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Induced delocalization by correlation and interaction in the one-dimensional Anderson model
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We consider long-range correlated disorder and mutual interacting particles according to a dipole-dipole
coupling as modifications to the one-dimensional Anderson model. Technically, we rely on the numerical exact
diagonalization of the system’s Hamilitonian. From the perspective of different localization measures, we confirm
and extend the picture of the emergence of delocalized states with increasing correlations. Besides these studies, a
definition for multiparticle localization is proposed. In the case of two interacting bosons, we observe a sensitivity
of localization with respect to the range of the particle-particle interaction and insensitivity to the coupling’s
sign, which should stimulate new theoretical approaches and experimental investigations with, e.g., dipolar cold
quantum gases.
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I. INTRODUCTION

When P. W. Anderson introduced a simple quantum model
to represent a disordered lattice,1 it turned out that the
contained physics is surprisingly complex, i.e., there exists
the phenomenon of Anderson localization, which is related to
an exponential decay of the quantum mechanical probability
distribution. A specific subclass of Hamiltonians Anderson
studied reads

Hs =
L∑

i=1

εic
+
i ci + J

L−1∑
i=1

c+
i ci+1 + H.c., (1)

which represents a single particle in a one-dimensional chain of
L sites with random onsite potential εi and kinetic (hopping)
energy J . We assume the formalism of second quantization
where the operator c

(+)
i annihilates/creates a boson at site i,

and hence we refer to Eq. (1) as the disordered Bose-Hubbard
model without mutual interaction. One can either derive Hs

from the tight-binding approximation of a continuous model2

of noninteracting particles in an external potential or one takes
it ab initio as a discrete model.

Based on the renormalization group flow idea (as usual
in condensed matter physics, the flow is parametrized by the
system size) one can argue that the conductance of a disordered
solid may vanish for sufficient large systems.3 In particular,
the one-dimensional disordered system, Eq. (1), becomes an
insulator in the limit L → ∞.

An explicit argument for localization of all states |E〉
satisfying Hs |E〉 = E |E〉 can be established by exploiting the
transfer matrix method4 and a theorem due to Fürstenberg.5

On the other hand, there is Bloch’s theorem,6 which induces
periodic, i.e. delocalized states for a periodic lattice potential
εi . Hence the random nature of the potential must be obviously
the key feature that leads to localization: a criterion based on
the differentiability of the disorder potential εi was recently
studied to understand the degree of randomness necessary for
delocalization.7

In order to investigate the impact of correlation on localiza-
tion, we introduce a specific disorder model that extrapolates
from a pure random sequence ε1,ε2, . . . ,εL to a periodic,
and thus correlated, structure in Sec. II. It was first used by
Moura and Lyra8 and similar investigations followed.9,10 In

a first step, we will review the model on the basis of three
different localization measures. Furthermore, we utilize one of
those quantities to establish the phase diagram—namely, the
dependence of localization with respect to disorder strength
and the amount of correlation among the εi . While a previous
study by Shima et al.11 focused on the properties of states in
the band center, our measure in use accounts for the global
aspect, i.e., it incorporates properties of the entire spectrum.

The potential interest in the sensitivity of Anderson local-
ization on correlated disorder arose due to recent experiments
with Bose-Einstein condensates (BECs) where the direct ob-
servation of the atomic density distribution provides access to
the quantum-mechanical probability distribution.12,13 Besides
correlation, the impact of interaction is an issue one is naturally
faced with when studying localization in BECs. Anderson
already mentioned the importance of particle interaction14

on localization and worked out theoretical investigations in
collaboration with L. Fleishman.15 Over the years, various
aspects and features of interacting particles in a random
potential have been figured out, but the problem remains
a challenging topic for present research since results from
different approaches do not always coincide. Just recently,
the phase diagram of the three-dimensional disordered Bose-
Hubbard model was established.16

In our discussion on interacting particles in the presence
of a disordered onsite potential (see Sec. III), we first want to
focus on a suitable definition of multiparticle localization and
then turn to the extension of Eq. (1), namely,

Hmp = Hs +
L∑

i,j=1

Uij c
+
i c+

j cicj , (2)

with a two-body interaction potential Uij . We model in-
teraction according to a magnetic dipole-dipole coupling
obtained in BEC experiments with dipolar gases,17,18 which
is beyond the standard treatment of the onsite interaction term
U0

∑
i n̂i(n̂i − 1) with n̂i ≡ c+

i ci present in the disordered
Bose-Hubbard model. By explicitly diagonalizing Hmp for two
interacting bosons, we explore the relevance of interaction, for
localization, and discuss an interesting symmetry involving
the sign of the interaction potential Uij .
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II. CORRELATED DISORDER

To model correlated disorder, we use the following pre-
scription for the onsite potential values εi in Eq. (1):

εi =
N/2∑
k=1

[
2πk

N

]−α/2

cos

(
2π

N
ki + φk

) {
α � 0,

N � L,
(3)

where i = 1, . . . ,L. Here, α denotes the correlation parameter,
φk ∈ [0,2π ) are N/2 uniformly distributed random phases
and N is a natural number that should be much larger than
the number of lattice sites19 L. Roughly speaking, the εi

represent the discrete Fourier transform of k−α , i.e. they model
an algebraic decaying power spectrum.20 One is therefore used
to refer to the εi as long-range correlated and, indeed, if we
turn back to the continuum limit, we can argue that the εi

are correlated according to an algebraic decay for α ∈ (0,1).
The case α = 0 corresponds to almost uncorrelated disorder,
which is close to the perfect disorder Anderson assumed in his
model. More details on properties of the εi from Eq. (3) are
provided in Appendix.

A. Localization measures

In order to detect the localization-delocalization transition,
we introduce three different measures: (a) the normalized
standard deviation21 (NSD), (b) the inverse participation
ratio22 (IPR), and (c) the nearest neighbor distribution23

(NND).
While the NSD and the IPR are derived from the spatial/site

probability distribution

ψ2
E(i) ≡ |〈i|E〉|2 with Hs |E〉 = E|E〉 and |i〉 ≡ c+

i |0〉,
(4)

where ci |0〉 = 0, the NND depends on the spectral values E

only. Given a chain of L sites, we calculate

NSD(E) ≡ 〈i2〉 − 〈i〉2

(L2 − 1)/12
, (5)

where 〈.〉 ≡ 〈E |.| E〉 denotes the expectation value, and hence
the NSD derives the spatial variance of the lattice site index
i for some |E〉 with respect to the state whose probability
distribution is uniform on the lattice.

In the case of the IPR, one quantifies the inverse number
of sites where ψ2

E(i) significantly differs from zero. Since
〈E|E〉 = ∑L

i=1 ψ2
E(i) = 1, we state that

IPR(E) ≡
L∑

i=1

[
ψ2

E(i)
]2 ∼ 1

L̃
, (6)

with L̃ defined as the number of sites that are occupied by |E〉.
Indeed, we can convince ourselves that IPR ∼ 1 and IPR ∼
L−1 L→∞−−−→ 0 for localized and delocalized states, respectively.

In contrast, the NND considers the spectral properties of
Hs . More precisely, we evaluate fluctuations of level spacings
around a local mean s̄n by computing

sn ≡ (En+1 − En)/s̄n with s̄n ≡ En+1+ m
2

− En− m
2

m + 1
, (7)

and deriving the distribution P (s) of the nearest-neighbor
spacings sn. Here, we labeled the spectral values according to
E1 � E2 � · · · � EL and the division by s̄n unfolds4 the level
spacings to relate different parts of the whole spectrum to each
other. The procedure of unfolding is not unique24 and m = 2m′
with m′ ∈ N is left as a free parameter that defines the notion
of local. We choose it such that m � L, on the one hand, and
we include enough energy values for reasonable statistics on
the other hand; in fact, we used m ∼ 20 for L ∼ 103.

The NND is not as obvious as the former measures.25,26

Intuitively, the argument works as follows. Taking two dif-
ferent energy eigenstates |E〉 ,

∣∣E′〉 that do not significantly
overlap in site space, we assume them to be almost orthogonal,
i.e., they are in some sense independent from each other
and nothing prevents the corresponding energy values to be
arbitrary close, s → 0. But if the overlap increases (extended
states), the levels start to repel, E �= E′.27 Quantities that
are statistically independent exhibit a Poissonian distribution
and thus the corresponding NND should be28 P (s) ∼ e−s . In
contrast, P (s = 0) = 0 is reasonable to expect for delocalized
states.

B. Numerical results

Turning back to Eq. (1) we rescale Hs by J , i.e., Hs →
J−1Hs , which does not alter the Hamiltonian’s eigenstates but
multiplies the spectral values E by a factor of J−1. Since we
restrict the εi to the finite interval [−�

2 ,�
2 ], we introduce the

parameter

κ ≡ �/J (8)

that indicates the strength of disorder. Thus we are faced
with a two-dimensional set of system parameters (α,κ) and
from the following as well as Appendix, it becomes clear
that increasing α corresponds to increasing correlations up to
long-range correlated disorder. Moreover, since the NSD and
the IPR only depend on |E〉, we rescale and shift the spectrum
such that the rescaled values E → e obey −0.5 � e � 0.5
when plotting these quantities resolved in energy.

To set the stage, we want to relate our numerical results
to previously published ones. Since it is common practice to
attempt localization by computing the Lyapunov exponent,4

we establish an exponential fit to |E〉.29 More precisely, our
numerics picks out the maximum ψ2

E(i0) and performs an
exponential fit into the direction singled out by max(i0,L − i0).
From ψ2

E,f it (i) ∼ exp (−γ |i − i0|) we extract γ (E) and define
the localization length

LL(E) ≡ γ −1(E)/L. (9)

The corresponding result for intermediate disorder κ = 1
is shown in Fig. 1 and it exhibits reasonable qualitative
agreement with Ref. 8, Fig. 5; namely, delocalized states
γ −1 ∼ L → LL ∼ 1 arise in a finite range around the band
center e = 0 when the correlation within the disorder potential
εi is increased. This interpretation also coincides with the plot
presented in Ref. 9, Fig. 3, where localization was quantified
by means of a measure based on the density of states

DOS(E) ≡ dn

dE
, (10)
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LL at κ = 1
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FIG. 1. (Color online) Energy-resolved plot of the localization
length LL for different correlation parameter values α to compare our
results from exact numerical diagonalization to investigations that use
the transfer matrix method to obtain the Lyapunov exponent γ , cf.
Ref. 8, Fig. 5. We used a system of L = 3500 sites and averaged over
50 disorder realizations. The inset transparent to the main panel in
the background presents numerical data of LL(0) for different system
sizes, which underpins the reported delocalization transition around
α = 2.

which defines the number dn of energy eigenstates |E〉 in a
given interval [E,E + dE]. In particular,

∫ E2

E1
dEDOS(E) is

the number of states |E〉 with E1 � E � E2 and rescaling the
DOS simultaneously with the spectrum {E} is understood to
fulfill the normalization condition 1 = ∫

dEDOS(E).
Moreover, the work of Moura and Lyra mentioned above

supports delocalization at α = 2 for states at the band center.
Therefore we depicted a cut of Fig. 1 at e = 0 (dashed line) in
the relevant correlation parameter range α ∈ [1,3] and checked
LL(0) according to a finite size analysis, inset of Fig. 1.
Indeed, up to α ≈ 2, the LL(0) decreases with increasing
system size L, while above this correlation parameter value it
remains relatively constant. Assuming that this trend persists
for even larger system sizes, the data support that α = 2 marks
a qualitative difference between systems with smaller and
larger correlation, respectively. While the relative extent of the
states with respect to the system size falls off for 0 � α � 2,
it remains constant for α � 2 in the thermodynamic limit,
L → ∞ (extended states).

However, we would like to address the question where
in terms of α does the localization-delocalization transition
takes place from the perspective of the measures introduced
in Sec. II A. Instead of a sharp transition at α = 2, which is
supported by Fig. 1 and publications mentioned above, we
suggest a smooth crossover in 1 � α � 2. Investigating the
distribution P (NSD) most obviously illustrates this statement
and we present it in Fig. 2. Although the major fraction
of localized states (NSD � 1) becomes delocalized at α ≈
2, there is a finite fraction that splits apart the localized
region 0 � NSD � 0.2 around α = 0.5 and drifts toward the
delocalized regime NSD ≈ 1 up to α ≈ 2. This observation
remains stable in the numerically studied range of system sizes
L = 1000, . . . ,3500.

NSD distribution P(NSD) at κ = 1
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FIG. 2. (Color online) Plot of the distribution P (NSD) of the
spatially normalized standard deviation, see Eq. (5), at intermediate
disorder, κ = 1; it supports that localization→delocalization takes
place rather smoothly than according to a sharp transition. As for
Fig. 1, we used L = 3500 and the averaging was taken over 50
disorder realizations. The inset transparent to its background shows
results for different system sizes and supports our crossover picture.
A more detailed description is given in the main text.

An explicit plot of the finite-size analysis performed with
respect to our crossover picture is given by the inset of Fig. 2.
Convoluting the NSD with the DOS, i.e.,

NSD ≡
∫

dENSD(E)DOS(E), (11)

yields a single quantity to characterize the global localization
property of the disorderd system at fixed correlation parameter
α. In the spirit of the previously applied LL dependence on
L, the inset of Fig. 2 provides the system size dependence
of the averaged normalized standard deviation NSD; up
to α ≈ 1.5, NSD decreases with increasing system size L

indicating that the Hamiltonian’s eigenstates stay localized
in the thermodynamic limit. Above α ≈ 1.5, the averaged
standard deviation that is normalized to L remains unaltered
for the accessed number of sites—a signature of delocalization
from this global point of view. Remarkably, the numerical data
of NSD form a plateau in at least 1.5 � α � 2, before growing
up in absolute value with increasing correlation, which is more
evidence to the crossover picture we are in favor of.

Similarly, we investigate the IPR taking into account the
DOS from Eq. (10). Since we are interested in the localization
property of the whole system, it is necessary to account for
the number of states with a certain localization measure value.
Hence the IPR and the DOS are plotted simultaneously in
Fig. 3 and the inset of the upper panel presents an averaged
version of the inverse participation ratio in total analogy to
Eq. (11) with NSD(E) replaced by IPR(E).

From a naive point of view, we could conclude that even
for weak correlation, α � 0.5, the system is delocalized, since
there are only a few localized states near the band edges,
|e| = 0.5, while the rest of the spectrum exhibits an IPR
value corresponding to delocalization. Moreover, increasing
correlation enhances localization up to α ≈ 1, which seems
unexpected. But if we include the DOS (lower panel of
Fig. 3), the picture drawn before reveals: we realize that almost
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IPR (top) and DOS (bottom) at κ = 1
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FIG. 3. (Color online) Smooth localization-delocalization
crossover from the perspective of the simultaneous analysis of the
IPR and the DOS. Increasing correlation attracts the system’s states
from the band edges |e| = 0.5 to the band center e = 0 where
delocalized states are present and thus the system becomes more
and more delocalized. Finally, localized states almost completely
vanish above α = 2. The inset of the upper panel (transparent to the
background again) establishes the finite-size analysis similar to the
inset of Fig. 2.

all states have energies near to the band edges for α � 0.5
and thus the system is localized. The crucial fact leading to
the localization-delocalization crossover is that for increasing
correlation, the band center attracts the states from the band
edges to the regime where delocalized states are permanently
present, |e| � 0.3. Localized states at the band edges follow
that trend only up to α ≈ 1 and, for stronger correlation,
they start to disappear until they are almost vanished at
α ≈ 2. According to an argument presented in Appendix, it is
reasonable to refer to disorder with α � 1 as highly correlated
and therefore it provides a hint to the suggestive importance
of α = 1 in our data.

Again, this observation is confirmed by a finite-size analysis
as shown in the inset of the upper panel of Fig. 3. We
note that the IPR values stay quite unaltered for α � 1
when L is increased. Since IPR ∼ L̃−1 ∼ L−1 corresponds
to extended states, which tend to zero in the limit L → ∞
(cf. Eq. (6)), the decreasing behavior of IPR(L) for α � 1
suggests the existence of delocalized states. The bump in the
crossover interval α ∈ [1,2] may represent a finite-size effect
that eventually vanishes in the thermodynamic limit.

Finally, we would like to take a closer look at the
smooth crossover from the perspective of the energy spectrum.
Therefore we investigate the NND from Sec. II A, which also
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FIG. 4. (Color online) Semilogarithmic plot of the nearest-
neighbor spacing distributions for several correlation parameter
values α (L = 3 × 104, κ = 1). The broken line compares them to the
Poissonian distribution PP, which we expect for localized states. As
apparent, the distribution does not converge to PWD of the Gaussian
orthogonal ensemble4 since for α � 1 the onsite potential εi becomes
periodic, local fluctuations among the Ei vanish and thus P (s) has to
be peaked around s = 1, sn = (En+1 − En)/s̄n ≈ 1,α � 1. A more
detailed discussion is given in the main text.

prepares the relevant measure we will use to quantify the (κ,α)
dependence of localization. Plots of the NND for different
correlation parameters α are presented in Fig. 4. For small α,
the result is near to the Poissonian distribution e−s . Deviations
from the theoretical prediction are due to the finite system
size L and the fact that α = 0 does not exactly correspond to
uncorrelated but weakly correlated disorder, see Appendix. We
further observe that the data points for α = 0 and 0.5 almost
coincide, but when increasing α above 0.5, the distribution
starts to deviate more significantly from e−s to become peaked
around s = 1. Returning to Eq. (3), we note that for α � 1 the
summation over the discrete momenta k picks up less cosine
modes, which leads to a periodic onsite potential in the limit
α → ∞. Hence the spectrum of Hs becomes more regular
for increasing α and local fluctuations eventually vanish for
sufficiently strong correlation due to Bloch’s theorem. From
the definition of the unfolded level spacings sn, see Eq. (7), we
conclude that all s values should be centered around 1 due to
the normalization by the local mean s̄n.

At this stage, it is advisable to discuss the Wigner surmise
PWD—a specific NND connected to random matrix theory4—
in the context of localization, especially, in our specific model
system under consideration. In the literature,30–32 it seems to
be common practice to associate

PP(s) ≡ exp(−s) (12)

with localized states and signatures of level repulsion P (s �
1) � 1 in the NND with extended ones after having unfolded
the spectrum of the corresponding disordered system. In
the case of a time reversal symmetric quantum chaotic
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system—represented by real, symmetric random matrices—
the NND adopts the Wigner surmise

PWD(s) ≡ π

2
s exp

(
−π

4
s2

)
(13)

in the thermodynamic limit, cf. Ref. 4 as well as references
therein.

As we sketched it in Sec. II A, it is quite plausible to
assume the first correspondence to be valid. Indeed, the matrix
representation of Hs in the site basis {|i〉} becomes tridiagonal,
i.e.,

Hs,ij ≡ 〈i |Hs | j 〉 (14)

vanishes except for its diagonal elements Hs,ii = εi and the
first off-diagonal entries Hs,ii+1 = Hs,i+1i = J when open
boundary conditions, cf. Appendix, are imposed. In the limit
where the uncorrelated disorder strongly dominates the kinetic
energy, i.e. � � J , the single-particle Hamiltonian becomes
approximately diagonal to zeroth order in J

�
and the solution

to the Schrödinger equation reads |Ei〉 ≈ |i〉 with Ei ≈ εi .
Hence the almost purely random/uncorrelated sequence of
eigenvalues Ei should obey a Poissonian distribution in the
NND.

On the other hand, the Hermitian operator Hs,ij is composed
from real valued entries including random elements that
correspond to realizations of the correlated disorder εi , where
i = 1, . . . ,L. At first glance, it might be therefore reasonable
that the distribution PWD, associated with the Gaussian
orthorgonal ensemble33 (GOE), may arise for α �= 0. In fact,
one is able to explicitly construct an ensemble of random,
tridiagonal, and symmetric matrices: the β-Hermite ensemble
with β = 1 that obeys the same joint eigenvalue probability
density p(E1,E2, . . . ,EL) as in the GOE case.34 Furthermore,
numerical simulations confirmed the Wigner surmise being
appropriate to characterize the NND in the thermodynamic
limit.35 Moreover, investigations like, e.g., Ref. 30, report the
emergence of PWD in the metallic phase of a three-dimensional
disordered electron gas, and Ref. 36 (see also references
therein) considers the so-called two-body random interaction
model where a sufficiently strong interaction magnitude takes
the NND to PWD. Systematic numerical studies of those sparse
random matrix Hamiltonians also yielded evidence that the
statistics of s is suitably described by the Wigner surmise.37

But as explicitly illustrated in Fig. 4, we do not observe
PWD in our specific model system. More precisely, the NND
significantly deviates from the Wigner surmise in the limit
α → ∞; cf. our motivation of a peaked structure for the NND
in this limit above. The message we would like to carve out at
this point is the following: although the literature provides well
established examples of disordered systems, which support
PWD when deriving the NND, one should not expect it to
be valid from the outset. In particular, our studies provide a
counterexample to it. Therefore, the approach to detect the
transition from localization to delocalization by some critical
distribution Pc that is designed to interpolate between PP and
PWD is not well justified in our case and we will discuss this
issue in detail in the following paragraphs, cf. Eq. (18), Figs. 5
and 6.
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FIG. 5. (Color online) (κ,α) dependence of localization in the
one-dimensional Anderson model from the perspective of a measure
based on the nearest-neighbor spacing distribution NND of the
Hamiltonian’s spectrum with L = 3 × 104. The finite-size analysis
with the measure �[L2

NND]2, defined in Eq. (17), is shown as a
white inset. Furthermore, we included the region that corresponds to
extended states according to the work of Shima et al.11 who tackled the
phase diagram by means of states in the band center E = 0 using the
transfer matrix method. The symbols • mark the minimal deviation of
the NND from PSP, cf. Eq. (18), for fixed disorder strength κ and the
symbols × indicate the same minima with respect to PWD, Eq. (13).

One way to extract the localization-delocalization transition
by means of a suitable Pc is performed in, e.g., Ref. 30. Usually,
one investigates the quantity

η ≡
∫

ds[P (s) − PWD(s)]∫
ds[PP(s) − PWD(s)]

(15)

based on the NND P (s) where the integrals may be chosen
on a suitable interval where one expects sensitivity of P (s) on
localization. According to our discussion from Sec. II A one
may take s ∈ [0,smax] with smax smaller than the smallest root
of PWD(s) = PP(s). But since our one-dimensional disordered
system in use does not converge to the Wigner surmise, it is
rather vague to apply Eq. (15) in order to resolve the question
on the impact of correlation on localization.

Nevertheless, the previous discussion invites us to introduce
a similar measure for plotting the dependence of localization
on the parameter space (α,κ), which will be the last purpose of
this section on correlated disorder. We determine the deviation
of P (s) from PP as a quantity for the degree of delocalization.
Thus we define

L2
NND(κ,α) ≡ s−1

max

∫ smax

0
ds[P (s,κ,α) − PP(s)]2, (16)

where, in our case, smax introduces the numerically necessary
restriction to a finite range of s values and we use LNND ≡√

L2
NND as a localization measure. Numerically, LNND features
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the Poisson distribution PP and the Wigner surmise PWD is not an appropriate critical distribution to indicate delocalization for our model under
consideration. The NND P (s) with αmin, denoted by symbols �, is singled out by its minimal deviation from PSP for fixed κ as described in
the main text, cf. also symbols • in Fig. 5. Plotting P (s) with αmin ± 0.1 underlines the two statements we emphasized: (a) decreasing values
of the NND for s → 0 (level repulsion) and (b) development of a peak of P (s) around s = 1 for increasing correlation parameter α due to
extended states (increase of P (1)). The inset in the right panel shows the absolute increase of the minimal deviation from PSP when disorder
becomes more dominating.

the striking advantage that it is sufficient to just compute the
eigenvalues of the Hamilton matrix Hs,ij , and therefore we are
able to reach larger system sizes L with our code.

As we know from the previous considerations on the
localization-delocalization crossover for intermediate disorder
κ = 1, cf. the first part of Sec. II B, correlation with 1 � α � 2
seems to be important for delocalization; varying α in [0,2.5]
will cover it. In the limit κ → 0, i.e., vanishing disorder,
it is obviously hardly possible to recover Anderson’s result
for infinitely extended systems and arbitrary small disorder,
since we have to face the fact to be generally restricted to
finite system sizes L and finite numerical precision. Therefore
we investigate the domain (α,κ) ∈ [0,2.5] × [0.5,10], which
spans a wide range of disorder strengths κ for the interesting
amount of correlation among the onsite disorder potential
values εi . The corresponding result is shown in Fig. 5 with
L = 3 × 104 and the inset presents the finite-size analysis
we performed. Let �L denote the fixed difference between
two system sizes L and L′ such that L = L′ + �L, and
we define

�
[
L2

NND

]2
(L,�L) ≡ |A|−1

∫
A

dκdα
[
L2

NND(κ,α,L)

−L2
NND(κ,α,L′)

]2
(17)

with |A| = |[0,2.5] × [0.5,10]| = �κ�α the area of integra-
tion. The white inset plots that quantity versus L having fixed
�L = 1000; it becomes clear that Fig. 5 exhibits a convergent
trend for increasing L.

Before turning to a more detailed analysis of LNND(κ,α),
let us come back to our comments on a critical distribution Pc.
As stated before, we do not expect the NND to converge to
PWD in the limit α → ∞. In our case, it is not well justified to
assume, e.g., the semi-Poisson law31

PSP(s) ≡ 4s exp(−2s), (18)

which resembles the linear increase of PWD(s) for s � 1 and an
exponential decay for s � 1, to be critical. Numerical evidence
on our claim provides Fig. 5 where we plot both the minimal
deviation of the NND from PSP, symbols •, and PWD, symbols
×, for fixed disorder strength κ . The notion deviation is defined
in total analogy to Eq. (16). In the case of the convergence of the
NND to PWD, we would expect the minima × to appear at the
maximal α value simulated—independent from the disorder
strength κ . But, as visible in Fig. 5, the NND passes by PWD

below α ≈ 2.2. Surprisingly, the deviation minima of the NND
from PSP, symbols •, appear to lie in the crossover region 1 �
α � 2 we emphasized during our previous numerical studies.
Moreover, they follow the qualitative trend of our localization
measure LNND, which one may naively exploit to argue in favor
of PSP as a suitable critical distribution. But a closer look on
the precise shape of the NND with minimal deviation from PSP

reveals significant differences from the semi-Poisson law that
become even more obvious with increasing disorder strength
κ . A corresponding plot is shown in Fig. 6. Therefore, we
do not support the semi-Poisson law PSP as a suitable critical
distribution. In fact, it is designed as a hybrid between the
two limiting cases of a Poisson distribution PP and the Wigner
surmise PWD, which does not apply to extended states in our
specific model.

However, there has been a similar investigation to our
phase diagram in Ref. 11 and we would like to discuss
some conclusions one may draw when comparing the two
results now. Shima et al. report numerical studies that support
the existence of extended states for (κ,α) ∈ [0,4] × [2,5]
(according to their notation κ translates to W and α to p) on
basis of a quantity � similar to our LL evaluated at the band
center e = 0, cf. their Fig. 6. We separated the corresponding
region of extended states in Fig. 5 by a dashed line. There are
two main differences we would like to point out with respect to
our investigations of LNND(κ,α). First of all, the localization-
delocalization crossover depends on the disorder strength,
and second, LNND varies over approximately two orders of
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magnitude in 1 � α � 2 quite independently from the value
κ . Therefore the evaluation of the NND underlines the picture
of a smooth crossover between localization and delocalization
drawn before. The qualitative result of delocalization for all
κ values under consideration is in accordance with our line
of reasoning that the disordered system has to eventually
delocalize for α → ∞ due to Bloch’s theorem. Therefore
it would be interesting to push the numerical analysis of
Shima et al. beyond their maximal correlation α ↔ p = 5.
However, assuming that the deviation of the results of Shima
et al. and our investigations is not caused by some hidden
technicality,38 the discrepancy of our conclusions to Shima
et al. may reveal two useful lessons: (1) it reminds us of the
difficulty of a proper interpretation of the NND with respect
to localization. The quantities � and LL, respectively, are
much closer to the original picture of localization drawn by
P. W. Anderson and thus one may prefer it in cases where
physical intuition is hard to gain. The NND always needs
reasonable understanding of the system under examination.
(2) While Shima et al. focused on the states in the band center
of the disordered one-dimensional system, the NND indirectly
takes into account the averaged localization property of all
states. Assuming that both quantities properly account for
localization, it seems that, at least for (κ,α) ∈ [4,8] × [2,5],
the properties of states with E = 0 are not dominating enough
to show up when all states are included.

As a closing remark we would like to note that the previous
discussion points out that the application of the NND as a
localization measure is not as straightforward as the other
quantities in the particular system we are investigating. Even
though it has an appealing property of being basis independent
and thus easily employable for studying interacting parti-
cles, its interpretation remains complicated. Eventually, this
observation prevents us from utilizing it in order to detect
localization of multiple particles and we would rather like to
argue for an intuitive observable in the section below.

III. LOCALIZATION IN THE PRESENCE OF
INTERACTION

In this second part of our discussion on delocalization in
the one-dimensional Anderson model, we want to turn to
the question how localization is affected by the presence of
interaction. This problem basically goes beyond the scope
of the quantum physics of Hs originally encountered by
Anderson, but—as mentioned in the beginning—the question
of the impact of interaction already attracted his attention
in the late 1970s. Nevertheless, the problem has remained
a challenging topic and experiments with BECs in optical
lattices have raised again the focus on it during the past few
years.

With Eq. (2) at hand, namely,

Hmp =
L∑

i=1

εic
+
i ci + J

L−1∑
i=1

c+
i ci+1 +

L∑
i,j=1

Uij c
+
i c+

j cicj

+H.c., (19)

we introduce an interaction term Uij c
+
i c+

j cicj , where for
Uij = U0δij , one encounters the disordered Bose-Hubbard
model assuming bosonic commutation relations for the lattice

site annihilation and creation operators c
(+)
i . U0 = const

describes contact/onsite interaction, i.e., particles interact only
when occupying the same site. But as we will carry out
in Sec. III B it is convenient to assume the more general
case of Eq. (19) to describe experiments with either Rydberg
gases39,40 or dipolar BECs17 where particles interact even if
separated by a large number of lattice sites. In particular, we
use an algebraic decaying interaction potential and therefore
conceptually bridge from long-range correlation to long-range
interaction.

A. Defining localization

Before proceeding, we have to deal with the question on
how to treat localization for multiple interacting particles,
since localization was originally defined for the single-particle
problem. The literature provides several approaches for a
suitable definition. For example, one can use the Hausdorff
measure41 as a distance between two states ψ0 and ψt where
the latter is the former one evolved in time by the Schrödinger
equation ih̄∂t |ψ〉 = Hmp |ψ〉. In analogy to Anderson’s ini-
tiating paper,1 one can then ask, roughly speaking, for the
absence of diffusion in terms of that distance. Another idea is
to relate localization to macroscopic observables and associate
the notion of localization to vanishing electrical conductivity.42

Furthermore, one can directly study localization in Fock space
as performed, e.g., in Ref. 43. An ansatz independent of the
specific form of the Hamiltonian—and thus easily applicable
to the interacting problem—is the analysis of spectral statistics,
cf. Eq. (7),32 which is driven by the analogy between random
matrices in quantum chaos and the random Hamilton matrices
due to disorder. But as extensively discussed in Sec. II B,
its strength of being representation independent may come
along with some difficulties due to a proper interpretation of
the corresponding results. Furthermore, the application of the
NND to systems of multiparticles shifts the argument of level
repulsion given in Sec. II A to localization in Fock space.

For our purpose, we want to propose a rather intuitive
solution inspired by a quantity that seems to be natural
under the scope of experiments with cold atoms and which is
connected to the particle density. Therefore we try to motivate
a projection of the many-particle state to the lattice sites
i = 1, . . . ,L and apply a one-particle localization measure
afterwards. Of course, the procedure has to coincide with the
notion of single-particle localization if we return to a set of
Fock states with one particle at a given site.

Since one is able to directly image the density profile of
Bose-Einstein condensates in experiment,12 we consider the
question on the probability pi to find at least one particle at
site i. Using the language of second quantization, we define
the projection operator

Pi ≡ ci√
ni + δ0ni

, (20)

where ni is the eigenvalue of the number operator n̂i ≡ c+
i ci

counting the number of bosons at site i and the Kronecker
delta δrr ′ ensures that Pi is well defined for ni = 0. Given an
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eigenstate |E〉 of Hmp, we can answer our question from above
by

pi(E) ∝ |〈E|(P+
i Pi)|E〉|2, (21)

and the constant of proportionality is obtained by the normal-
ization condition 1 = ∑L

i=1 pi . Therefore we end up with a
projection of the multiparticle state |E〉 onto the site basis |i〉
by the probability distribution pi(E). For the single-particle
problem, this projection is exactly given by the site basis
representation of |E〉, i.e., pi(E) = |〈i|E〉|2 = ψ2

E(i), whose
properties we studied for correlated disorder above. Hence the
natural step to perform next is to apply the NSD or the IPR
on pi , where i = 1, . . . ,L. But there is an argument excluding
the application of the NSD measure: let us suppose that two
particles are localized at certain sites i1 and i2, i.e., pi is
peaked for i ∈ {i1,i2}. If |i1 − i2| ∼ L, the NSD will yield
values of order one and we would refer to the corresponding
|E〉 as delocalized. Thus we exclusively consider the IPR and
our definition of localization turns, roughly speaking, to the
association on how many sites are occupied by the interacting
particles.

B. Modelling interaction

As announced above, we want to consider long-range
correlation inspired by exeriments with dipolar gases. Since
no distance �x between neighboring sites enters the theory,
we can think of the limit L → ∞ twofold. It can either
refer to approaching an infinitely large system with finite
�x or the continuum limit �x → 0 of a finite total system
length x = L�x like in experiments. The following discussion
prefers the second picture.

To properly model Uij , let us consider

Uij ≡ U (l) ∼ l−3 for l ≡ |i − j | � 1 (22)

according to the dipole-dipole coupling. However, for l ∼ 1,
the interaction has to be renormalized to reach a finite value
at l = 0, which corresponds to the Bose-Hubbard contact
interaction strength U0. To respect these limits we use the
L dependent interaction

Uij ≡U±
L (l) = ±

([
l

λIL

]3

+ |U0|−1

)−1

. (23)

We choose the interaction Uij to dependent on the system
size L to ensure the constance of the interaction within the
picture of the continuum limit described above when L tends to
infinity. Note that λI > 0 specifies the range of interaction and
the sign ± determines repulsion and attraction, respectively.

C. Two bosons with dipole-dipole coupling: numerical results

So far our considerations to define localization and the type
of interaction were rather general on the total particle number
n = ∑L

i=1 ni and the system size L, respectively. But for
numerical simulations, we need to set up a practically tractable
situation; since the dimension of the corresponding Fock space
grows exponentially with the total number of particles when
assuming constant filling,44 we investigate the specific case

of constant particle number n. Therefore the complexity class
of dim Hmp shrinks to O(Ln) and in the specific case of two
particles we obtain

dim Hmp = L(L + 1)

2
= O(L2), n = 2. (24)

Hence we are able to reach much larger system sizes L in
contrast to the situation L ∼ n and we are especially interested
in the well-established toy model45–48 of two interacting
particles since D. L. Shepelyansky and Y. Imry provide
arguments for the invariance of localization with respect to the
sign of interaction which we can check numerically. Of course,
we do not expect that studying just two interacting particles in
a disordered potential will fully account for the effects of finite
densities in cold atom experiments, but before turning to full
complexity we may gain intuition on the problem by means
of this academic example. As we will describe below, there is
some phenomenological reasoning that relates delocalization
by correlation and interaction.

As in Sec. II B, we apply exact numerical diagonalization to
the Hamiltonian Hmp and hence we have to specify a suitable
basis: We take {|n1 . . . ni . . . nL〉} and Appendix provides
details on the explicit form of the Hamilton matrix for arbitrary
size L(L + 1)/2. The inclusion of an interaction term Uij to
the problem enlarges our space of system parameters from
(κ,α) to (κ,α, ± u0,λI ), where

u0 ≡ |U0| /J (25)

accounts for the rescaling discussed in the beginning of
Sec. II B. We should concentrate on the new degrees of freedom
(±u0,λI ) and therefore we fix κ as well as consider uncorre-
lated disorder α = 0 where Anderson localization of all states
is a proven fact in one dimension for vanishing interaction. To
obtain a measure that characterizes the localization property of
the whole system, i.e. for all |E〉 satisfying Hmp |E〉 = E |E〉
(parameters κ and α fixed), we convolute IPR(E) extracted
from pi(E) with DOS(E) as performed several times during
our numerical studies in Sec. II B, cf. Eq. (11),

IPR(±u0,λI ) ≡
∫

dEIPR(E)DOS(E). (26)

The corresponding result is shown in Fig. 7. As independently
predicted by Shepelyansky and Imry localization seems to be
invariant under the transformation Uij → −Uij . Moreover, the
range λI determines whether the increasing onsite interaction
strength u0 weakly delocalizes or tends to localize the
two bosons. This effect sets in when |U0| ∼ J , i.e., when
the interaction energy becomes comparable to the kinetic
contributions in Hmp.

A plausible argument for the observation that our results
yield independence from the sign of the mutual particle
interaction relies on a discrete spatial symmetry of the Hubbard
Hamiltonian,49,50 which we apply to Eq. (19). Suppose we
transform the spatial wave function 〈j |E〉 such that all,
say, odd site j contributions are inverted and all even ones
are left unchanged. The corresponding operator in the basis
{|j 〉} reads

U ≡ diag(. . . , − , + , − , + , − , + , . . . ) = U+ (27)
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FIG. 7. (Color online) DOS convoluted inverse participation
ratio IPR on the basis of the projection, Eq. (21). The quantity
was evaluated for several rescaled onsite interaction strengths u0

and interaction ranges λI at fixed κ = 5. It is remarkable that
the result seems to be independent of whether the dipole-dipole
coupling is repulsive (orange) or attractive (blue). Furthermore, the
plot suggests that λI is the crucial parameter to trigger whether
increasing interaction strength u0 delocalizes or localizes the system.
Technically, we evaluated systems of size L = 100 and averaged over
30 realizations. The black dashed lines sketch the two branches we
present in Fig. 8 when additionally considering correlation.

and satisfies 1 = U2, i.e., U is a unitary transformation.
In terms of annihilation/creation operators, one obtains
Uc

(+)
j U+ = (−)j c(+)

j = eiπj c
(+)
j . Now, the key observation is

that

UHmp(U0)U+ = −Hmp(−U0) (28)

approximately holds when averaging over disorder realiza-
tions, cf. Eq. (26), since on average for each set {εj }, there will
be another one {−εj } when α = 0. More precisely, if we fix the
disorder potential {εj } the solution Hmp(−U0)

∣∣E′〉 = E′ ∣∣E′〉
is related to the solution of Hmp(U0) |E〉 = E |E〉 with {−εj }
by the identifications E′ = −E and

∣∣E′〉 = U |E〉, which
obviously leaves physical observables/localization measures
invariant.

Concerning the qualitative different localization properties
of the interacting bosons with respect to the range λI , we
would like to provide some phenomenological argument that
may also draw a unified picture of delocalization by correlation
and interaction. Starting from the case of short-range (λI � 1),
attractive interaction the enhancement of localization may
result from the effect of ‘lumping’: Assume sufficiently
strong interaction compared to the kinetic energy J � U0.
Once the particles are nearby, they will be tightly bound in
space and the quantum dynamics should be governed by this
localized behavior. Due to the approximative invariance of
the problem to the interaction’s sign the situation surprisingly
stays unchanged even for repulsive interacting bosons. But
according to Fig. 7, the effect of long-range interaction
λI = 0.3 is qualitatively opposite to the short-range case,
and we numerically checked that the trend to delocalize
with increasing interaction stays up to λI = 1. We would

like to note that there is a minor inaccuracy in notion here.
Although the algebraic decay of the interaction potential Uij

for |i − j | ∼ L is always long-ranged compared to, e.g., an
exponential decrease, in the following the terms short- and
long-range will refer to λI � 1 and λI ∼ 1, respectively.

One may understand Fig. 7 on the basis of the Fock
space Hamilton matrix representation Hmp,ff ′ , cf. Appendix,
Eq. (A9) and Table I. Since disorder εi and interaction Uij

both contribute to the diagonal elements Hmp,ff , we may ef-
fectively relate the resulting multiparticle Hamiltonian matrix
to a corresponding one-dimensional, noninteracting system
of size L(L + 1)/2 with modified disorder ε̃i ′=1...L(L+1)/2 and
extended dynamics beyond the nearest neighbor hopping.51

While short-range interaction just contributes to a few di-
agonal entries of Hmp,ff ′ , an increasing interaction range
λI affects more and more of those matrix elements. Due
to the deterministic character of the Uij , i.e. its smooth,
algebraic long-range decay, it will effectively correlate the
ε̃i ′ of the noninteracting analoguous, which we know, to yield
delocalization for increasing long-range correlation.

Finally, we want to include long–range correlation α > 0
into our toy model of two interacting bosons to directly render
the impact of correlation within our localization framework.
In Fig. 8, we plot the uncorrelated case from Fig. 7 for two
different interaction ranges λI as a reference and, therefore,
it becomes clear that correlation among the onsite disorder
yields delocalization—as we would expect from our previous
experience so far, cf. Sec. II B as well as our phenomenological
line of reasoning from the preceding paragraph. However, the
feature that short-range λI = 0.04 interaction localizes and
long-range λI = 0.3 interaction seems to delocalize the two
bosons for increasing rescaled interaction strength u0 is similar
to the uncorrelated case.

Again, the result seems to be independent of the sign of
interaction. Since we have introduced correlation among the
εi , our argument according to Eq. (28) should not be valid
in general. Therefore we suppose the specific disorder model
to intrinsically fulfill the necessary assumption from above.
Referring to the limiting case α → ∞, we recognize that εi

becomes cosine-like where εi → −εi just shifts the onsite
potential by a phase value π .

We would like to close our discussion by adding comments
on the finite size analysis done as well as comparing our
investigations to similar literature, especially Ref. 52, who
consider spinless fermions that interact when nearest neigh-
bors to each other—an analogous to the short-range onsite
interaction scenario for bosons. Dukesz et al. employ the same
disorder potential as us and study, among others, the interplay
between long-range correlated disorder and interaction for two
particles and refer to it as the dilute limit. Their localization
detection measure 〈NPC〉 is essentially the inverse of our IPR,
but with the decisive distinction of being applied directly in
Fock space—without any projection back to the lattice we
advertised in Sec. III A. Therefore we will be restricted to a
comparison of qualitative features.

Concerning the left upper panel of Fig. 6 in Dukesz et al.,
we notice, apart from minor deviation for small interaction
strengths denoted by �, the trend of enhanced localization, i.e.
decreasing 〈NPC〉 for increasing interaction strength. A feature
that is confirmed by Fig. 7 for sufficiently small interaction
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TABLE I. Computation of the matrix elements of Hmp in the two-particle basis, Eq. (A10), for general number of sites L.

Diagonal element Hmp,ff contributions

f : 1 2 . . . L L + 1 L + 2 . . . L(L + 1)/2 − 1 L(L + 1)/2
εic

+
i ci : ε1 + ε1 ε1 + ε2 . . . ε1 + εL ε2 + ε2 ε2 + ε3 . . . εL−1 + εL εL + εL

Ui,j c
+
i c+

j cicj : U±
L (0) U±

L (1) . . . U±
L (L − 1) U±

L (0) U±
L (1) . . . U±

L (1) U±
L (0)

First off-diagonal elements Hmp,ff +1/J

Jc+
i+1ci :

√
2 1 . . . 0

√
2 1 . . . 0 −

Remaining off–diagonal elements Hmp,ff ′

Jc+
i+1ci : All remaining off-diagonal elements have magnitude J . In the j th off-diagonal (j � 1), there are j

Nonzero elements: Hmp,ff +j with
f = L − ∑j

r=1 r = L − j (j + 1)/2, . . . , L − j (j + 1)/2 − (j − 1).

range λI : we observe increasing IPR. Aside the noninteracting
case u0 ↔ � = 0, this qualtitative trend remains when long-
range correlation is involved: according to fixed α, the different
〈NPC〉 curves in the lower left panel of Fig. 6 decrease in
magnitude. Moreover, each single curve supports enhanced
delocalization for increasing correlation parameter 0 � α � 4.

To study effects of finite size it is actually wise to investigate

IPR
−1

, since our discussion on Eq. (6) suggests that it provides
some notion on the effective number of occupied sites. It
is perhaps that stage where one benefits from the proposed
projection prescription of Sec. III A again. While 〈NPC〉
measures occupation of the eigenstates |E〉 in Fock space,

our IPR
−1

directly accounts for the projected probability
distribution pi , cf. Eq. (21), on the one-dimensional lattice with
L sites. However, in order to establish a finite size analysis, we

# # # # # # # # # # # # # # # # # # # #

* * * * * * * * * * * * * * * * * * * *
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FIG. 8. (Color online) Impact of correlation α > 0 on the lo-
calization property of two interacting bosons. We picked out two
representative branches λI = 0.04 and λI = 0.3 from Fig. 7 to
demonstrate that, as expected, correlations tends to delocalize the
system. Furthermore, we note that the qualtitative result is again
independent of the sign of the interaction and it seems that a feature
from α = 0 stays untouched, namely, large interaction ranges λI

weakly delocalize with increasing interaction strength u0 and for
smaller λI states localize with respect to increasing u0. The numerical
data were obtained at κ = 5 from 30 realizations with L = 100 sites,
which we averaged over.

depicted representative interaction and correlation parameter
values (α,κ,u0,λI ) and studied the IPR with increasing system
size L in Fig. 9. For uncorrelated α = 0.0 and correlated
α = 2.4 disorders, we chose two different interaction strengths
where there is (a) no significant difference in the IPR with
respect to Fig. 8, u0 = 1, and (b) where the interaction range
λI significantly splits the IPR, i.e. at u0 = 9, respectively.

In the case of uncorrelated disorder (left and middle left
panels of Fig. 9), the averaged number of occupied sites

L̃ = IPR
−1

increases less than linear with linear increasing
system size. Thus the extrapolation to the thermodynamic limit
suggests localized states as for the non-interacting system.
This conclusion is opposite to Dukesz et al. who present their
results in the lower right panel of Fig. 7 in Ref. 49. It would be
interesting to extend there study to larger system sizes beyond
L = 60. On the other hand, the deviation of the results suggest
that a proper projection to the lattice is perhaps crucial in order
to investigate localization of multiple particles. However, we
would like to point out the increasing deviation of L̃ between
short-range and long-range interactions for strong interaction
strength u0, which we like to phrase: ‘enhanced delocalization
by long-range interaction’ and which we suggest to keep
in mind for further investigations of interacting particles in
disordered media. If we turn to the strongly correlated regime
α > 2, we definitely observe a qualitative difference in the

finite size analysis of L̃. Now the IPR
−1

seems to grow linearly
in L and thus the relative number of occupied sites L̃/L stays
constant for L → ∞ assuming that the observed trend remains
for L > 120. Hence strong correlation among the disorder
potential εi delocalizes in analogy to the numerical experience
from the noninteracting analysis, Sec. II B. But again, in
the case of u0 = 9 the curves L̃(L) increasingly deviate for
the scenario of short- and long-range interactions, which
verifies our proposal of enhanced delocalization by long-range
interaction, and we sketched a potential phenomenological
reason by means of a rough correspondence to a noninteracting
disordered system above.

In summary, we hope that our data demonstrated that there
is a complex interplay between correlation and interaction,
which by means of the Hamilton matrix structure may arise
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FIG. 9. (Color online) Finite size analysis of the IPR
−1

for representative model parameter values that specify the correlated disorder by
α and the interaction by its strength u0 and range λI . Due to the observed sign symmetry, we restrict to the case of attractive interaction; the
color encoding and point shape is kept as in Fig. 7. Instead of plotting the averaged inverse participation ratio IPR itself, it is more appropriate
to consider its inverse since it directly relates to the number of occupied sites of the projected probability distribution pi , cf. Eqs. (6) and (21).

from a similar origin, namely the correlation of the diagonal el-
ements. Furthermore, both effects may compensate each other
as seen for IPR

∣∣
α=0,λI =0.04 and IPR

∣∣
α=1.6,λI =0.3 at u0 ≈ 7.5 in

Fig. 8. The numerical study of the interacting bosons supports
the independence of localization from the sign of interaction
within our picture of multiparticle localization, and we hope
that the rather academic treatment of two interacting bosons
reveals in experiments with cold gases; at least, in principle, in
the limit of sufficiently low densities.53 Nevertheless, we want
to remind that all ideas are based on rather phenomenological
reasoning and numerical simulations where we are able to
point out qualitative trends only. Therefore our results can just
pave the way for a more profound understanding on theoretical
grounds.

IV. CONCLUSION AND PERSPECTIVES

To conclude our investigations, we briefly summarize
what was achieved within our study of the one-dimensional
Anderson model. In the first place, we analyzed two mecha-
nisms that yield delocalization, namely, a correlated disorder
potential and mutual interactions between two bosons. By
reviewing a known model of correlated disorder from the
perspective of exact numerical diagonalization and different
well established localization measures, we showed that the
process of delocalization is much more complex than observed
up to now, namely, there are reasonable arguments to consider
α = 1 as important for the process of delocalization by
correlation. Nevertheless the general trend that increasing
correlation yields delocalization was confirmed and localized
states approximately vanish for α � 2. In addition, we were
able to numerically establish the full parameter dependence of
the model system by means of the nearest neighbor distribution
(NND), and therefore we went beyond the analysis that focuses
on states in the band center. The results suggest that the system
eventually becomes delocalized for sufficient large correlation,
independent of the disorder strength κ which is in accordance
with Bloch’s theorem. Nevertheless, we extensively discussed
the usage of the NND and tried to convince that it is
far less obvious to utilize it as an localization detection
measure.

Therefore we introduced a general idea to define local-
ization for multiparticle states of bosons by means of the
phenomenology of experiments with cold quantum gases. The

examination of two long-range interacting bosons on a finite,
one-dimensional lattice with perfect disorder confirmed the
conjecture that the localization property does not dependent
on the sign of interaction. We showed that this phenomenon
leads back to a discrete symmetry arising when averaging
over disorder realizations. Finally, the complex interplay of
correlation and interaction was studied numerically, and by
means of phenomenological reasoning on the basis of the
Hamilton matrix structure, we argued how to relate the impact
of interaction to delocalization by correlation known from the
noninteracting system.

Although our contribution provides some new insights
to the phenomenon of localization, unsolved aspects re-
main. More precisely, a solid theoretical description of the
crossover from localization to delocalization when tuning
the nearly perfect disorder to the Bloch-like situation of
a highly correlated potential is desired. Moreover, a more
profound understanding of the numerically observed effects
of interaction on localization is imperative to obtain further
insight to delocalization/localization in the presence of many
interacting particles.
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APPENDIX: NUMERICAL DETAILS

This Appendix is dedicated to computational details of our
work. We especially address the correlated disorder used in
the main text and we provide an explicit calculation of the
Hamiltonian matrix of two interacting bosons for an arbitrary
finite number of lattice sites.

A. Correlated disorder

Here, we provide some properties of the correlated disorder
potential εi and, as a general remark, we mention that all
our numerical results were averaged over a certain number
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FIG. 10. Illustration of autocorrelation, cf. Eq. (A3), among the onsite disorder εi , Eq. (3). We evaluated 5000 points (εi,εi+1) with
N = 105, cf. Eq. (3). An increasing correlation parameter α deforms the rotationally invariant density of points (εi,εi+1) to a linear dependence
between εi and εi+1, which can be quantitatively detected by the linear autocorrelation C(d). Rotational invariance yields C(1) = 0 and linear
dependence between εi and εi+1 implies C(1) = ±1. Note, that even in the case α = 0, our model disorder is not totally homogeneous in
[−0.5,0.5] × [−0.5,0.5].

of disorder realizations. If we exactly follow the prescription
Eq. (3) to obtain L values εi with correlation parameter α, the
quantity

δ ≡ max
i

εi − min
i

εi , i = 1, . . . ,L, (A1)

will not be constant in general. To ensure the same disorder
strength κ for all disorder realizations and system sizes, we
always normalize a given chain of εi values by

εi → εi − min
i

εi → �

δ
εi → εi − �

2
(A2)

to have εi ∈ [−�
2 ,�

2 ]. See also Refs. 54 and 55 for a related
discussion.

Since we mentioned that α = 0 refers to nearly perfect
disorder, we provide an intuition on that statement in Fig. 10
where we illustrate increasing correlation by plotting εi versus
εi+1 for different α values. For α = 0, the point density is
approximately rotationally invariant around (εi,εi+1) = (0,0),
and for the autocorrelation function,

C(d) ≡ lim
L→∞

〈εiεi+d〉L − 〈εi〉L 〈εi+d〉L
σεi ,Lσεi+d ,L

, (A3)

where

〈εi〉L ≡ 1

L

L∑
i=1

εi and σ 2
εi ,L

≡ 〈
ε2
i

〉
L

− 〈εi〉2
L , (A4)

we find C(1) ≈ 0 for α = 0. Note, that in general, correlation
between εi and εi+d is given by C(d). By means of Eq. (A3), we
can state that the disorder is uncorrelated. But as obvious from
Fig. 10, the whole plane (εi,εi+1) ∈ [−0.5,0.5] × [−0.5,0.5]
is not uniformly filled with points (εi,εi+1) and therefore
an arbitrary on-site potential value εi can not obviously be
followed by any possible εi+1. Thus we refer to the case α = 0
as weakly correlated. On increasing correlation we observe
that the (εi,εi+1) become more and more linearly correlated,
i.e., εi ≈ const × εi+1, and thus C(1) ≈ 1.

Let us finally sketch one feature of the εi that arises when
approximately computing C(d) to demonstrate the long-range
character of the correlated disorder. Let

ε(xi) =
∫ ∞

0
dk k−α/2 cos[kxi + φk], xi = i�x (A5)

be the continuous version of Eq. (3) and

C(d) ∝ lim
X→∞

1

X

∫ X

0
dxε(x)ε(x + d) (A6)

that of Eq. (A3). Hence, we obtain

C(d) ∝ 1

2

∫ ∞

0
dkk−α cos(kd), (A7)

which can be analytically solved for α ∈ (0,1), and we end up
with

C(d) ∝ dα−1 for 0 < α < 1. (A8)

Thus, we have a direct argument at hand why the εi

are long-range correlated. Its spatial autocorrelation decays
algebraically, at least in the continuum limit for α ∈ (0,1),
such that increasing α yields a slower decay with distance d.
Within this picture, α = 1 is also highly correlated and one
may argue that delocalization occurs below α = 2, which is
qualitatively supported by our localization measures although
the LL agrees pretty well with other results from the literature,
cf. discussion in Sec. II B.

B. Matrix representation of two interacting bosons in the
modified/interacting Anderson model

For the numerical results of two interacting particles, we
developed a rather general scheme of the matrix representation
in Fock space, which allows us to set the numerics for an
arbitrary number of sites. Moreover, the matrix is banded
with a width ∼L, which helps to increase the efficiency
of the diagonalization routine. As we were inspired by
an experimental setup, we used hard-wall/open boundary
conditions, i.e., there is no kinetic hopping element J from
site i = 1 to site L and vice versa.
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TABLE II. Matrix structure of the multiparticle Hamiltonian Hmp in the two-particle
basis, Eq. (A10), with L = 6.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x × ←−−−−−−−−−−−−−−−−−−−−−−−− O(L2) −−−−−−−−−−−−−−−−−−−−−−−−→
× x × ×

× x × ↑ ×
× x × ×

× x × O(L) ×
× x ↓ ×

× x ×
× × x × ×

× × x × ×
× × x × ×

×× x ×
× x ×

× × x × ×
× × x × ×

× × x ×
× x ×

× × x × ×
× × x ×

× x ×
× × x ×

× x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We obtain the matrix structure presented in Table I, if we
write the Hamiltonian matrix elements as

Hmp,ff ′ ≡ 〈f |Hmp|f ′〉F , (A9)

where we labeled and ordered the Fock states according to

|1〉F = |200 . . . 0〉,
|2〉F = |110 . . . 0〉,
|3〉F = |101 . . . 0〉,

...

|L〉F = |100 . . . 1〉,
|L + 1〉F = |020 . . . 0〉,

...

|L(L + 1)/2〉F = |000 . . . 2〉, (A10)

with |n1n2 . . . nL〉 indicating the number ni of bosons at site
i. The Hamilton matrix is exemplarily shown for L = 6 in
Table II. Entries × denote constant kinetic off-diagonal values
and x refers to the diagonal elements that are determined
by the correlated disorder terms εi and the interaction
potential Uij .
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