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It is known that many-body correlations qualitatively modify the properties of a one-dimensional metal.
However, for a quasi-one-dimensional metal these correlations are suppressed, at least partially. We study
conditions under which the one-dimensional effects significantly influence the dimensional crossover of a quasi-
one-dimensional metal. It is proved (i) that even a system with very high anisotropy of the single-particle hopping
might behave on both sides of the crossover as an ordinary weakly nonideal Fermi gas. Further, (ii) to demonstrate
well-developed signatures of one-dimensional correlations the system must have extremely (exponentially) high
anisotropy. Between cases (i) and (ii) an intermediate regime lies: (iii) the one-dimensional phenomena affect
the two-particle susceptibilities, but do not reveal themselves in single-particle quantities. Unlike the normal
state properties, (iv) the ordering transition is always very sensitive to the anisotropy: the mean field theory
quickly becomes invalid as the anisotropy increases. An expression for the transition temperature is derived. The
attributes (i)–(iv) are used to classify the weakly interacting quasi-one-dimensional fermion systems.
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I. INTRODUCTION

Several physical systems may be viewed as quasi-one-
dimensional (Q1D) fermionic liquids. These include materials
with the Q1D anisotropy of the electron hopping (e.g.,
Bechgaard salts, blue bronzes1), cold atoms in an anisotropic
trap,2 and the artificially created atomic lattices.3

The most universal feature of the Q1D systems is the
dimensional crossover (DC): at the temperatures exceeding
some characteristic scale Tx a system behaves as an array of
almost independent one-dimensional (1D) units, while below
Tx a genuine 3D behavior is recovered. The description of this
crossover is of fundamental importance for the theory of the
systems in question.

Theoretically, the Q1D systems are frequently pictured as
a lattice of 1D chains, each chain is represented by a 1D
Tomonaga-Luttinger model,4 and closely located chains are
coupled by the weak transverse single-electron hopping, or
the weak interchain interaction, or both. It is often assumed
that the DC occurs between the Tomonaga-Luttinger liquid
at high energy and the three-dimensional (3D) Fermi liquid
at low energy. Since the Tomonaga-Luttinger excitations are
usually represented in terms of the bosonic quantum numbers
(however, see Refs. 5–9), one has to describe how the 1D
bosons cross over to the 3D fermions. This is, of course, a
difficult task.

A diverse set of the many-body tools has been used to study
the DC. Analytical renormalization group (RG) is applied
in Refs. 10–12. Numerical RG is employed in Refs. 13–16.
Modification of the dynamical mean-field theory to the Q1D
fermions is used in Ref. 17. Variational technique which
explicitly construct both high-energy boson excitations and
low-energy fermion excitations is proposed in Refs. 18 and 19.
Different versions of the random phase approximations (RPA)
are also used, Refs. 20,21.

However, the Tomonaga-Luttinger-liquid-based approa-
ches to the crossover may, in some situations, overcomplicate
the theory. It is important to realize that the DC, by itself,
is not a many-body phenomenon. Instead, its origin is
purely kinematic: it occurs when the temperature becomes

comparable to the transverse electron hopping. As such, it
occurs even for systems with no interaction.22,23 Thus, the
presence of the crossover does not immediately imply that
the the high-energy phase is fundamentally different from the
low-energy phase.

The free Q1D system is, of course, a trivial example.
However, it may be generalized to a less obvious case of
the weakly interacting system. Specifically, we will prove in
this paper that in a broad parameter region the Q1D fermions
on both sides of the DC are closer to the weakly nonideal
Fermi gas than to a collection of the Tomonaga-Luttinger
liquids. Further, we demonstrate that, as parameters are varied,
the DC itself experiences several crossovers. It evolves from
Fermi-liquid-to-Fermi-liquid type at low anisotropy and inter-
action to Tomonaga-Luttinger-liquid-to-Fermi-liquid at high
anisotropy and interaction, with a more exotic possibility in
between.

These different types of the DC may be characterized in
terms of the applicability of the low-order perturbation theory.
The crossover between the Tomonaga-Luttinger and the Fermi
liquid may not be described by the perturbation theory. One
can deduce that from the fact that the Tomonaga-Luttinger state
is nonperturbative. As the anisotropy or interaction decreases,
the applicability of the perturbation theory improves: below
certain limit, the perturbation theory can be used for the single-
particle properties, but not for the two-particle properties.
When even the two-particle properties are within the range of
the perturbation theory, the Q1D fermions behave as a Fermi
liquid both at high and low energies. Note that such conductor
may have very high anisotropy.

Finally, we investigate the applicability of the mean field
theory for the Q1D fermions. Apparently, if the anisotropy is
large an ordering transition is not of the mean field character.
However, one expects that below a certain point the mean-
field theory becomes accurate. It is surprising to discover that
even for a system whose normal state is well described by the
perturbation theory the mean field theory may fail. We will
prove that the mean field theory works only if the hopping
anisotropy is of the order of unity.24
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The paper is organized as follows. In Sec. II the model under
study is described. We derive the condition which guarantees
the validity of the perturbation theory for the single-particle
properties in Sec. III. In Sec. IV similar condition for the two-
particle properties is established. In Sec. V the applicability
of the mean field theory is discussed. The results of these
sections are used in Sec. VI to introduce a classification of the
anisotropic Fermi liquids. The results are discussed in Sec. VII.
Section VIII is reserved for the conclusions.

II. MODEL

We study the following system of the interacting spinless
fermions:

H =
∑

i

∫ L

0
dxH1d

i +
∑
i,j

∫ L

0
dxH⊥

ij , (1)

H1d
i = ivF(: ψ

†
Li∇ψLi : − : ψ

†
Ri∇ψRi :) + gρRρL, (2)

H⊥
ij = −t(i − j )

∑
p=L,R

ψ
†
piψpj + H.c., (3)

ρpi =: ψ
†
piψpi : , (4)

where the fermionic field ψ
†
pi creates a physical fermion with

the chirality p = L or p = R on chain i. The chains are
parallel to each other and form a 1D or 2D square lattice in the
directions transverse to the chains. Colons stand for the normal
ordering. The microscopic cutoff of the model is denoted by
�. The transverse tunneling amplitudes t(i − j ) depend on the
distance |i − j | between the chains. If t = 0 our Hamiltonian
corresponds to a number of decoupled Tomonaga-Luttinger
systems. Below we will assume that t(i − j ) is nonzero for the
nearest neighbors only. Generalization beyond this assumption
does not bring new features to the discussion.

The dimensionless interaction parameter is required to be
small:

g̃ = g

2πvF
� 1. (5)

Here g is the bare interaction strength, and vF is the Fermi
velocity.

In principle, the transverse interactions can be also consid-
ered. Sufficiently strong transverse interactions may trigger
symmetry-breaking phase transition at the temperature ex-
ceeding the single-particle DC. We do not want to study this
regime, and assume that the transverse interactions are zero.

III. PERTURBATION THEORY
FOR SINGLE-PARTICLE PROPERTIES

A. General remarks on the perturbation theory
for the Q1D systems

For a generic Fermi system the smallness of the interaction
constant is a sufficient condition for the applicability of the
perturbation theory. While the perturbative expansion contains
divergent terms (e.g., the Cooper diagram grows logarithmi-
cally for T → 0), these divergences are well understood, and
the recipes for the perturbative calculations of the physically
relevant quantities are known.

Unfortunately, this program cannot be directly adopted
for a Q1D Fermi system: some perturbation theory terms,
while small for a generic Fermi liquid, in a Q1D case may
be finite, but parametrically large. This phenomenon occurs
because the pure 1D fermion system has additional divergent
diagrams which are finite for the higher-dimensional Fermi
liquid. In Q1D system, the latter divergences are capped by
arbitrary weak transverse hopping, yet, the diagram values are
affected by the proximity to the divergences. Applying blindly
the usual schemes in such a situation may lead to significant
qualitative errors in the estimation of the effective parameters
of the system. We will study below what limitations should be
placed on the microscopic constants of our model to guarantee
that these diagrams remain small, and the generic perturbation
theory procedures may be implemented.

In addition to the purely mathematical, formal side, the per-
turbation theory applicability criteria carry important physical
information about the DC. When the system experience the
crossover from the Tomonaga-Luttinger liquid at high energy
to the Fermi liquid at low energy, the perturbation theory
is useless due to non-perturbative nature of the Tomonaga-
Luttinger liquid. On the other hand, if the perturbation theory
is applicable, the system behaves as a Fermi liquid even above
the crossover. An accurate analysis reveals that a more exotic
possibility is also possible. With this considerations in mind
we start our study of the perturbation theory for the Q1D
fermions.

B. Diagram evaluation approach

If we were to use the perturbation theory in order of g̃

to study Hamiltonian (1), we would discover that, if t = 0,
then several irreducible diagrams are divergent. Three of them
are shown in Fig. 1. Others can be constructed from these by
inverting the chirality labels or directions of the arrows on the
fermion lines.

For example, at T = 0 the self-energy correction [diagram
(c) of Fig. 1] for the electrons of chirality p is equal to

�p = g2

16π2v2
F

(ω − pvFk + i0)

× ln

[
v2

Fk
2 − (ω + i0)2

4v2
F�

2

]
+ · · · , (6)

where the ellipsis stands for the nonsingular terms, k is the
momentum parallel to the chains.

This self-energy contributes to the renormalization of the
quasiparticle residue Zp = 1 − δZp:

δZp = g2

16π2v2
F

ln

∣∣∣∣ 4v2
F�

2

v2
Fk

2 − ω2

∣∣∣∣ + · · · . (7)

The logarithmic divergence of δZp on the mass surface implies
the breakdown of the Landau theory of the Fermi liquid for
1D Fermi systems.

For Q1D system Eq. (7) is not applicable near the mass
surface. Indeed, the divergence of the self-energy is purely
1D effect.25 Therefore, the growth of δZp at small energy and
momenta is cut off at the scale ∼ t :

δZp(ω,k,k⊥) < δZmax
p ≈ g2

8π2v2
F

ln

(
vF�

t

)
. (8)
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FIG. 1. Three divergent diagrams of the 1D metal. Solid lines with
arrow and “R/L” chirality labels are fermion propagators. Wiggly
lines represent interaction g. (a) The “bubble” diagram corresponds
to the scattering in the charge-density-wave channel. (b) The Cooper
diagram describes the scattering in the superconducting channel. (c)
The single-particle self-energy diagram. Other divergent diagrams
can be obtained from (a)–(c) by inverting the chirality labels or
directions of the arrows on the fermion lines.

A detailed derivation of this result is given in Ref. 18.
Equation (8) can be used to determine the applicability

limits of the perturbation theory: the expansion in orders of g̃

is valid if

δZmax
p � 1 ⇔ t 	 t1P, (9)

t1P = vF� exp

(
− 2

g̃2

)
. (10)

Thus, if the transverse tunneling exceeds the exponentially
small value t1P, the self-energy diagram is not only finite, but
also small. Smallness of δZp implies that the perturbatively
defined fermionic quasiparticles are “good” excitations of our
system both above and below the crossover.

Our calculations, however, do not evaluate higher-order
contributions to Z. They can be easily found with the help
of a different approach, which will be presented in the next
subsection.

C. Renormalization group argument

The applicability of the perturbation theory may be dis-
cussed using different type of reasoning. Specifically, consider
the renormalization-group (RG) flow near the Tomonaga-
Luttinger fixed point. When the cutoff is reduced from � to
�̃, the effective value of t becomes

t̃�̃ = t

(
�̃

�

)θ

, (11)

where θ ≈ g̃2/2 is the anomalous dimension of the hopping
operator. This RG scaling is applicable until vF�̃ ∝ t̃�̃, at
which point

t̃ = t

(
t

vF�

) θ
1−θ

= t exp

[
θ

1 − θ
log

(
t

vF�

)]
. (12)

This formula may be used to evaluate the DC scale: Tx ∝ t̃ .
At energies below Tx one cannot view the system as 1D
even approximately. Rather, it behaves as the anisotropic
multidimensional (2D or 3D) Fermi liquid with the effective
hopping t̃ and cutoff �̃.

At small θ one can attempt to expand the exponent in
Eq. (12):

t̃ = t

[
1 +

(
θ

1 − θ

)
ln

(
t

vF�

)
+ · · ·

]
. (13)

When condition (9) is satisfied, this expansion is valid, and the
renormalization of the transverse hopping is small. Otherwise,
t experiences strong renormalization which cannot be captured
by Eq. (13), and the full Eq. (12) must be used.

To establish the connection with the discussion of the
previous subsection, observe that the effective hopping may
be written as

t̃ = tZp = t + δZpt. (14)

Therefore, the expression in the square brackets in Eq. (13) is
nothing but the expansion of Zp in orders of θ = O(g̃2) whose
lowest order term is given by Eq. (8).

The main advantage of the presented argument is that it
automatically accounts for the higher-order contributions: one
can keep as many terms in the expansion (13) as needed.
Furthermore, this approach makes the statement of this section
almost arithmetical: in order to measure reliably the exponent
α of a power-law function f (x) = xα one must sample the
function f over an exponentially large range of x. For example,
the transverse conductivity σy at vF� > T > Tx demonstrates
the non-universal power-law behavior:26

σy ∝
(

T

vF�

)−1+2θ

. (15)

However, this nonuniversality may be detected only if the
ratio (Tx/vF�) is exponentially large. Otherwise, Eq. (15) is
indistinguishable from [see Eq. (71) of Ref. 26]

σy ∝ 1/(g2T ) (16)

with weak corrections. Equation (16) contains only universal
exponents. Thus, on experiment the universal transverse
transport indicates the validity of Eq. (9) and the applicability
of the perturbation theory for the single-particle propagator.

IV. PERTURBATION THEORY
FOR TWO-PARTICLE PROPERTIES

A. Diagram evaluation approach

The one-dimensional effects affect the two-particle proper-
ties as well. Consider the diagrams (a) and (b) in Fig. 1. They
contribute to the renormalization of the effective interaction.
Diagram (a) represents the scattering of a particle-hole pair,
while diagram (b) corresponds to the Cooper pair scattering.
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In a generic Fermi liquid diagram (b) has logarithmic
divergence when the total momentum of the Cooper pair is
zero. For attractive interaction this divergence leads to the
Cooper instability. As for diagram (a), it diverges at the nesting
vector, provided that the Fermi surface nests well. This diagram
is responsible for the density wave instability. For a generic
Fermi liquid the channels are said to be decoupled in the
sense that the Cooper pair diagram is finite and small in the
particle-hole channel, while the particle-hole diagram is finite
and small for the Cooper pair scattering.

In 1D systems, however, the channels are coupled: the
particle-hole contribution to the Cooper pair scattering is
divergent; moreover, the strength of this divergence is equal in
magnitude and opposite in sign to the divergence of the Cooper
diagram [see Eqs. (1.45) of Ref. 27]. The same is true about
the contribution of the Cooper diagram to the particle-hole
channel. This cancellation is a unique 1D feature responsible
for the coupling g being exactly marginal.

In Q1D system the contribution of the Cooper diagram
to the particle-hole channel and vice versa are finite, but
not necessarily small. Let us, for definiteness, consider the
particle-hole channel. For the sake of simplicity, assume that
the Q1D Fermi surface nests perfectly at the nesting vector Q.
The formal expression for the effective coupling at Q, to the
first order in g̃, is

geff ≈ g

[
1 + g

2πvF
ln

(
vF�

T

)
− g

2πvF
ln

(
vF�

t

)]
. (17)

The first term here is the bare coupling, the second term
corresponds to the “bubble” diagram correction, and the third
term is the contribution of the Cooper diagram for T � t . Both
corrections are small provided that

t 	 t2P, (18)

T 	 t2P, (19)

t2P = vF� exp

(
−2πvF

g

)
= vF� exp

(
− 1

g̃

)
. (20)

If we were to consider the effective interaction in the Cooper
channel, we would, going through the same steps, obtain the
same result.

Equations (18) and (19) define the parameter region in
which the susceptibility may be calculated perturbatively.
Equation (18) ensures the destruction of the nonperturbative
1D effects. Equation (19) must be enforced for a reason
which has nothing to do with 1D phenomena: below t2P the
nonperturbative physics of the approaching phase transition
starts to affect the susceptibility.

B. Renormalization group argument

It is instructive to rederive Eq. (18) in a fashion similar
to the one presented in Sec. III C. To this end, consider the
charge-density wave (CDW) susceptibility χCDW for T > Tx

[see, e.g., Eq. (1.68) of Ref. 27]:

χCDW(T ) = 1

2πvFg̃

[
1 −

(
vF�

T

)2g̃ ]
+ · · · , (21)

where the ellipsis stands for nonsingular contributions to the
susceptibility. Thus, the expansion in powers of g,

χCDW = − 1

πvF
ln

(
vF�

T

)
− g

2π2v2
F

log2

(
vF�

T

)
+ · · · ,

(22)

is valid at T > Tx ∼ t , provided that Eq. (18) is fulfilled.
Therefore, we conclude that, if Eq. (18) holds, the perturba-

tion theory for two-particle quantities is applicable to any order
in g, and the crossover between the Tomonaga-Luttinger liquid
scaling Eq. (21) above Tx and the universal Fermi liquid be-
havior below Tx cannot be observed. To detect the high-energy
scaling we must work with with a sufficiently anisotropic, or
sufficiently nonideal system for which Eq. (18) is violated.

V. APPLICABILITY OF THE MEAN-FIELD THEORY

The mean-field theory is a valuable tool to study the phase
diagrams of interacting systems. Both the mean-field theory
(e.g., Refs. 28–30, Chap. 4.4 of Ref. 31, Chap. 3 of Ref. 1)
and the closely related RPA (e.g., Ref. 21) have been used in
the context of the Q1D fermions. Thus, applicability of the
mean field theory is an important issue for a theory of the Q1D
Fermi systems.

As we have seen above, the perturbation theory may work
well for the Fermi liquids with high anisotropy. The mean-field
theory, however, is more fragile: we will show that it can
be applied only to a system with the anisotropy of the order
of unity. In addition, we will derive an expression for the
transition temperature which is valid if Eq. (18) is true.

To notice the difficulty facing the mean-field theory let us
make the following heuristic observation. For an anisotropic
system two different formulas for the transition scale can be
constructed. The first one is t2P [for example, the expression
of this type is given by Eq. (4.41) of Ref. 31] and the second
one is

TCDW = t exp

(
−2πvF

g

)
=

(
t

vF�

)
t2P. (23)

When t/vF� ∼ 1 the two answers coincide up to a factor of
the order of unity, which is a typical accuracy of the mean
field theory (see, e.g., Ref. 32). However, if t/vF� � 1, then
TCDW � t2P, and one has to decide which of the two is valid.
As it turns out, Eq. (23) is the right answer.

The discussion of the previous paragraph may be cast in
a more formal fashion. When inequality (18) holds the third
term in Eq. (17) is much smaller than unity and, superficially,
can be neglected.

Once it is neglected the geometrical progression of the
divergent “bubble” diagrams contributing to geff must be
summed. If g > 0 the coupling geff found in such a manner
diverges at T = t2P, signaling the transition into the CDW
state.

This argumentation is invalid, however. The omission of
the third term of Eq. (17) on the grounds of its smallness is
the offending step. Since the mean field transition temperature
is a nonanalytical function of the interaction, even a small
correction to the latter may lead to large variation of the former.

This property is not unique to the Q1D metallic system. The
transition temperature of the Kohn-Luttinger superconductor
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shows similar sensitivity to the higher-order corrections to the
coupling constant [(see, e.g., Eq. (31) of Ref. 33].

The correct way to address this issue for a Q1D metal
is discussed in Ref. 24. Namely, one must perform the RG
transformation until the crossover scale Tx is reached. No
abnormality pertinent to 1D physics is present below Tx . When
the effective Hamiltonian at the crossover scale is found, the
mean field calculations can be safely applied to it, and Eq. (23)
is recovered.

Alternatively, one can resort to the approach used in the
theory of the Kohn-Luttinger superconductivity:34,35 before
summing the infinite series of divergent diagrams (Cooper
diagram in the case of the superconductivity, the “bubble”
diagram in our case), one must account for renormalization of
the coupling constant, which is perturbatively dressed by a set
of non-divergent diagrams. Thus, the effective CDW coupling,
which includes the Cooper diagram contribution, is

gCDW
eff ≈ g

[
1 − g

2πvF
ln

(
vF�

t

)]
. (24)

Performing the summation of the “bubble” series we obtain
for the transition temperature:

TCDW = vF� exp

(
− 2πvF

gCDW
eff

)
, where (25)

1

gCDW
eff

≈ 1

g
+ 1

2πvF
ln

(
vF�

t

)
, (26)

from which TCDW is recovered.
Our discussion demonstrates that the anisotropy strongly

affects the transition temperature renormalizing it down from
the prediction of the mean-field theory. We also learned that,
when studying the phase diagram of a Q1D Fermi system,
a careful analysis of the theory’s “diagrammatic content” is
necessary. An indiscriminate use of a technique, performing
well for a generic Fermi liquid, can lead to a qualitative error
for the Q1D system.

VI. FOUR TYPES OF THE ANISOTROPIC
FERMI SYSTEMS

In the previous section we defined two energy scales, t1P

and t2P. It is trivial to prove that t1P � t2P � vF�. Depending
on how t compares against these scales we may define four
types of the weakly interacting anisotropic Fermi systems, see
Table I.

When the system parameters are such that Eq. (9) is
violated, we have the Fermi liquid of type I. For such a system
both single-particle and two-particle quantities experience
strong renormalization due to 1D many-body effects. As
follows from Eq. (9), the quasiparticle residue is small. The
DC occurs between the high energy phase of the Tomonaga-
Luttinger liquid and the low energy phase of the 3D anisotropic
Fermi liquid. The mean-field theory is not applicable.

The less anisotropic type II system [Eq. (9) is valid,
Eq. (18) is not] is very peculiar. It shows no 1D effects in
its single-particle properties. Consequently, its quasiparticle
residue is close to unity. At the same time, the susceptibilities
demonstrate power-law scaling with a nonuniversal exponent
above the DC. Thus, the high-energy phase does not show

TABLE I. Four types of the anisotropic Fermi liquids. For
extremely anisotropic type I Fermi liquid both single-particle and
two-particle quantities experience strong renormalization due to
1D many-body effects (quasiparticle residue is small; at high
energies both the transverse conductivity and the susceptibilities show
power-law behavior with nonuniversal exponents). Less anisotropic
type II system shows no 1D effects in its single-particle properties.
Consequently, its quasiparticle residue is close to unity. However,
the corrections to the susceptibilities introduced by 1D effects are
substantial, and cannot be accounted for by the perturbation theory.
Type III Fermi liquid may be accurately described by the finite-order
perturbation theory. Yet, the mean-field theory fails. Finally, both the
perturbation theory and the mean-field theory works for a type IV
system, whose anisotropy is of the order of unity. Due to poor
separation of t and vF� the dimensional crossover is not well defined.

Type Hopping t Properties

I t � t1P � t2P crossover: Tomonaga-Luttinger
to Fermi liquid;

small quasiparticle residue Zp � 1;
mean-field theory is not applicable

II t1P � t � t2P crossover: shows 1D correlations
in the susceptibilities only;

quasiparticle residue Zp ∼ 1;
mean-field theory is not applicable

III t2P � t � vF� crossover: Fermi to Fermi liquid;
quasiparticle residue Zp ∼ 1;

mean-field theory is not applicable
IV t ∝ vF� crossover: poorly developed;

quasiparticle residue Zp ∼ 1;
mean-field theory is applicable

full phenomenology of the Tomonaga-Luttinger liquid. The
mean-field theory is not applicable.

A type III Fermi liquid [Eq. (18) is valid, but t � vF�] may
be accurately described by the finite-order perturbation theory.
Note that such Fermi liquid is strongly anisotropic, that is, the
strong anisotropy alone is not sufficient for the system to show
the 1D many-body effects. However, for type III system, the
mean field theory is not applicable.

Finally, type IV Fermi liquid (t � vF�) can be described
by both the perturbation theory and the mean field theory.
However, due to poor separation of the transverse and
longitudinal kinetic energy scales the DC is not well- defined
for this class of systems.

VII. DISCUSSION

Of the four types of the Q1D systems type I is the most
difficult to observe in the weak coupling regime. For example,
if g̃ = 0.3 the anisotropy ratio must be very high:

vF�

t
> 2 × 1010. (27)

At smaller g̃ it must be even higher.
The latter conclusion does not contradict the fact that the

Bechgaard salts, whose anisotropy ratio is 10, demonstrate
the type I phenomenology (the transverse resistivity shows
power-law behavior with a nonuniversal exponent36). One
must remember that these compounds are in the intermediate,
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not weak, coupling range, that is, inequality (5) is violated.
In the intermediate coupling regime the transverse transport is
nonuniversal if [see Eq. (13)](

θ

1 − θ

)
ln

(
vF�

t

)
> 1. (28)

Here, instead of expanding θ in powers of g̃ which would
lead us to Eq. (9), we kept the full functional dependence
as it appears in Eq. (13). When g̃ = O(1) Eq. (28) is more
accurate than Eq. (9). For the anisotropy of 10, Eq. (28) is valid
if g̃ exceeds 0.64, or, equivalently, the Tomonaga-Luttinger
parameter K is smaller than 0.47. This conclusion is consistent
with the estimate K ≈ 0.23 for (TMTSF)2PF6.36

The requirement for type II is far less stringent than Eq. (27):
anisotropy must exceed the following values:

vF�

t2P
≈ 30 for g̃ = 0.3, (29)

vF�

t2P
≈ 150 for g̃ = 0.2. (30)

Thus, it is likely that the crossovers between type II, III, and
IV systems may be realized experimentally.

To observe this sequence of the crossovers the Bechgaard
salts are not suitable. Indeed, for a Q1D conductor with the
interaction of intermediate strength

t ∼ t1P ∼ t2P. (31)

Consequently, it is difficult to resolve the different liquid types.
More promising for our purposes are the cold atoms in the

Q1D optical trap. The experimental implementation of this
system has been reported in Ref. 2. The advantage of the
cold atoms setup is its tunability: for example, the interaction
between the atoms can be smoothly changed from attraction
to repulsion. This makes the trapped atoms an appealing
alternative to the solid state implementations of the Q1D
fermions.

The artificially created atomic lattices3 is yet another
interesting Q1D Fermi system. However, this research is at
the beginning stage yet.

VIII. CONCLUSIONS

We demonstrated that in the weakly nonideal Q1D Fermi
liquids, depending on the interaction and the anisotropy,
the dimensional crossover occurs in one of the four types.
When the anisotropy is extremely strong, the system shows
clear crossover from the Tomonaga-Luttinger to the higher-
dimensional Fermi liquid behavior. At smaller anisotropy
the Tomonaga-Luttinger physics may be observed only in
the two-particle properties (e.g., susceptibilities). When the
anisotropy decreases even further the Tomonaga-Luttinger
features cannot be noticed. In the latter case the crossover
is similar to the crossover in the anisotropic free fermion
system. It was also proved that the anisotropy must be
exponentially large in order to observe at least some of the
Tomonaga-Luttinger many-body effects.

It is shown that for the mean field theory to be valid
low anisotropy is required. More broadly, our discussion
demonstrated the need for careful analysis of the diagrammatic
structure of a theoretical technique used for study of the
phase transition: we have seen that even small diagrammatic
contributions to the susceptibility may drastically affect the
calculated value of the transition temperature.

The cold atoms in the Q1D optical trap is the likely
candidate where the different types of the crossover may be
observed.
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29K. Maki, B. Dóra, and A. Virosztek, in The Physics of Organic
Superconductors and Conductors, edited by A. Lebed, Z. M.
Wang, C. Jagadish, R. Hull, R. M. Osgood, and J. Parisi (Springer,
Berlin/Heidelberg, 2008), pp. 569–587.

30A. G. Lebed, Phys. Rev. Lett. 107, 087004 (2011).
31T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors

(Springer, Heidelberg, 1998).
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