantum impurity embedded in the
time-dependent self-consistent bath. The detailed description
of the DMFT methods can be found in many sources,30 and
here we will focus only on the inclusion of the intersite
contribution.

Let us consider Eq. (4) corresponding to the intersite term of
the EHM. By means of the static mean-field approximation,31

one can decouple the four-operator term,

ĉ+
imσ ĉ+

jm′σ ′ ĉjm′′′σ ′ ĉim′′σ

⇒ 〈ĉ+
imσ ĉim′′σ 〉ĉ+

jm′σ ′ ĉjm′′′σ ′ + 〈ĉ+
jm′σ ′ ĉjm′′′σ ′ 〉ĉ+

imσ ĉim′′σ

−〈ĉ+
imσ ĉjm′′′σ ′ 〉ĉ+

jm′σ ′ ĉim′′σ − 〈ĉ+
jm′σ ′ ĉim′′σ 〉ĉ+

imσ ĉjm′′′σ ′ . (5)

Assuming collinear magnetic order and introducing an occu-
pation matrix in the following form:

n
ij

m′m′′σ = 〈ĉ+
im′σ ĉjm′′σ 〉, (6)
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the intersite term [Eq. (4)] can be expressed in the single-
particle form,

ĤV =
∑
〈i,j〉

∑
{m},σ

V
ij

mm′m′′m′′′
(
ni

mm′′ n̂
j

m′m′′′σ − n
ij

mm′′′σ ĉ+
jm′σ ĉim′′σ

)
,

(7)

where ni
mm′′ = nii

mm′′σ + nii
mm′′σ . One should notice that the first

term in this equation corresponds to the purely electrostatic
Coulomb interaction between nearest-neighbor sites, while the
last modifies the hopping amplitudes.

Merging the DFT and EHM, one should subtract the
Coulomb contribution from the exchange-correlation poten-
tial to avoid double counting of the Coulomb interaction.
Unfortunately, there is no rigorous way to do this because
the Coulomb interaction energy in the framework of DFT is
calculated as a functional of the charge density. In the case
of an on-site interaction, different approaches to the choice
of the double-counting correction have been proposed and
studied.32 Following these ideas, it is reasonable to assume that
the LDA exchange-correlation potential, being approximated
by that of the homogeneous electron gas, accurately captures
electrostatic Coulomb interactions between different sites in
some averaged sense, while the effects, caused by strong
hybridization between orbitals centered on neighbor sites, are
missed. This eliminates the first term in Eq. (7), resulting in
the single-particle Hamiltonian,

ĤLDA+V =ĤLDA −
∑
〈i,j〉

∑
{m},σ

V
ij

mm′m′′m′′′n
ij

mm′′′σ ĉ+
jm′σ ĉim′′σ . (8)

As shown by Campo and Cococcioni,20 the same result can
also be obtained by variation of the functional

ELDA+V [ρ(r),{n}]=ELDA[ρ(r)]+EV [{n}] − Edc[{n}], (9)

where

EV [{n}] = 1

2

∑
〈i,j〉

V ij

[
ninj −

∑
σ

Tr
(
nij

σ nji
σ

)]
, (10)

Edc[{n}] = 1

2

∑
〈i,j〉

V ijninj . (11)

In these equations, ρ(r) is the charge density, ELDA[ρ(r)]
is the LDA functional, EV [{n}] and Edc[{n}] correspond
to the intersite Hubbard-like functional and double-counting
correction, respectively, and the trace operator indicates the
sum over the diagonal elements of the matrix it acts on,
Tr{O} = ∑

m Omm. Thereby, the contribution of the corrective
functional to the Kohn-Sham potential can be expressed as

V̂ σ
∣∣ψσ

kν

〉 = δEV

δ(ψσ
kν)∗

= −
∑
〈i,j〉

∑
{m}

V
ij

mm′m′′m′′′n
ij

mm′′′σ

∣∣φj

m′
〉〈
φi

m′′
∣∣ψσ

kν

〉
, (12)

where |φj

m′ 〉 are the localized orthonormal orbitals, and |ψσ
kv〉

are the Kohn-Sham orbitals.
Hence, one may conclude that the LDA underestimates

the coupling tendency between states from neighbor sites, as
well as the tendency to the localization of electrons. Accurate
treatment of the intersite interactions is of great importance

when the hybridization between orbitals centered on different
sites is essential (e.g., formation of the molecular orbitals).
Special attention should be given to the compounds where the
electrons are localized on the states belonging to several sites.
One of them is the insulating M1 phase of VO2. As it will
be shown in Sec. III, in this case the LDA underestimates the
bonding-antibonding energy splitting, and taking into account
intersite interactions plays an important role.

The above equations can be easily extended to the case when
interactions between different manifolds are also considered.
However, taking into account multiple interactions is quite
tedious and it is reasonable to consider only the most relevant
ones. In contrast to the on-site interaction that may be
parametrized by two parameters (U and J ) for the spherically
symmetric case, there is no universal parametrization for
the intersite interaction matrix V

ij

mm′m′′m′′′ (however, crystal
symmetry can be used for this). To find these values, one
may employ the same methods which are widely used for
calculation of the on-site interaction parameters, like con-
strained DFT33 or constrained random-phase approximation.34

Hence, we are able to construct the LDA + DMFT + V scheme
without adjustable parameters and keep its high predictive
power. At the same time, since the proposed method is
much cheaper than the LDA + CDMFT, the variation of the
interaction parameters allows for numerical experiments and
the study of the different energy scales, like in the model
approaches.

It is important to notice that when joining the DFT and
model Hamiltonian approach, one should be careful with
the choice of the exchange-correlation potential because each
approach captures the interaction energy in a different way. The
double-counting correction introduced above corresponds to
the mean-field approximation of the many-body problem and
may be used with the LDA and GGA.

III. RESULTS AND DISCUSSIONS

A. Crystal structure and LDA results

In the low-temperature M1 phase, below 340 K, vanadium
dioxide has a monoclinic crystal structure with space group
P 21/c (details can be found in Ref. 35). This structure
is presented in Fig. 1 and can be viewed as a distorted
high-symmetry rutile structure doubled along the cR axis (c
axis of R phase). There is one type of vanadium atoms that
shift to each other, forming dimers tilted with respect to the
cR direction. The dimerized pairs of atoms are connected by
green tubes in Fig. 1 and the tilting is presented by the top view
of the structure. Reduction of the crystal symmetry results in
a lifting of the degeneracy presented in the original R phase.
Each vanadium atom is surrounded by an oxygen octahedron
resulting in a splitting of the d level to triply degenerate t2g and
doubly degenerate eσ

g states. Additional tetragonal distortion
presented in the structure leads to further lifting of degeneracy
of the t2g level to the a1g , π1, and π2 states (d|| and dπ

according to Goodenough’s notations).4 In the local coordinate
system, shown in Fig. 1, by (double) primed axes for the
vanadium atom, the local z′ axis is chosen to be pointed to
the apical oxygen atom, and the local x ′ and y ′ are chosen
to be pointed to the planar oxygens. Hence, the a1g state
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FIG. 1. (Color online) Crystal structure of the monoclinic
M1 phase of VO2. Vanadium and oxygen atoms are denoted by
large (red) and small (blue and cyan) balls. (aR,bR,cR) are rutile
crystallographic axes. Local coordinate axes on the vanadium atoms
are shown by the (double) primed set. The lower part of the figure
shows a lattice top view.

corresponds to the dx ′y ′ orbital, the π states correspond to dx ′z′

and dy ′z′ , and the eσ
g states correspond to dz′2 and dx ′2−y ′2 . This

local coordinate system is obtained by rotating to the Euler
angles (π/4, − π/2,π/4). The double-primed local coordinate
axes are obtained by a proper symmetry operation for the
corresponding vanadium atom. It should be noted that the a1g

orbitals are parallel to the cR axis, resulting in a substantial
overlap for neighbor vanadium atoms.

In order to calculate the electronic structure of the M1 phase
within the LDA, the tight-binding linear muffin-tin orbital (TB-
LMTO) method36 was used. The obtained results are presented
in Fig. 2 and are in good agreement with earlier studies.10

As in the case of the R phase,15 the total density of states
(DOS) is divided into three regions. The completely occupied
part extends from −8 to −2 eV and is of oxygen character
mostly. The middle region, extended from −0.6 to 2.1 eV,
crosses the Fermi level and its partial character corresponds to
the t2g states of vanadium. The highest energy part of the DOS
is separated by a small gap and is located in the energy range
from 2.4 to 5.4 eV.

The dimerization of vanadium atoms leads to the well-
formed bonding-antibonding structure in the a1g partial DOS,
shown in the lower panel of Fig. 2. The bonding states are
located just below the Fermi level (and partially cross it),

FIG. 2. (Color online) LDA density of states (DOS) for the M1

phase. Top panel shows total, V 3d , and O 2p DOS’s per f.u. by
solid (black), dashed (green), and dot-dashed (red) lines, respectively.
Bottom panel shows partial DOS’s of different symmetry for a
vanadium atom. The Fermi level is indicated by the vertical (gray)
line at zero energy.

while their antibonding counterparts are at 1.5 eV. The states
with π symmetry (averaged dx ′z′ and dy ′z′ orbitals shown by
dashed line) correspond to the Vd -Op antibonding states and
are shifted upward on approximately 0.3 eV with respect to the
R phase, due to the increased overlap of these states with the
O states. Hence, the LDA occupations of the orbitals crossing
the Fermi level in the M1 phase differ from those in the R

phase. The a1g orbital is occupied by 0.86 electrons and each
π orbital is occupied by 0.07 electrons.

The low-energy Hamiltonian for the states near the Fermi
level has been constructed with use of the N th-order muffin-tin
orbital (NMTO) method.37 In order to obtain a Hamiltonian
including three bands (V t2g symmetry mainly) for each
vanadium atom in the unit cell, the quadratic (N = 2) muffin-
tin orbital set was used. Hopping integrals for localized
functions of different symmetries are presented in Table I.
One can immediately see that the intradimer a1g-a1g hopping
is the dominant one and defines bonding-antibonding splitting
in the density of states. At the same time, the intrachain
a1g-a1g hopping from one dimer to another is much smaller and
comparable with the rest of the hoppings. The hoppings from
the central atom, V1, to the off-chain atoms are from about 50 to
200 meV. The largest hopping to other distances is smaller than
25 meV. The solution obtained within the LDA is the metallic
one, which is in contradiction with the experimental data.8,9

B. Spectral properties

The spectral properties of the M1 phase are characterized
by a band gap of about 0.6 eV (Ref. 9). One of the approaches
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TABLE I. Hopping integrals (in meV) for d electrons in the M1

phase. The first column indicates the vanadium atoms according to
the notations in Fig. 1. The distances between vanadium atoms are in
the second column. The largest hopping to other distances is smaller
than 25 meV and not shown here.

d (Å) a1g π1 π2

Intradimer a1g −734 −7 11
hoppings 2.62 π1 −7 114 122

π2 11 122 131
Intrachain a1g −58 −27 19

hoppings 3.17 π1 −27 19 64
π2 19 64 12

1 → 2 a1g 9 −57 36
1 → 9 3.65 π1 10 −77 −205

π2 3 40 41
1 → 4 a1g 25 −10 12
1 → 5 3.48 π1 −42 44 −116

π2 62 27 −232
1 → 6 a1g −11 −9 23
1 → 7 3.57 π1 11 22 6

π2 1 −172 −95
1 → 3 a1g −13 −2 −10
1 → 8 3.40 π1 135 −153 −2

π2 −116 −118 18

that allows one to obtain an insulating solution for the M1

phase is the GW scheme.11 Nevertheless, model many-body
corrections do not much affect the shape and the dispersion
of the energy bands, but only rigidly shift the occupied
(unoccupied) a1g states downward (upward) in energy. This
enhances the separation of the a1g band into the bonding
and antibonding subbands, leading to a bandlike character
of the transition. Another approach has been proposed by
Eyert.12 He used the Heyd-Scuseria-Ernzerhof (HSE) hybrid
density functional13 in the framework of the DFT. This hybrid
functional combines the nonlocal Hartree-Fock expression
with the GGA and can be viewed as a screened Coulomb
potential applied only for the exchange interaction in order to
screen the long-range part of the Hartree-Fock exchange.

As shown above, the LDA alone fails to reproduce the
energy-band gap in the M1 phase (see Fig. 2). Although taking
into account on-site Coulomb interactions by the single-site
DMFT approach allows one to correctly describe the R

phase,15,16,38 the insulating ground state of the M1 phase in
this approach can be obtained only with unphysically large
values of the on-site interaction parameter (U � 6 eV). This
indicates that nonlocal correlation effects, neglected in the
single-site DMFT approach, are essential in the M1 phase. To
take into account short-range correlations in vanadium dimers,
Biermann et al.16 have employed the cluster extension of the
DMFT. In this approach, the vanadium dimer was considered
as an impurity in the Anderson model, and hence interdimer
self-energy elements were introduced.

In our calculations, we used the value of the screened
Coulomb interaction, U = 4 eV, and the value of Hund’s
exchange, J = 0.68 eV, from the earlier paper (Ref. 16).
This value of the Coulomb interaction is consistent with
the other theoretical estimations.34 We found also that

FIG. 3. (Color online) Spectral functions for the M1 phase
calculated by the LDA (upper panel) and LDA + CDMFT (lower
panel). The results of photoemission spectroscopy (PES) and O
K x-ray absorption spectroscopy (XAS) with different polarization
(reproduced from Ref. 9) are presented in the lower panel. The Fermi
level is indicated by the vertical (gray) line at zero energy.

LDA + DMFT + V results depend weakly on the particular
choice of U in the range from 3 to 5 eV. For the solution of
the quantum impurity problem, the multiorbital Hirsch-Fye
quantum Monte Carlo (QMC) method was used.39 In the
QMC calculations, the imaginary time was discretized into
L slices so as to keep β/L = 0.25 eV−1 for all temperatures,
where β denotes the inverse temperature. Also, QMC steps
of the order of 106 to 107 were used to satisfy ergodicity. The
spectral functions obtained by the LDA + CDMFT approach
at β = 20 eV−1 are presented in the lower panel of Fig. 3.
One can see that the bonding and antibonding states from the
LDA (upper panel of Fig. 3) are transformed to the narrow
peak below the Fermi level at about −0.7 eV and the broad
states spread from 0.5 to 4.5 eV, respectively. The former is
clearly seen in the photoemission spectroscopy (PES) data9

(reproduced in Fig. 3 by black dots), while the latter centered
at 3 eV can be compared with the polarization-dependent O
K x-ray absorption spectroscopy (XAS) results9 (reproduced
in Fig. 3 by green diamonds and red triangles). Here, the
XAS measurements are used to investigate conduction bands
and correspond to the transitions from the O 1s to the O 2p

states, which are mixed with the unoccupied V 3d ones. The
polarization vector E was pointed parallel (green diamonds)
and perpendicularly (red triangles) to the crystallographic axis
c. The first peaks above the Fermi level at the XAS spectra can
be attributed to the π states, while the strong polarization
dependence suggests that the middle peak, observed only
when E⊥c, indicates the a1g states. Though the position
of the a1g antibonding states in the CDMFT calculations
turns out to be shifted to higher energies with respect to
the XAS measurements, the value of the band gap of about
0.5 to 0.6 eV between bonding a1g and π states is in agreement
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with the experimental data.9 It is important to note that the
obtained splitting between the bonding and antibonding states
is considerably enhanced compared to that from the LDA (1.5
and 3.5 eV, respectively).

Relying on the CDMFT results, Tomczak et al.38,40 have
proposed an effective band structure for the M1 phase, based on
the finding that self-energies in physically meaningful energy
domains are almost energy independent. They constructed an
orbital-dependent static one-particle potential that reproduces
the essentials of the full many-body spectrum. It is necessary
always to keep in mind that the DFT is a theory of a
ground state only, not of excited states. Therefore, the energy
spectrum has no precise physical meaning in the framework
of the DFT. According to this, the proposed correction to the
LDA band structure seems to be quite reasonable. In order
to stress the main qualitative results of these authors, we
would like to revisit this effective band structure. In contrast
to these authors, we used Pade approximants41 for analytic
continuation of the self-energies to the real energy domain.
Neglecting lifetime effects, the excitation energies can be
determined as the poles of the one-particle Green function
(for more details, see Refs. 38 and 40). This results in the
quasiparticle equation and its qualitative solutions can be
obtained graphically. The solutions are the intersections of the
self-energy real part with a frequency stripe of slope one and
a width corresponding to the dispersion of the LDA band. The
real parts of the obtained self-energies for the bonding and an-
tibonding states are presented in Fig. 4 (chemical potential was
subtracted).

Despite some discrepancies, our results are in agreement
with those of the above-mentioned authors in relevant regions.
In order to indicate these regions, gray stripes corresponding
to the LDA bonding and antibonding states are presented in
Fig. 4. One can see that the real parts of the self-energies
only weakly depend on energy in these domains, resulting
mainly in an increase of the bonding-antibonding energy
splitting. The shifting of the π states with respect to the
a1g ones turns out to be less than 0.1 eV and can be
neglected as a minor effect. According to this, one of the main
effects of employing CDMFT is the renormalization of the

FIG. 4. (Color online) Real parts of the bonding (solid red line)
and antibonding (dashed green line) self-energies (chemical potential
was subtracted) calculated by the LDA + CDMFT. The gray stripes
represent the extent of the LDA bands (see text for a discussion).

effective intradimer hopping, resulting in the opening of a band
gap.

Let us consider taking into account intersite Coulomb
interactions in the M1 phase in the framework of the LDA +V

approach. As stressed in Sec. II, the LDA underestimates
the coupling tendency between orbitals centered on neighbor
sites and this effect is proportional to the value of the intersite
occupation. Based on the LDA results, one can conclude
that intersite occupations for all orbitals, except that of
a1g symmetry, are negligibly small, which significantly
simplifies the problem and allows one to consider only
the intersite interactions between a1g orbitals. Then the
intersite Coulomb interaction matrix is reduced to the
scalar, V

ij

mm′m′′m′′′ = V . In this case, the value of intersite
interaction strength, V = 2 eV,42 is close to that in other
transition-metal dioxides21 and to the value obtained for
SrVO3 where vanadium-vanadium bonding is much weaker.34

The orbitally resolved spectral function obtained by the
LDA +V calculation is presented in the upper panel of Fig. 5.
One can see that the almost-fully-occupied bonding states are
pushed down in energy by V/2, while the empty antibonding
states are pushed up by V/2, resulting in a gap of about
0.7 to 0.8 eV between bonding a1g and π states. The band
gap opens at V = 0.9 eV and depends almost linearly on
V according to Eq. (7). Hence, taking into account intersite
correlations only turns out to be sufficient to obtain an
insulating solution for the M1 phase. Nevertheless, the ground
state is beyond a static one-particle description, and, in order
to take into account on-site electron-electron correlations
in the partially filled d band, we use the single-site DMFT
method. The obtained orbitally resolved spectral functions
are presented in the lower panel of Fig. 5. One can see that

FIG. 5. (Color online) Spectral functions for the M1 phase
calculated by the LDA +V (upper panel) and LDA + DMFT +V

(lower panel). The results of photoemission spectroscopy (PES) and
O K x-ray absorption spectroscopy (XAS) with different polarization
(reproduced from Ref. 9) are presented in the lower panel. The Fermi
level is indicated by the vertical (gray) line at zero energy.
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the on-site Coulomb correlations only slightly change the
picture obtained by the LDA +V calculations, leading to a
renormalization of bands. This is in agreement with the results
of the previous studies of correlations in band insulators.43

Besides, the charge gap is correctly opened and the spectral
functions agree well with the experimental data. The
bonding-antibonding splitting turns out to be renormalized by
the on-site electron correlations and is about 3.0 eV.

One can see that the results obtained by the
LDA + DMFT +V and LDA + CDMFT are in agreement with
each other. This can be easily explained in the following way:
Taking into account intersite Coulomb correlations in the
mean-field approximation corresponds to the static (energy-
independent) intersite self-energy elements, which resemble
the ones obtained by the CDMFT. As one can see in Fig. 4,
the self-energy corresponding to bonding a1g states (dashed
line) is nearly energy independent in the energy region around
the Fermi level. In fact, the CDMFT provides a way for
inclusion of the intersite interactions, but the use of this
approach is limited to the cases when a simple cluster can be
easily introduced according to the physical reasons. In more
sophisticated cases, when an elementary cluster includes many
sites or orbitals, calculations require significant computational
resources and very often cannot be put into practice. Moreover,
one should keep in mind that the CDMFT breaks translational
invariance, because the components of self-energy within the
cluster are kept, but not the components between clusters.
Thereby, the proposed LDA + DMFT +V method is the next
step forward toward the combination of the DFT and model
Hamiltonian approach into a powerful tool for the description
of the strongly correlated electron system.

In order to describe the spectral properties of the M1

phase more accurately, it is necessary to take into account
quite strong hybridization between the V 3d and O 2p states
and use the “full” basis including these states for the DMFT
calculations. In this case, in addition to the correlated states,
the uncorrelated ones appear in the low-energy Hamiltonian
and a double-counting correction for the on-site interaction
has to be introduced. This allows one to compare the obtained
spectral functions, which include both V 3d and O 2p states,
with the experimental ones in a more accurate manner. These
activities are already in progress and results will be presented
elsewhere.

C. Magnetic properties

The metal-insulator transition in VO2 is accompanied by
substantial changes in magnetic properties. According to the
experimental data,5,6 the M1 phase of stoichiometric VO2 has a
temperature-independent Van Vleck paramagnetic susceptibil-
ity of about 6.5 × 10−5 emu/mole. This is in contrast with the
metallic R phase, where uniform magnetic susceptibility obeys
the Curie-Weiss law with the effective local magnetic moments
formed by vanadium d electrons.5,15 The nuclear magnetic
resonance (NMR) measurements44 indicate the absence of
magnetic order in the M1 phase, suggesting that it does not
belong to the classical Mott-Hubbard insulators, where on-site
Coulomb repulsion leads to the formation of local magnetic
moments. This fact favors the band picture, where electrons
localize on molecular orbitals of vanadium pairs. However, two

other insulating phases called M2 and M3 (also called T phase)
have been discovered45 below the transition temperature (TMI).
These phases can be obtained by small doping44 or uniaxial
stress46 applied in the [110]R direction in pure VO2. In the
monoclinic M2 phase, there are two types of vanadium chains.
One-half of the chains is formed by dimerized V atoms,
which, in contrast to those in the M1 phase, are not tilted
with respect to the chains direction. The other half consists of
equidistant V atoms, which are tilted due to electrostatic forces
and form zigzags. The NMR44,47 and electron paramagnetic
resonance48 experiments found the formation of the local
magnetic moments on atoms of the zigzags chains, suggesting
that these chains should be attributed to the Mott-Hubbard
type. Pouget et al.44 have shown that these zigzag chains can
be described in terms of the noninteracting linear Heisenberg
chains with spin S = 1/2 and concluded that all insulating
phases of VO2 should be regarded as Mott-Hubbard insulators.
Thus, the detailed analysis of the magnetic properties of
the M1 phase turns out to be significant to understand the
underlying physics and provides a way to verify the validity
of the approaches used.

Following the linear response idea, the uniform magnetic
susceptibility can be calculated directly in the DMFT by
adding to the Hamiltonian a term that corresponds to the
interaction with the external magnetic field Hz, and measuring
the magnetization of the compound. Then, the uniform
magnetic susceptibility can be defined as

χ (T ) = m(T )

Hz

, (13)

where m(T ) = ∑
m n

↑
m − n

↓
m is the magnetization at the given

temperature. A few magnetic fields in the range from 0.02
to 0.1 eV were used to check and satisfy the condition of
response linearity. The uniform magnetic susceptibilities of
the M1 phase calculated by different approaches, as well as
the experimental temperature-independent value,5 are shown
in Fig. 6. Due to the dominance of the crystal-field effects upon
the temperature effects and computational costs of the QMC
method at low temperatures, the calculations were performed
in the vicinity of TMI and slightly above it. One can clearly see
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       value

FIG. 6. (Color online) Uniform magnetic susceptibilities for the
M1 phase. The LDA + DMFT results are shown by black triangles,
the LDA + CDMFT by red squares, and the LDA + DMFT +V by
green circles; the temperature-independent experimental value from
Ref. 5 is indicated by the blue arrow.
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FIG. 7. (Color online) Local spin-spin correlation functions in
imaginary-time domain obtained by the LDA + CDMFT for the
M1 phase (upper panel) and calculated exactly for the single-band
Hubbard dimer at half-filling with parameters corresponding to the
M1 phase (lower panel). Insets: the temperature dependences of the
local spin susceptibilities.

that the conventional single-site DMFT approach shows strong
temperature dependence of the uniform magnetic susceptibil-
ity which resembles the Curie-Weiss law. This corresponds to
the formation of effective local magnetic moments and con-
tradicts the experimental results.5,6 Both the LDA + CDMFT
and LDA + DMFT +V have found the uniform magnetic
susceptibility to be almost temperature independent nearby
TMI, leading to a qualitative agreement with the experimental
data. A quantitative agreement is not observed because the
deformation effects of electron shells by the external magnetic
field, resulting in the Van Vleck paramagnetic susceptibility,
were not taken into account in the calculations. We would like
to stress that the LDA + DMFT +V allows one to calculate
at a lower temperature than the LDA + CDMFT at the same
computational costs.

We have also calculated the local spin-spin correlation
functions 〈Sz(τ )Sz(0)〉, which are shown in Fig. 7. Although
these functions are pure local quantities and cannot be directly
compared to the experimental data, they give a sound source of
information about the magnetic properties of the system. The
imaginary-time dependences of these correlation functions
indicate the time scales of local moment “living” on a site.
In the case of strong electron correlations, these functions are
expected to depend weakly on the imaginary time, while for
the weak Coulomb correlations, they should vary rapidly. The
local spin susceptibility can be defined as

χloc = g2
s

3

∫ β

0
dτ 〈S(τ )S(0)〉. (14)

Here, gs = 2 is the electron-spin g factor, S is the spin operator
on a site, and β is the inverse temperature. In contrast to the uni-

form magnetic susceptibility, the local spin susceptibility does
not include the spin polarization of the impurity Weiss field.
From the spin-spin correlation functions presented in Fig. 7,
one can conclude that at low temperatures, the local-moment
lifetimes are small, indicating the nonmagnetic ground state of
the M1 phase. The almost-temperature-independent local spin
susceptibility (see the inset on the upper panel in Fig. 7) is
in agreement with the previous observation and confirms the
absence of localized moments on the sites.

In order to reveal the M1 physics, let us consider a simple
model consisting of the isolated single-band Hubbard dimers.
Each of these dimers consists of two sites with the single-
particle hopping t between them, and with Coulomb repulsion
U for electrons being on the same site. As already shown,38,44

this simple system at half-filling serves as a quite reliable
model for description of the M1 phase. Besides, due to its
simplicity, this problem can be solved exactly. The ground
state is a singlet with energy E−

s = U/2 −
√

(U/2)2 + 4t2. It
is given by

|ψGS〉 = sin θ√
2

(|↑,↓〉 + |↓,↑〉)

+cos θ√
2

(|↑↓,0〉 + |0,↑↓〉), (15)

where θ can be defined as

tan θ = − 2t

E−
s

= 4t√
U 2 + 16t2 − U

. (16)

The first excited state is a triplet placed at Et = 0. The second
and third excited states are singlets with energy Es = U and
E+

s = U/2 +
√

(U/2)2 + 4t2, respectively. The dependences
of these energy eigenvalues and tan2 θ on the U/t ratio are
presented in Fig. 8. In the noninteracting limit, the triplet state
is above the singlet ground one on 2t . The latter is characterized
by a single Slater determinant. As the U/t ratio increases,
the ground state acquires many-body features (i.e., |↑,↓〉 and
|↓,↑〉 states become more favorable) and the energy required
to promote an electron to the first exited state decreases. In
the Heitler-London (correlated) limit U  t , the states with
a doubly occupied site are almost projected out, while the

FIG. 8. (Color online) Energy levels of the Hubbard dimer at
half-filling. The inset shows the dependence of tan2 θ on the U/t

ratio. The dashed vertical lines indicate U/t = 5.45, corresponding
to the parameters of the M1 phase.
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singlet-triplet splitting is substantially reduced with respect
to the noninteracting case and can be approximated by J ′ =
4t2/U . In this limit, the charge fluctuations are almost frozen
and only the spins of electrons can fluctuate, thereby reducing
the physics of the system to the spin physics described by
the so-called t − J model.49 In Fig. 8, the dashed vertical
lines indicate U/t = 5.45, corresponding to the parameters of
the M1 phase. Although the system with these parameters is
in an intermediate regime, the probability for electrons to be
observed on the different sites is about nine times larger than
the double-occupation case. Thus, it can be inferred that the
correlation effects in this case are essential and the ground
state is close to the Heitler-London limit.

At zero temperature, this model system is completely in
the singlet ground state and hence nonmagnetic. At higher
temperatures, the triplet states are admixed to the ground state,
resulting in some magnetic response on the external magnetic
field. The spin-spin correlation functions for this system at
low temperatures are presented in Fig. 7. One can see that
they resemble the ones for the M1 phase, confirming that the
considered system is a reliable model for the M1 phase. The
molar magnetic susceptibility for this system can be expressed
as

χmol = 4 g2
s μ

2
BS2NAβ

3 + e−βE−
s + e−βEs + e−βE+

s
, (17)

where μB is the Bohr magneton, S = 1/2 is the spin quantum
number, and NA is the Avogadro constant. The tempera-
ture dependencies of the uniform magnetic and local spin
susceptibilities for the set of isolated Hubbard dimers at
half-filling with parameters corresponding to the M1 phase
are shown in Fig. 9. One can clearly see that at low
temperatures, including the temperature range for the M1

phase, both curves are almost temperature independent and the
system is nonmagnetic. The fact that the values of local spin
susceptibility at low temperatures are much larger than that of
the uniform magnetic one arises from the different physical
quantities they represent. The uniform magnetic susceptibility
characterizes the magnetic response of a system on the external
magnetic field, whereas the local spin one represents the local
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FIG. 9. (Color online) Uniform magnetic (solid red line) and local
spin (dashed black line) susceptibilities for the set of isolated single-
band Hubbard dimers at half-filling with parameters corresponding
to the M1 phase. Inset: temperature dependences of the inverse
susceptibilities.

spin dynamics. As the temperature increases, the breaking
of the covalent bond and formation of the local magnetic
moments can be observed. From the linear behavior of the
inverse magnetic susceptibilities at high temperatures (see
the inset in Fig. 9), one can conclude that both curves are
in agreement with each other and represent the Curie-Weiss
law.

We conclude that the magnetic properties of the M1 phase
are correctly described by both the LDA + CDMFT and
LDA + DMFT + V approaches. The simple model consisting
of the isolated single-band Hubbard dimers indicates that the
nonmagnetic ground state can be attributed to the singlet states
of vanadium dimers.

IV. CONCLUSIONS AND PERSPECTIVES

We have studied the spectral and magnetic properties
of the insulating M1 phase of VO2 and demonstrated that
essential intersite correlation effects within vanadium dimers
can be captured by the static mean-field approximation in the
framework of the proposed LDA + DMFT +V approach. This
approach combines the material specific aspects within the
DFT with the extended Hubbard model and allows one to
correctly describe the insulating ground state of the M1 phase.
The obtained results are in agreement with the experimental
data and allow one to conclude that intersite correlations in
vanadium dimers enhance bonding-antibonding splitting with
respect to the LDA one, resulting in an insulating solution,
whereas on-site correlations lead to a renormalization of bands.
Hence, the M1 phase belongs to the correlated band insulators
class and the Peierls scenario, enhanced by the intersite
correlation effects, is the driving mechanism of the MIT in
VO2. We have also demonstrated that the vanadium dimers
are the key units for a correct description of the magnetic
properties of the M1 phase. The nonmagnetic ground state can
be attributed to the singlet states of vanadium dimers.

The LDA + DMFT +V approach can also be applied
to other highly covalent transition-metal compounds where
hybridization between orbitals centered on different sites
plays an important role. Thus, the proposed approach can be
considered as a powerful tool for calculations in an ab initio
manner and may help shed light on some important issues.
The detailed analysis of the spectral and magnetic properties
of other vanadium dioxide phases will be the subject of our
further research.
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