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One of the defining properties of the conventional three-dimensional (“Z2” or “spin-orbit”) topological
insulator is its characteristic magnetoelectric effect, as described by axion electrodynamics. In this paper,
we discuss an analog of such a magnetoelectric effect in the thermal (or gravitational) and magnetic dipole
responses in all symmetry classes that admit topologically nontrivial insulators or superconductors to exist in
three dimensions. In particular, for topological superconductors (or superfluids) with time-reversal symmetry,
which lack SU(2) spin rotation symmetry (e.g., due to spin-orbit interactions), such as the B phase of 3He,
the thermal response is the only probe that can detect the nontrivial topological character through transport.
We show that, for such topological superconductors, applying a temperature gradient produces a thermal-
(or mass-) surface current perpendicular to the thermal gradient. Such charge, thermal, or magnetic dipole
responses provide a definition of topological insulators and superconductors beyond the single-particle picture.
Moreover, we find, for a significant part of the “tenfold” list of topological insulators found in previous work
in the absence of interactions, that in general dimensions, the effective field theory describing the space-time
responses is governed by a field theory anomaly. Since anomalies are known to be insensitive to whether the
underlying fermions are interacting, this shows that the classification of these topological insulators is robust
to adiabatic deformations by interparticle interactions in general dimensionality. In particular, this applies to
symmetry classes DIII, CI, and AIII in three spatial dimensions, and to symmetry classes D and C in two spatial
dimensions.
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I. INTRODUCTION

The considerable recent progress in understanding topolog-
ical insulating phases in three dimensions was initiated by stud-
ies of single-particle Hamiltonians describing electrons with
time-reversal invariance.1–5 In both two and three dimensions,
time-reversal invariant Fermi systems that have topological
invariants of Z2 type are known to exist: insulators can be
classified as “ordinary” or “topological” by band-structure
integrals similar to the integer-valued integrals that appear in
the integer quantum Hall effect.6,7 These invariants survive
when disorder is added to the system. In fact, stability to
disorder is one of the defining properties of topological
insulating phases (and also topological superconductors). The
complete classification of topological insulators and topolog-
ical superconductors in any dimension has been obtained
in Refs. 8 and 9, and in every dimension, five of the ten
Altland-Zirnbauer symmetry classes11,12 of single-particle
Hamiltonians (including some describing the Bogoliubov
quasiparticles of superconductors or superfluids, rather than
ordinary electrons) contain topological insulating phases with
topologically protected gapless surface states.

An important question is, how can these various phases
be defined in terms of a physical response function? Aside
from aiding in experimental detection, such definitions also
indicate that the phase is well-defined in the presence of
interactions. The best studied example is the conventional
three-dimensional (“Z2” or “spin-orbit”) topological insulator
with no symmetries beyond time-reversal, which has been
recently observed in various materials, including BixSb1−x

alloys,13 Bi2Se3, and Bi2Te3.14–17 Such materials support a
quantized magnetoelectric response generated by the orbital
motion of the electrons, i.e., the phase can be defined by
the response of the bulk polarization to an applied magnetic
field.18,19 The possibility of such a bulk response was discussed
some time ago as a condensed-matter realization of “axion
electrodynamics.”20

The first goal of this paper is to find, for all three-
dimensional topological insulators and superconductors, the
corresponding responses that result from the coupling of the
theory to gauge and gravitational21 fields. The second goal
of this paper is to understand to what extent the classifica-
tion scheme found previously for topological insulators of
noninteracting fermions can be stable to fermion interactions.
This addresses the question of whether certain topological
insulators that describe distinct topological phases in the
absence of fermion interactions (connected only by quantum
phase transitions at which the bulk gap closes) can be
adiabatically deformed into each other when interactions are
included (without closing the bulk gap). We find that this
cannot happen, e.g., in symmetry classes DIII, CI, and AIII
in three spatial dimensions, and in symmetry classes D and
C in two dimensions. More generally, in the final (more
technical) section of this paper, we provide an answer to this
question in general dimensionalities for a significant part of
the list of topological insulators (superconductors) within the
“tenfold” classification scheme, obtained for noninteracting
particles.8–10,22 In particular, we relate the topological fea-
tures of these topological insulators to the appearance of
a topological term in the effective field theory describing
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TABLE I. Electromagnetic and gravitational (thermal) responses
for five out of ten Altland-Zirnbauer symmetry classes (AII, CI, CII,
DIII, and AIII). The assumptions made in the first four classes are
that U(1) conserved currents arise from electrical charge and that
SU(2) conserved currents arise from spin. In class AIII (as indicated
by asterisks), the U(1) conservation law may arise either from charge
or one component of spin.

Symmetry Charge Gravitational Dipole

AII
√ √

CI
√ √

CII
√ √

DIII
√

AIII ∗ √ ∗

space-time-dependent responses. Alternately, we relate these
topological terms to what are known as “anomalies” appearing
in the theories describing the responses. Since the “anomalies”
are known to be insensitive to whether the underlying
fermions are interacting or not, our so-obtained description
of the topological features demonstrates the insensitivity of
these topological insulators (superconductors) to adiabatic
deformations by interactions.

The general picture emerging from the results presented
in this paper is that the topological insulators (supercon-
ductors) appearing in the “ten-fold list” can be viewed as
generalizations of the d = 2 Integer Quantum Hall Effect
to systems in different dimensions d and with different
(“anti-unitary”) symmetry properties.8 While the “ten-fold
classification scheme” was originally established in Refs. 8
and 9 for noninteracting fermions, the characterization in
terms of anomalies implies that this extends also to all those
interacting systems which can be adiabatically connected
to noninteracting topological insulators (superconductors)
without closing the bulk gap. (This may include fairly
strong interactions, albeit typically not expected to exceed
the noninteracting bulk gap.) One may expect that to any of
the topological insulators (superconductors) in the “ten-fold
list” (viewed as generalizations of the Integer Quantum Hall
Effect) corresponds a set of “fractional” topological insulators
(superconductors) not adiabatically connected to a noninter-
acting one, in analogy to the case of the two-dimensional
Quantum Hall Effect. This includes, e.g., a recently proposed
three-dimensional “fractional” topological insulator Ref. 23.
One expects a description in terms of anomalies to carry
over to all such systems and to play a role in a (future)
perhaps comprehensive characterization of such “fractional”
topological insulators (superconductors). In the present paper,
however, we focus on those interacting topological insulators
(superconductors) which can be adiabatically connected to a
noninteracting system of fermions.

Let us focus now on the topological insulators (supercon-
ductors) in d = 3 spatial dimension (see also Table I). From
a conceptual point of view, it is the surface responses that
are simplest to describe, and they are quantized (but they may
not necessarily be the most easily accessible experimentally;
therefore, we also discuss the bulk responses further below).

Charge surface response. This is, in particular, relevant
for the (“Z2” or “spin-orbit”) topological insulator, which
is time-reversal-invariant. Upon subjecting its surface to a
weak time-reversal symmetry-breaking perturbation (in the
zero-temperature limit), the surface turns into a quantum Hall
insulator whose electrical surface Hall conductance takes on
the quantized value24

σxy/(e2/h) = n

2
(1)

(a multiple of half the conductance quantum) as the strength of
the symmetry-breaking perturbation is reduced to zero (always
at zero temperature). Here, n = 0 and 1 for the “Z2” (or “spin-
orbit”) topological insulator18,24 (in the so-called symmetry
class AII), in the topologically trivial and nontrivial phase,
respectively. While the surface of Z2 topological insulators in
class AII may exhibit any odd (even) number Dirac cones in
the topologically nontrivial (trivial) phase at the microscopic
level, only the odd-even parity, n = 1 and 0 of that number,
is topologically protected. For the less familiar topological
insulator in symmetry class AIII a relation analogous to Eq. (1)
applies.22,26,45

Spin surface response. Analogous effects are known29 for
the time-reversal-invariant topological (spin-singlet) super-
conductor in symmetry class CI in d = 3 spatial dimension.
Subjecting its surface, as above, to a weak time-reversal
symmetry-breaking perturbation (in the zero-temperature
limit), the surface turns into what is known as the “spin
quantum Hall insulator.”27,28 Due to spin-singlet pairing,
this superconductor has SU(2) Pauli-spin rotation symmetry,
which permits the definition of the “surface spin conductivity.”
In particular,27 a gradient of magnetic field within the surface
(say in the z direction of spin space) leads to a spin current
perpendicular to the gradient (and within the surface). This
defines the “surface spin-Hall conductance,” which, similar to
Eq. (1), takes on the quantized value

σ (spin)
xy

/
(h̄/2)2

h
= n

2
(2)

[n-times half the “spin-conductance quantum” (h̄/2)2

h
] as the

time-reversal symmetry-breaking perturbation is reduced to
zero.8,29,45

Thermal surface response. As we show in Sec. III B
of this paper, an analogous effect occurs for the thermal
response at the surface of the time-reversal-invariant topo-
logical superconductor in symmetry class DIII in d = 3
spatial dimensions: subjecting its surface, as above, to a
weak time-reversal symmetry-breaking perturbation (in the
low-temperature limit), a temperature gradient within the
surface leads to a heat (energy) current in the perpendicular
direction in the surface. The so-defined surface thermal Hall
conductance σT

xy (when divided by temperature) tends, similar
to Eqs. (1) and (2), in the zero-temperature limit to a quantized
value

(
σT

xy/T
)/ (πkB)2

3h
= ±c/2, where c = n/2 (3)
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as the symmetry-breaking perturbation is reduced to zero.8,22,45

[c × (πkB )2

3h
is the thermal conductance for a Majorana fermion

when c = 1/2 (its central charge).]
If we start out with a noninteracting topological insulator,

one can explicitly compute the theory describing various
space-time-dependent responses. [For the thermal responses
of the DIII topological superconductor in d = 3 spatial
dimension, this is done in Sec. III B of this paper. For the
SU(2) spin responses of the topological singlet superconductor
in symmetry class CI this was done in Ref. 29. For a significant
part of the list of all topological insulators (superconductors),
this is done more generally in Sec. V of this paper for
all dimensionalities.] Due to the fact that the underlying
insulators are topological, the field theories for the responses
turn out to be described by what are called anomalies. The
anomalies turn out to provide63 an alternative characterization
of topological insulators (superconductors) [except in certain
one-dimensional cases53]. The charge, spin, and thermal
surface responses discussed above are consequences of such
anomalies.30 Anomalies are known to be insensitive to the
presence or absence of interactions. They are thus independent
of the strength of the interactions and can only change when
a bulk quantum phase transition is crossed (at which the bulk
gap closes).

While these surface responses are quantized and theo-
retically useful in that they permit one to understand the
stability of the topological insulator (superconductor) phases
to interactions (for the cases discussed above, and in Sec. V
for general dimensionalities), they may not all be directly
accessible experimentally. Therefore, we discuss below also
the various bulk responses.

The bulk responses that we find are of three types:
charge response, previously shown to lead to a quantized
E · B term in the ordinary Z2 topological insulator (“axion
electrodynamics”);18–20 gravitational response, when energy
flows lead to an analog of this term for gravitational fields,
leading to a Lense-Thirring frame-dragging effect31 when a
temperature gradient is applied; and magnetic dipole response,
when a magnetic dipole current induced by an applied
perturbation leads to an electrical field. A single phase may
show more than one of these effects; for example, a phase
with a conserved SU(2) spin current can show a non-Abelian
response of this type in the presence of an SU(2) gauge field
coupling to this current, but will also show a magnetic dipole
response via its coupling to ordinary U(1) electromagnetism.
We obtain these possible responses for each of the five
symmetry classes in three dimensions supporting topological
phases.8,9 As in the classification in Ref. 8, the approach
we take is based upon the surfaces of these topological
phases; these surfaces carry currents leading to new terms
in the effective action of gravitational and electromagnetic
fields. Our results for the various symmetry classes with
topological invariants in three dimensions are summarized in
Table I.

These bulk responses are “topological” to varying degrees.
The charge response is topological both in its spatial depen-
dence and as a term of the effective action: quantization of
the response is tied to quantization of the electrical charge and
the Dirac quantization condition. The gravitational response

is topological in terms of the spatial dependence, but its
coefficient is related to the mass or energy of the underlying
particles and hence not quantized to the same degree as
the charge response. The magnetic dipole response is not
topological in the sense of being metric-independent, but it
does arise from sample boundaries in the same way as the
other responses.

This paper is organized as follows: We begin in Sec. II
by reviewing the axion electromagnetism for the three-
dimensional topological insulators in the spin-orbit symmetry
class (symmetry class AII). In Sec. III, the thermal response
of three-dimensional time-reversal invariant topological su-
perconductors (such as the B-phase of 3He) is discussed by
exploiting a close analogy of electromagnetism and gravity
in Newtonian approximation. In Sec. IV, the dipole response
is discussed for three-dimensional topological phases when at
least one component of spin is conserved. All these responses
will be discussed from a much broader perspective in Sec. V
in terms of anomalies of various kinds (chiral anomaly, gauge
anomaly, gravitational anomaly), and the descent relation
pertaining to these anomalies. We conclude in Sec. VI.

II. CHARGE RESPONSES

For an explicit example, consider a cylinder of a topological
insulator with surface Hall conductance ±e2/(2h), defined
with reference to the outward normal (see Fig. 1). (Below,
we choose a plus sign for the surface Hall conductance by
subjecting the surface to a weak external time-reversal sym-
metry source.) The motivation for considering this example
in some detail is that it will lead to a direct interpretation of
the corresponding gravitational response below. The current
response to an applied electrical field along the cylinder axis
is (see Fig. 1)

j = jθ θ̂, where jθ = e2

2h
Ez. (4)

Now the magnetic field induced by this current follows from
one of Maxwell’s equations,

∇ × B = 4π

c
j, (5)

which leads to the magnetostatic equation

B(x) = 1

c

∫
j(x′) × (x − x′)

|x − x′|3 d3x ′. (6)

The result for a thin cylinder is that the magnetic field at the
cylinder axis, well away from the cylinder ends, is given by
B = Bzẑ with

Bz = 1

c

∫ ∞

−∞

r(2πr)jθ

(r2 + a2)3/2
da = 4π

c
jθ = 2πe2Ez

hc
. (7)

This magnitude follows from minimizing the magnetic energy,

HB = B2

8π
− e2

2hc
E · B, (8)
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FIG. 1. Electric and thermal response of topological insulators,
and thermal response of topological triplet superconductors, in a
cylindrical geometry. (a) Electric (j) or thermal (jT ) current driven by
applied electric field (E) or thermal gradient (∇T/T ). (b) A response
dual to (a) where an applied magnetic field in the z direction induces
charge polarization.

which follows from the Maxwell Lagrangian supplemented
with the θ term (axion term)

Lθ = θe2

2πhc
E · B = θe2

16πhc
εμνρλFμνFρλ (9)

for the coupling θ = −π . (The negative sign in this equation
is picked out by the choice of the direction of the current flow
around the cylinder.)

To understand the dual response (see Fig. 1), which is an
electrical field induced by an applied magnetic field, one needs
to include the ends of the cylinder. Applying a magnetic field
normal to a Hall layer increases or decreases the charge density
depending on the direction of the field, as is required for the
charge continuity equation to follow from Maxwell’s equation

∂B
∂t

+ ∇ × E = 0. (10)

Hence an applied magnetic field induces an electrical polar-
ization along the interior of the cylinder. We now turn to a
gravitational version of the above physics, generated by energy
flows from surface thermal Hall layers.

III. GRAVITATIONAL RESPONSES

A. Gravitoelectromagnetism

Our approach will be to start from the energy flow at
surfaces of a topological phase, which is the microscopic
source of the gravitational response. The importance of this
response is that it is the only one that exists in the important
symmetry class DIII, which includes superfluid 3He. We use
this phase as an explicit example in the following. The surface
Majorana mode that exists in this phase does not carry charge,
but it does carry heat, leading to a thermal Hall effect. Hence

a temperature gradient applied to a cylinder leads to an energy
flow perpendicular to the applied gradient,

jT
θ = σT

xy(−∂zT ) = c−2T σT
xyEg,z, (11)

where for future use we have treated temperature as a scalar
potential generating a field Eg = −c2(∇T )/T with units of
acceleration. The physical meaning of this scalar potential
was worked out by Luttinger in his derivation of the thermal
transport coefficients:32 in a near-equilibrium system, the
effect of a thermal gradient is equivalent to that obtained from
a gravitational potential ψ such that

∇ψ = ∇T

T
, (12)

where ψ is the gravitational potential energy per mass, divided
by c2.

This rotational energy flow couples to the gravitational field
at the first post-Newtonian approximation (i.e., the coupling
is down by a factor v/c compared to the static gravitational
effect present in the absence of the applied gradient). Because
temperature couples to the local energy density in the same
way as an applied gravitational potential, as used by Luttinger
in his derivation of the thermal Kubo formula,32 we can
view this effect similarly to the charge response above, as
a gravitational “magnetic” field resulting from the energy flow
that was induced by a gravitational “electric” field reflecting
the temperature gradient.

This analogy can be made precise in the near-Newtonian
limit using the gravitoelectromagnetic equations33 that apply
to a near-Minkowski metric. The relevant equation is that a
mass current induces a gravitomagnetic field Bg , defined more
precisely below, via the equation

∇ × Bg = −4πGjm
c

. (13)

Here jm is the (three-dimensional) mass current density,
satisfying jm = jT /c2, and G is the effective Newton constant
of the material. The negative sign in this equation compared to
the corresponding Maxwell’s equation is physically significant
and results from the difference that equal masses attract,
while equal charges repel. The field Eg , like Bg , has units
of acceleration, and the gravitational force on a test particle of
small mass mtest is

F = mtest

(
Eg + 2

v
c

× Bg

)
, (14)

where v is the particle velocity. The factor of 2 here results
from the spin-2 nature of the gravitational field.

Now, by the same steps as above, there is an induced field
along the cylinder axis,

Bg = 4πGjTθ
c3

= 4πG

c3

T σT
xyEgz

c2
. (15)

Since σT
xy has the units k2

BT /h of a two-dimensional thermal
conductivity, the ratio between Bg and Eg is of the form
G(energy2)/(hc5), which is dimensionless (the gravitational
analog of the fine-structure constant that appears in the charge
case).

The gravitomagnetic field then has exactly the same spatial
dependence as the magnetic field in the axion case computed
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above. In particular, it is topological (e.g., the field at the
cylinder axis does not fall off as the cylinder radius becomes
larger) and scales with the energy flow, which in turn scales
quadratically with the mass of the underlying particles.

B. Gravitational instanton term

We now discuss the gravitational response in topological
insulators and superconductors from a more formal point of
view. When discussing electromagnetic responses in topo-
logical insulators, we can couple electrons to an external
(background) U(1) gauge field. The θ term in the effective
action for the gauge field then results by integrating over
the gapped electrons. To discuss gravitational and thermal
responses, we can take a similar approach: we can introduce an
external gravitational field that couples to fermions (electrons
for topological insulators, and fermionic Bogoliubov quasipar-
ticles for topological superconductors). By integrating over the
gapped fermions, we obtain an effective gravitational action.
The derivation of the effective action proceeds in a way quite
parallel to that of the U(1) case: Indeed, both of them are
related to a chiral anomaly, as we will see below.

For topological insulators or superconductors defined on a
lattice, it is not obvious how to couple fermions to gravity in a
way fully invariant under general coordinate transformations.
Also, there is of course no Lorentz symmetry on a lattice. Yet,
energy and momentum are conserved, and one can think of
introducing an external field that couples to these conserved
quantities. The gravitoelectromagnetic approach discussed in
the previous subsection is based on a particular background
(flat Minkowski metric), and is an approximation of the full
Einstein gravity in the limit where the mass flows are small in
some particular reference frame defined by the system with no
thermal perturbation.

However, all topological insulators (superconductors) are
known22 to possess a representative in the same topological
phase, which is described by a Dirac Hamiltonian. Fermions
whose dynamics is described by a Dirac Hamiltonian can
naturally be coupled to a gravitational background field. (The
theory is fully Lorentz invariant, and the coupling to gravity
is fully invariant under general coordinate transformations,
and can be described in terms of the spin connection.) For
this reason, we provide (below) a derivation of the effective
action in terms of the Dirac representative of the topological
phases. The topological features of the effective action for
the gravitational responses are expected to be independent of
the choice of representative in the topological class, and thus
to have a much more general applicability. Physically, such
gravitational responses describe thermal response functions.32

We thus consider the following single 4 × 4 continuum
Dirac model:

H =
∫

d3x ψ† (−i∂ · α + mβ) ψ, (16)

where ψ† and ψ represent creation and annihilation operator
of complex fermions, respectively, and α = σ1 ⊗ σ and
β = σ3 ⊗ σ0 are the Dirac matrices (σ0,1,2,3 are standard Pauli
matrices). (In this subsection, we use natural units, c = h̄ = 1,
and set the Fermi velocity to be 1 for simplicity.) For

topological superconductors, we need to use real (Majorana)
fermions instead of complex fermions.

We assume the Dirac model is in a topologically nontrivial
phase for m > 0 while it is in a trivial phase for m < 0: While
this does not look apparent from the action in the continuum
limit, when the Dirac model is derived from an appropriate
lattice model, the sign of the mass does determine the nature
of the phase. In the presence of a gravitational background,
the fermionic action is given by34

S[m,ψ̄,ψ,e] =
∫

d4x
√

gL,

(17)

L = ψ̄ea
μiγ a

(
∂μ − i

2
ωμ

ab�ab

)
ψ − mψ̄ψ,

where μ,ν, . . . = 0,1,2,3 is the space-time index, and
a,b, . . . = 0,1,2,3 is the flat index; ea

μ is the vielbein, and
ωμ

ab is the spin connection; �ab = [γa,γb]/(4i). (See Ref. 35
for our conventions of metric, vielbein, spin connection,
etc.) The effective gravitational action Weff[m,e] for the
gravitational field is then obtained from the fermionic path
integral

eiWeff [m,e] =
∫

D[ψ̄,ψ]eiS[m,ψ̄,ψ,e]. (18)

A key observation is that the continuum Hamiltonian H

enjoys a continuous chiral symmetry: we can flip the sign of
mass, in a continuous fashion, by the following chiral rotation:

ψ → ψ = eiφγ5/2ψ ′, ψ† → ψ† = ψ†′e−iφγ5/2, (19)

under which

ψ̄(i∂μγμ − m)ψ = ψ̄ ′[i∂μγμ − m′(φ)]ψ ′,
(20)

m′(φ) = meiφγ5 = m[cos φ + iγ5 sin φ],

so that m′(φ = 0) = m and m′(φ = π ) = −m. Since m can
continuously be rotated into −m, one would think, naively,
Weff[m,e] = Weff[−m,e]. This naive expectation is, however,
not true because of chiral anomaly. The chiral transformation
that rotates m continuously costs the Jacobian J of the path
integral measure,

D[ψ̄,ψ] = JD[ψ̄ ′,ψ ′]. (21)

The chiral anomaly (the chiral Jacobian J ) is responsible for
the θ term. The Jacobian J can be computed explicitly by the
Fujikawa method,36 with the result

Wθ
eff := − lnJ

= θ
1

2

[
1

2 × 384π2

∫
d4x

√
gεcdef Ra

bcdR
b
aef

]
(22)

when m > 0 while Wθ
eff = 0 when m < 0. The expression

in square brackets is the so-called Dirac genus (see Sec. V
below for details), which is equal,34 by the Atiyah-Singer
index theorem, to the index of the Dirac operator in the curved
background. The multiplicative prefactor 1/2 arises because
of the Majorana nature of the Bogoliubov quasiparticles. The
index in square brackets is in fact an even integer (by Rochlin’s
theorem39). Therefore, (1/2) of that expression, i.e., half the
index, is an integer. Thus the gravitational effective action Wθ

eff
in Eq. (22) equals θ times an integer, i.e., it is a so-called θ term.
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As we rotate the angle θ = φ, Eq. (20), from zero to 2π , the
partition function winds an integer number of times around the
origin in the complex plane. This winding number measures
the integer8,10,22 of the topological insulator (superconductor).
See also Ref. 63. [This winding number is ultimately related to
a property of the underlying massless theory. See, e.g., Eq. (46)
and its generalizations.] Now, since θ → −θ under time
reversal, the θ angle is fixed by time-reversal symmetry and
periodicity to either θ = 0 or θ = π . The former corresponds
to a topologically trivial state, and θ = π to the topologically
nontrivial state. [For a similar discussion on the derivation
of the θ term, i.e., the E · B term, for the electromagnetic
response, see Ref. 26, and for the non-Abelian SU(2) response,
see Ref. 29.] Note that if instead we consider complex (Dirac)
fermions in the background gravity field, the theta angle θ is
an integer multiple of 2π , but not of π as in the Majorana case.

The part of the effective action that is not related to the
Fujikawa Jacobian takes the form of the Einstein-Hilbert
action WEH = (16πG)−1

∫
d4x

√
gR, where G is the effective

Newton constant in the bulk of the topological insula-
tor (superconductor). The gravitoelectromagnetism equations
mentioned above can be derived from the effective action by
taking the Newtonian limit (near Minkowski limit).

To make the connection with the existence of topologically
protected surface modes, we note that when there are bound-
aries (say) in the x3 direction at x3 = L+ and at x3 = L−, the
gravitational instanton term Wθ

eff , at the nontrivial time-reversal
invariant value θ = π of the angle θ , can be written in terms
of the gravitational Chern-Simons terms at the boundaries,

Wθ
eff = ICS|x3=L+ − ICS|x3=L− , (23)

where (i,j,k = 0,1,2)

ICS = 1

2

1

4π

c

24

∫
d3xεijktr

(
ωi∂jωk + 2

3
ωiωjωk

)
(24)

with c = 1/2. This kind of relationship between the θ -term
and the Chern-Simons type term in one lower dimension is
a special case of the so-called descent relation and will be
discussed further in Sec. V. This value of the coefficient
of the gravitational Chern-Simons term is one-half of the
canonical value (1/4π ) × (c/24) with c = 1/2. As before,
for fermions with a reality condition (Majorana fermions),
the canonical value of the coefficient of the gravitational
Chern-Simons term corresponds to c = 1/2, as opposed to
c = 1 for fermions without a reality condition. As discussed
by Volovik37 and Read and Green38 in the context of the
two-dimensional chiral p-wave superconductor, the coefficient
of the gravitational Chern-Simons term is directly related
to the thermal Hall conductivity, which in our case is carried
by the topologically protected surface modes.40 [See Eq. (3)
of the Introduction.]

IV. DIPOLE RESPONSES

A. Topological singlet superconductor (class CI) and spin chiral
topological insulator (class CII)

The last response we consider can be measured in systems
with a conserved spin or magnetic dipole current. Among
the five symmetry classes that admit a topological phase in

three-spatial dimensions, we thus focus on topological singlet
superconductors in symmetry class CI (possessing time-
reversal and spin rotation invariance), and also on topological
insulators in symmetry class CII (possessing time-reversal but
without spin rotation invariance) (see Table I).

Simple lattice models of the three-dimensional topological
singlet superconductor in symmetry class CI were discussed
previously on the diamond lattice29 and on the cubic lattice,26

for which, in the presence of a boundary (surface), there is a
stable and nonlocalizing Andreev bound state. Similar to the
quantized E · B term for the charge response in the topological
insulator, the response of topological singlet superconductors
to a fictitious external SU(2) gauge field (a “spin” gauge field,
which couples to conserved spin current) is described by the
θ term at θ = π in the (3 + 1)-dimensional SU(2) Yang-Mills
theory.29 The θ term predicts the surface quantum Hall effect
for spin transport (the spin quantum Hall effect), as already
mentioned in the Introduction (Sec. I).

To detect such a quantum Hall effect for the SU(2)
symmetric spin current requires a fictitious external spin
gauge field, and hence one would think it cannot be detected
experimentally. Nevertheless, we discuss in this section that
the electromagnetic response carried by the dipole moment of
the spin current can be measurable. (See Ref. 41 for a similar
discussion on the dipole response in a 3He-A superfluid thin
film or two-dimensional p-wave paired states.)

The topological insulator in symmetry class CII (called a
“spin chiral topological insulator” in Ref. 26) is in many ways
analogous to the more familiar quantum spin Hall effect in
two spatial dimensions, but requires the chiral symmetry in
addition to time-reversal symmetry. (For a lattice model of the
Z2 topological insulator in symmetry class CII, see Ref. 26.)
Just as an intuitive understanding of the quantum spin Hall
effect can be obtained by starting from two decoupled and inde-
pendent quantum Hall systems with opposite chirality for each
spin and then gluing them together, this spin chiral topological
insulator can be obtained by considering two independent
topological insulators in symmetry class AIII. More general
quantum spin Hall states or spin chiral topological insulators
can then be obtained by destroying the Sz conservation by mix-
ing spin-up and -down components. The dipole response for
class CII topological insulators, which we will describe below,
assumes that a U(1) part of the SU(2) spin rotation symmetry is
conserved (i.e., one component of spin is conserved). However,
even when there is no such symmetry, if mixing between two
species is weak, we can still have such a dipole response.

B. Magnetic dipole responses

The spin current response at the surface of such a system
to an applied magnetic field B via the Zeeman effect can be
written as

ja
i = αεijk(∂j θ )∂kBa, (25)

where α is some constant. Here we have introduced a scalar
field θ (“axion” field),29 by analogy with the local electro-
magnetic polarizability of the (AII, spin-orbit) topological
insulator, to describe the spatial location of the dipole current,
which as before is a surface property. Here ja

i represents the
ath component of a magnetic dipole current of dipoles in
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spatial direction i. Such a current can generate two types of
static electromagnetic responses: a dipole density through the
continuity equation

∂ij
a
i + ∂tn

a = 0, (26)

and an electrical field through the equation

(∇ × E)i = εijk∂jEk = μ

4π
∂aj

a
i , (27)

where μ is the permeability of the material of interest. (One
could alternately have a time-varying magnetic field, just as
a current density can produce either a constant magnetic field
or a time-varying electrical field.) The second response may
be unfamiliar but can be derived from elementary principles;
see Ref. 42 for a discussion of how it can be measured
experimentally. Start from a dipole field in the laboratory
frame. Take one copy with the dipoles pointing along some
direction n̂ and boost that along v, and take another copy with
the dipoles pointing along −n̂ and boost that along −v. For
a dipole density na , this leads, in the comoving frame, to the
field Ba = (μ/4π )na , and hence

∇ · B = μ

4π
∂an

a. (28)

Using the nonrelativistic Lorentz transformation law

E → γ (E + v × B) (29)

with γ � 1 leads to Eq. (27), with ja
i = vin

a .
Now we consider these responses for the surface spin

current of a three-dimensional topological singlet supercon-
ductor. The spin Hall current is always divergence-free by
commutation of derivatives,

∂ij
a
i = αεijk∂i(∂j θ∂kBa) = 0, (30)

since whichever term the ∂i acts on gives zero. However, the
electromagnetic response can be nonzero:

εijk∂jEk = μ

4π
∂aj

a
i = μα

4π
∂a(εlmn∂mθ∂nBa). (31)

There are two parts to this: one “monopole” part is only
nonzero if ∂aB

a 	= 0, and we therefore neglect it. There is
also a term

μα

4π
εlmn(∂a∂mθ )∂nBa. (32)

C. Example

As an example, we compute this response for the case of a
surface of a topological singlet superconductor, where the theta
angle θ varies as a function of the distance from the surface
(Fig. 2). For the response to be nonzero, we need a = m = z,
so the response is to the z component of the magnetic field.
We get, up to a possible sign,

(∇ × E)x = −αμ

4π
∂2
z θ∂yBz, (∇ × E)y = αμ

4π
∂2
z θ∂xBz.

(33)

For the case in which θ is first constant, then changes linearly
in z within a surface surface layer, and is then constant again
outside this layer (Fig. 2), this response will occur entirely at
the top and bottom surfaces of the region of linear change.

topological
superconductor

FIG. 2. Surface of a spin chiral topological insulator (class CII)
or topological singlet superconductor (class CI).

As an example relevant to possible experiments, we compute
this response for the magnetic field produced by a magnetic
monopole field of strength qm (i.e., from one end of a long
magnetic dipole), suspended a distance z0 above a spin Hall
surface layer where θ changes linearly across a thickness d.
This surface layer gives two surfaces with

(∇ × E)x = jm
x = ∓β∂yBz, (∇ × E)y = jm

y = ±β∂xBz,

(34)

where β = (αμ)/(4π ) π/d. At the top layer, the z component
of magnetic field is, in cylindrical coordinates,

Bz = qmz0(
r2 + z2

0

)3/2 , (35)

which leads to a surface magnetic current of magnitude,

jm
θ = 3βqmz0r(

r2 + z2
0

)5/2
, (36)

at the top surface. Since

E(r) =
∫

d3r′ (r − r′) × j(r′)
|r − r′|2 , (37)

we obtain that the electrical field from the top surface, at a
height z1 above the top surface (and directly above or below
the original monopole), is

Ez(z1) =
∫ ∞

0
(2πr) dr

3βqmz0r(
r2 + z0

2
)5/2

r

r2 + z1
2
. (38)

Evaluating this at the original height z0 gives

Ez(z0) = (6πβqmz0)
2

15z0
4

= 4πβqm

5z0
3

. (39)

Comparing this to the case of an image charge above a metal,
we see that the electrical field falls off by one more power of
height. From the above, the dipole currents are localized to
the top and bottom surfaces of the region where θ changes.
The bottom surface contributes with an opposite sign and with
z → z + d, so we obtain

Ez(z0) = 4πβqm

5

[
z0

−3 − (z0 + d)−3
]
, (40)

so that for d � z0 the electric field falls off as the fourth power
of distance.
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We can understand the scaling of the result by noting that qm

divided by length cubed has units of magnetic field per length;
multiplying by β converts this to a two-dimensional magnetic
charge current density, which has the same units as an electric
field. While the dipole response originates in a topological
phase, it is not itself “topological” but depends sensitively on
the geometry used to probe it.

V. TOPOLOGICAL FIELD THEORIES FOR
SPACE-TIME-DEPENDENT RESPONSES IN

TOPOLOGICAL INSULATORS AND
SUPERCONDUCTORS IN GENERAL DIMENSIONS

FROM ANOMALIES

The previous sections of this paper complete the list
of the (topological) field theories describing the space-
time-dependent responses of all topological insulators and
superconductors in three spatial dimensions (3 + 1 space-time
dimensions). In this section, we will describe, more generally,
the (topological) field theories for such responses in general
dimensions. Most importantly, the main result obtained in this
section is a general connection between the appearance of such
topological terms in the field theories for the responses and the
appearance of what are called anomalies43 for the field theories
in those space-time dimensions in which topological insulators
(superconductors) appear. In fact, we may ask if the existence
of a particular type of anomaly in a given dimension allows
us to predict the existence of a topological insulator (super-
conductor) of the “tenfold” classification in that dimension.
The answer to this question is affirmative. As we demonstrate
below, a large part of the “tenfold” classification can be derived
from the existence of the known anomalies in corresponding
quantum field theories in space-time. This can then be thought
of as yet another derivation of the “tenfold” classification,
in addition to the previously known derivations such as that
based on Anderson localization at the sample boundaries,8

and K-theory9 (as well as a later point of view based on D-
branes46,47). Moreover, and most importantly, the appearance
of an anomaly is a statement about the respective quantum
field theory (of space-time linear responses) independent of
the assumption of the absence of interparticle interactions.
Thus, anomalies provide a description of topological insulators
(superconductors) in the context of interacting systems.

A. Topological insulators (superconductors) in the two complex
symmetry classes A and AIII from anomalies in the gauge

field action

1. The integer quantum Hall effect (class A)

Let us begin by describing the topological field theories
describing the space-time-dependent responses of the two
“complex” symmetry classes, classes A and AIII in the
Cartan (Altland-Zirnbauer) classification.8,10,22 This includes
the most familiar example, namely the integer quantum Hall
insulator (IQH), belonging to symmetry class A. In both
symmetry classes, A and AIII, there has to exist a conserved
U(1) charge (particle number). This is the electromagnetic
charge, since these symmetry classes can be realized as
normal electronic systems (as opposed to superconducting
quasiparticle systems).48 Therefore, we can minimally couple

these topological insulators to an external U(1) gauge field.
The field theory describing the space-time-dependent linear
responses of the topological insulator can then be obtained
by integrating out the gapped fermions. The fact that the
underlying insulator is topological is reflected in the fact
that the effective action for the external U(1) gauge field,
describing the electromagnetic linear responses, contains a
term of “topological origin,” such as, e.g., a Chern-Simons
or a θ term, or corresponding higher-dimensional analogs of
these terms (see below for more details).

In turn, the presence of terms of topological origin in the
so-obtained effective action for the external U(1) gauge field
is closely related to the presence of a so-called anomaly.
To see how an anomaly for the theory of the external U(1)
gauge field can actually predict the presence of a topological
phase, let us consider first, as the simplest example, the IQH
insulator in d = 2 spatial dimensions—symmetry class A.
(The space-time dimension is thus D = 2 + 1.) In fact, let
us first focus attention on the theory of the sample boundary
(the edge state), which has d = 1 spatial dimensions. It is
known (see below) that the effective theory for the linear
responses of the U(1) gauge field in D = 1 + 1 space-time
dimensions (i.e., of the edge state) can have what is called
a “gauge anomaly” since the space-time dimension D is
even.33,36 The presence of this anomaly simply means that
U(1) charge conservation is spoiled by quantum mechanics.
In the condensed-matter setting of the IQH insulator, the
meaning of this anomaly is that the system (i.e., the edge)
in D = 1 + 1 space-time dimensions, exhibiting the anomaly,
does not exist in isolation, but is necessarily realized as the
boundary of a topological insulator in one dimension higher. In
this case, the breakdown of the conservation law of U(1) charge
conservation at the boundary simply means that the current
“leaks” into the bulk. Thus, in the condensed-matter setting,
the presence of the anomaly in the theory at the boundary is
not something abnormal, but it is a physical effect: it is the
integer quantum Hall effect. As we will discuss briefly below,
the same reasoning applies to all even space-time dimension,
D = 2k. Consequently, we see that the presence of a U(1)
gauge anomaly predicts the presence of a topological insulator
in one dimension higher. That is, this predicts the presence
of a topological insulator in symmetry class A in D = 2k + 1
space-time dimensions, in agreement with the “tenfold” way
classification.

2. Three-dimensional insulator (superconductor) in
symmetry class AIII

Let us now consider the topological insulator (supercon-
ductor) in the other complex symmetry class, class AIII, in
d = 3 spatial dimensions. Again, the space-time dimension
D = 3 + 1 = 4 is even. It is known (see below) that in
all even space-time dimensions, the effective action for the
space-time-dependent U(1) gauge field may also possess a
different anomaly [in contrast to the discussion in the preceding
subsection], often referred to as the “chiral (or axial) anomaly
in a background U(1) gauge field.”34 The meaning of such an
anomaly can be explained using Eq. (46) below: the so-called
axial (or chiral) U(1) current J

μ

5 (x) is not conserved in the
presence of a background U(1) gauge field, i.e., DμJ

μ

5 (x) 	= 0,
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where Dμ denotes the covariant derivative in the presence of a
background gauge field. In the simplest case of a single copy
of a massive Dirac fermion (mass m), this covariant derivative
of the current is given by Eq. (46) below. As displayed in this
equation, there are two sources of the lack of conservation: (i)
a finite mass m 	= 0 and (ii) the extra “anomaly” term A2n+2

(to be discussed in more detail below), which represents the
breaking of the conservation of J

μ

5 by quantum effects.50 Now,
as discussed in Ref. 26, the presence of a “chiral (or axial)
anomaly in a background U(1) gauge field” implies directly
the possibility of having a nonvanishing θ term when deriving
the effective action for the external U(1) gauge field.51 (The
θ angle is fixed22 to θ = π by a discrete symmetry, which is
the chiral symmetry for symmetry class AIII.) Thus, the pres-
ence of a “chiral (or axial) anomaly in a background U(1) gauge
field” in D = 2k space-time dimensions signals the existence
of a topological insulator in this space-time dimension through
the appearance of a θ term in the (topological) field theory for
the linear responses.

3. Anomaly polynomials and descent relation

Observe that above we have used anomalies of two kinds,
and we used them in two different ways:

(i) In case 1. there was an anomaly in the theory of the
responses at the boundary [which had D = (d − 1) + 1 space-
time dimensions]. In this case the anomalous theory (i.e., the
one at the boundary) was gapless (critical); we refer to this
situation as a gauge anomaly [i.e., nonconservation of the U(1)
charge in question]. The presence of this anomaly implied the
existence of a topological insulator in one dimension higher,
i.e., in D′ = d + 1 space-time dimensions. The responses of
this topological insulator are described by an effective Chern-
Simons action for the U(1) gauge field in D′ = d + 1 space-
time dimensions. [See also Eq. (42).]

(ii) In case 2. there existed an anomaly in the massive
bulk theory in D = d + 1 space-time dimensions. This was a
chiral anomaly [referring to the violation of the conservation
of the global axial U(1) current J

μ

5 ] in the background of a
nonvanishing U(1) background gauge field.

There are important relationships between the following
different anomalies: (i) the U(1) gauge anomaly in D = 2n,
(ii) the Chern-Simons term (i.e., parity anomaly) in D = 2n +
1, and (iii) chiral anomaly in the presence of a background
gauge field in D = 2n + 2, which can be summarized, in
terms of the so-called descent relation of the “anomaly
polynomial.”34 Let us now explain this relation.

As mentioned above, it is known that in even space-time
dimensions D = 2n, there is a U(1) gauge anomaly. If there
is a gauge anomaly, the (Euclidean) effective action ln Z[A]
in the presence of the gauge field A is not invariant under a
gauge transformation A → A + v. Thus we can write

δv ln Z[A] = 2πi

∫
M2n

�
(1)
2n (v,A,F), (41)

where the variation δv is the gauge transformation in question,
and �

(1)
2n is a 2n-form built from the connection 1-form, A =

Aμdxμ, its field-strength 2-form, F = (1/2)Fμνdxμdxν , and
the variation v = vμdxμ of the gauge field. [By definition,
�

(1)
2n is linear in v. The integral is taken over the physical

D = 2n-dimensional (Euclidean) space-time M2n.] Now, the
descent relation tells us that �

(1)
2n can be derived from the

so-called anomaly polynomial �2n+2(F), which is a (2n + 2)-
form built from the curvature 2-form F , with the aid of yet
another (2n + 1)-form �

(0)
2n+1, by

�2n+2 = d�
(0)
2n+1, δv�

(0)
2n+1 = d�

(1)
2n . (42)

That is, �2n+2 is closed, and gauge invariant, and hence can
be written as a polynomial in F . Here �

(0)
2n+1(A,F) is its

corresponding Chern-Simons form.
There is a simple closed-form expression for the anomaly

polynomial �2n+2 that is given by

�D(F) = ch(F)|D. (43)

Let us explain the notation: ch(F) is the following power series
(“characteristic class”) constructed from the field-strength 2-
form F , and is given by

ch(F) = r + i

2π
trF − 1

2(2π )2
trF2 + · · · . (44)

This expression is written for the general case of a gauge field
transforming in an r-dimensional irreducible representation
of a (possibly non-Abelian) gauge group, where tr denotes the
trace in this representation. Observe that ch(F) consists of a
sum of different p-forms with different p where p = even.
The notation · · · |D in Eq. (43) means we extract a D-form
from ch(F).

While up to this point the differential forms �
(0)
2n+1 and

�2n+2 appear to have been introduced solely to express
the D = 2n-dimensional gauge anomaly in terms of other
objects, they themselves are known to be related to other types
of anomalies: the Chern-Simons form �

(0)
2n+1 represents an

anomaly in a discrete symmetry (parity or charge-conjugation
symmetry, depending on dimensionality) discussed in more
detail in Sec. V A 4 below, and �2n+2 represents34 the chiral
anomaly in the presence of a background gauge field, discussed
in Sec. V A 2 above. The integral of �2n+2 over D = (2n + 2)-
dimensional space-time, on the other hand, represents the θ

term (see also Sec. V A 5 below).

4. The Chern-Simons term

The integral of �
(0)
2n+1(A,F) over D = (2n + 1)-

dimensional space-time is the Chern-Simons-type action for
the gauge field A, and represents, as already mentioned,
an anomaly in a discrete symmetry: the parity or charge-
conjugation anomaly.

In turn, the presence of such a Chern-Simons term in the
effective (bulk) action for the gauge field A in D = (2n + 1)-
dimensional space-time signals the presence of a topological
phase: when there is a boundary in the system, the integral
of the Chern-Simons term is not invariant on its own; rather,
upon making use of the descent relation Eq. (42), one obtains

δv

∫
M2n+1

�
(0)
2n+1 =

∫
M2n+1

d�
(1)
2n =

∫
∂M2n+1

�
(1)
2n . (45)

This is something we are familiar with from the physics of
the quantum Hall effect: the presence of the boundary term∫
∂M2n+1

�
(1)
2n appearing on the right-hand side of Eq. (45) signals
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the presence of an edge mode. In turn, as we have seen
in Sec. V A 1, the gauge anomaly in D = (2n)-dimensional
space-time, which is represented by the integral over �

(1)
2n , itself

signals the presence of a topological phase in D = 2n + 1
space-time dimensions, i.e., in one dimension higher.

5. The θ term

The integral of the anomaly polynomial �2n+2 over D =
(2n + 2)-dimensional space-time is the θ term and represents
a chiral anomaly in the presence of a background gauge field
(discussed in Sec. V A 2 above). Again, to be more explicit,
in the presence of such an axial anomaly, the axial current
J

μ

5 (x) [which in the present case is an axial U(1) current]
is not conserved: DμJ

μ

5 (x) 	= 0, where Dμ is the covariant
derivative in the presence of the gauge field. For a single copy
of a massive Dirac fermion, it is given by

DμJ
μ

5 (x) = 2imψ̄γ2n+1ψ + 2iA2n+2(x), (46)

where the first term represents the explicit breaking of the
chiral symmetry by the mass term, whereas the second term
represents the breaking of the chiral symmetry by quantum
effects. A2n+2 quantifying the breaking of the axial current
conservation by an anomaly is essentially identical to �2n+2,
and given by removing all dxμ that appear in the differential
form �2n+2.

Just as was the case for the Chern-Simons term, the presence
of such a θ term in the effective action for the gauge field
signals the presence of a topological phase. In particular, the
descent relation tells us that∫

M2n+2

�2n+2 =
∫

M2n+2

d�
(0)
2n+1 =

∫
∂M2n+2

�
(0)
2n+1. (47)

This is, again, something we are familiar with from the physics
of the three-dimensional topological insulator in class AIII,
which is described by the θ term (the axion term). In the
presence of a boundary ∂M2n+2, such a topological state
supports boundary degrees of freedom, as signaled by the
boundary term

∫
∂M2n+1

�
(0)
2n+1, which is a Chern-Simons term.52

Let us summarize: to derive the existence of topological
phases in symmetry class A and AIII, we start from the
anomaly polynomial �2n+2. Then the terms

∫
M2n+2

�2n+2 and∫
M2n+1

�
(0)
2n+1 are the effective actions for the (topological) field

theory of the space-time linear responses for the gauge field
for the topological phases in class AIII (D = 2n + 2) and A
(D = 2n + 1), respectively.

B. Topological insulators (superconductors) in the remaining
eight “real” symmetry classes from gravitational and mixed

anomalies

1. Gravitational anomaly and axial anomaly in the presence of
background gravity

For the remaining eight “real” of the ten symmetry classes,
having a conserved U(1) quantity is less trivial. Classes AI,
AII, and CII are naturally realized as a normal (as opposed
to superconducting) electronic system, and thus for these
there is a natural notion of a conserved U(1) quantity (the
electrical charge). One realization of the BDI symmetry class,
which is only part53 of the entire symmetry class, can also be

considered to have a conserved U(1) quantity, and we consider
this realization in this subsection. On the other hand, classes
D, DIII, C, and CI are naturally realized as BdG systems.
While for classes C and CI, SU(2) spin is conserved [so a
conserved U(1) charge exists], for classes D and DIII, there is
no conserved U(1) quantity at all.

Since for the latter four of eight real symmetry classes (D,
DIII, C, CI) we cannot rely on a conserved U(1) quantity to
describe these topological phases, it is not possible to couple
these systems minimally to a U(1) gauge field. However,
it is natural to consider a coupling of these topological
phases to gravity. Let us focus first on topological insulators
(superconductors) with an integer topological charge, Z, but
not on those with a binary topological charge, Z2. For now we
also do not consider topological insulators or superconductors
with a 2Z charge.

An analog of the U(1) gauge anomaly, which we have
described in Sec. V A 1 at the boundary (of space-time di-
mension D = 2n) of topological phases in symmetry class A,
is the gravitational anomaly. It corresponds to the breakdown
of energy-momentum conservation, and when it happens, it
must be realized in a system that represents the boundary of
a topological phase in one dimension higher [in analogy to
the case of a U(1) gauge anomaly, Sec. V A 1]. We refer to
this anomaly also as a “purely gravitational anomaly.” In the
following, we will show that one can predict the appearance of
the topological phases in symmetry classes D, C, DIII, CI [i.e.,
those without conserved U(1) charge] from the presence of a
purely gravitational anomaly that appears in the field theory
for the gravitational (or thermal32) responses.

Finally, we will need to discuss the still remaining sym-
metry classes AI, BDI, AII, and CII. Topological insulators
(superconductors) in these symmetry classes can be coupled to
both a U(1) gauge field54 as well as a gravitational background.
We will show that the field theories for the space-time-
dependent linear responses for these topological insulators
possess a so-called mixed anomaly. Indeed, we will show that
the appearance of a mixed gravitational and electromagnetic
axial anomaly signals the existence of topological phases in
these symmetry classes.

2. Topological insulators (superconductors) in symmetry classes
D, C, DIII, and CI from the purely gravitational anomaly

As mentioned earlier in this paper, each topological
insulator (in any dimension) has a Dirac Hamiltonian
representative.22 We can consider the coupling of this Dirac
theory to a space-time-dependent gravitational background.
Upon integrating out the massive fermions, we obtain an
effective gravitational action in D space-time dimensions.
If there is a gravitational anomaly, the (Euclidean) effective
action ln Z[e,ω] in the presence of the gravitational
background is not invariant under a general coordinate
transformation xμ → xμ + εμ, where e is the vielbein and ω

is the spin-connection 1-form. That is,

δv ln Z[e,ω] = 2πi

∫
MD

�
(1)
D (v,ω,R), (48)

where δv represents an infinitesimal SO(D) rotation, under
which ω, the spin-connection 1-form ω, is transformed as ω →
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ω + v; �
(1)
D (v,ω,R) is a D-form related to the gravitational

anomaly. In complete analogy to the case of the gauge anomaly
discussed above, �

(1)
D (v,ω,R) can be derived from a corre-

sponding anomaly polynomial �D+2(R) [see Eqs. (54) and

(55) below] through its Chern-Simons form �
(0)
D+1(ω,R), by

using a descent relation that takes a form identical to Eq. (42).
Thus, once the existence of the (purely) gravitational anomaly
is known for a given dimension D, it predicts the presence of
topological phases in D + 1 and D + 2 dimensions, using the
same logic as in the gauge field case above.

Now, according to Ref. 55, a purely gravitational anomaly
can exist in

D = 4k + 2 (d = 4k + 1). (49)

Thus, breakdown of energy-momentum conservation due to
quantum effects can occur in these dimensions. As in the case
of symmetry class A, discussed above, we take this as evidence
for the existence of a topological bulk in one dimension higher,
i.e., in space-time dimensions

D = 4k + 3 (d = 4k + 2). (50)

This thus predicts the appearance of topological phases in

class D (d = 2), class C (d = 6), (51)

as well as all the other higher-dimensional topological phases
that we can obtain from these by Bott periodicity. (These are
colored red in Table 2.)

On the other hand, there is an analog of the “axial anomaly
in the presence of a background gauge field,” which we
discussed in Sec. V A 2 in the context of symmetry class
AIII in D = 2n space-time dimensions. This analog is the
“axial anomaly in the presence of a background gravitational
field.” If only a background gravitational field is present, this
anomaly exists in space-time dimensions

D = 4k (d = 4k − 1). (52)

This covers symmetry classes

class DIII (d = 3), class CI (d = 7), (53)

as well as all higher-dimensional topological phases that we
can obtain from these by Bott periodicity. (These are colored
blue in Table II.)

The anomaly polynomial related to the gravitational anoma-
lies is known explicitly. It can be written as

�D=4k = Â(R)|D, (54)

where Â(R) is the so-called Dirac genus given by36

Â(R) = 1 + 1

(4π )2

1

12
trR2

+ 1

(4π )2

[
1

288
(trR2)2 + 1

360
trR4

]
+ · · · . (55)

Here R is the D × D matrix of 2-forms,

Rμ
ν := 1

2Rαβμ
ν dxαdxβ, (56)

where Rαβμ
ν is the usual Riemann curvature tensor, and

the trace refers to the D × D matrix structure. This defines,
by the descent relation [which takes a form identical to
Eq. (42)], the differential forms �

(0)
4k−1 and �

(1)
4k−2. As before,

the notation Â(R)|D extracts a D-form from Â(R). It is
obvious from (55) that the anomaly polynomial exists only for
D = 4k because Eq. (55) is a function of R2. [Note that the
descent relation Eq. (42) then implies the existence of a purely
gravitational anomaly �

(1)
4k+2(R) in D = 4k + 2 space-time

dimensions, in agreement with Ref. 55.]

3. Topological insulators (superconductors) in symmetry classes
AI, BDI, AII, and CII from the mixed anomaly

Before proceeding, let us briefly summarize the previous
subsection: by considering various anomalies related to grav-
ity, we can predict the integer topological phases in the BdG
symmetry classes D, DIII, C, and CI. (As mentioned above,

TABLE II. Topological insulators (superconductors) with an integer (Z) classification, (a) in the complex symmetry classes, predicted
from the chiral U(1) anomaly, and (b) in the real symmetry classes, predicted from the gravitational anomaly (red), the chiral anomaly in the
presence of background gravity (magenta), the mixed anomaly under gauge and coordinate transformations (blue) and the chiral anomaly in
the presence of both background gravity and U(1) gauge field (green).

Cartan\d 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 · · ·
AIII Z 00 Z 0 Z 0 Z 0 Z 0 Z · · ·
AI Z 2Z0 0 0 0 Z2 Z2 Z 0 0 0 · · ·
BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 · · ·
D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 · · ·
DIII Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z · · ·
AII 02Z

0

0

0

0

0

0 0

Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 · · ·
CII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 · · ·
C 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 · · ·
CI 2Z 0 Z2 Z2 Z 0 0 0 2Z · · ·
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for the moment we do not consider topological phases with
Z2 or 2Z topological charges.) On the other hand, we have
so far not covered the description of topological insulators in
symmetry classes AI, BDI, AII, and CII in terms of anomalies.

So far, we have considered for the “real” symmetry classes
only those anomalies that involve solely gravity. Since the
(gapped) topological insulators in symmetry classes AI, BDI,
AII, and CII, also possess a conserved U(1) charge,54 we can
couple those to both a U(1) gauge field as well as a gravitational
background. Therefore, it is natural to consider an anomaly
that occurs in the presence of both a background gauge and a
background gravitational field.

As it turns out, even in the presence of both gauge
and gravitational fields, the structure of the anomaly is
similar to the one discussed so far: the noninvariance of the
effective action under a gauge transformation or coordinate
transformation can be expressed as

δv ln Z[A,e,ω] = 2πi

∫
MD

�
(1)
D (v,A,ω,F ,R), (57)

where �
(1)
D (v,A,ω,F ,R) can be derived from an associated

anomaly polynomial, which reads34,36

�D(R,F) = [
ch(F)Â(R)

] |D. (58)

As the right-hand side is given simply by the product of the
anomaly polynomials for a gauge field [Eq. (44)] and gravity
[Eq. (55)], by switching off either R or F , we recover the
results discussed in the previous subsections: for all even
space-time dimensions D = d + 1 = 2k (k = 1,2, . . .) we
obtain a nonvanishing anomaly polynomial �D(R = 0,F) =
�D(F), which we have already used to predict topological
insulators or superconductors in class A (D = 2k + 1) and
AIII (D = 2k). For space-time dimensions D = d + 1 = 4k

(k = 1,2, . . .) we obtain a nonvanishing anomaly polynomial
�D(R,F = 0) = �D(R), which we have already used to
predict topological insulators or superconductors in class DIII
(D = 4 + 8k) and CI (D = 8 + 8k).

On the other hand, while the anomaly polynomial
�D(R,F = 0) = �D(R) vanishes in D = 4k + 2
dimensions, the one obtained from Eq. (58), namely
�D(R,F), is nonvanishing in these dimensions.

As before, the anomaly polynomial itself is related to
a “chiral anomaly in the presence of both gauge field and
gravity” of the massive bulk system in D = 4k + 2 space-time
dimensions, DμJ

μ

5 (x) = 2imψ̄γD−1ψ + 2iAD(x), where
AD(x) is given in terms of �D(R,F). For this reason, one
predicts an additional topological insulator (superconductor)
in these space-time dimensions (besides the one of Sec. V A 2).
Therefore, one predicts the occurrence of topological phases
in spatial dimensions d = 9 (d = 1) and d = 5,

class BDI [d = 9 (d = 1)], class CII (d = 5), (59)

as well as of all higher-dimensional topological phases that
we can obtain from these by Bott periodicity.56 (These are
colored green in Table II.) Indeed, for classes BDI and CII,
we can realize these symmetry classes as a normal (i.e.,
not superconducting) system, and hence they have a natural
U(1) charge.54 The effective topological field theory for
the space-time-dependent linear [electrical and gravitational

(thermal)] responses possesses a term of topological origin of
the form

∫
�D(R,F), where D = 4k + 2.

Moreover, it turns out that a descent relation that is identical
in form to Eq. (42) also holds for the “mixed” anomaly
polynomial defined in Eq. (58). Therefore, the space-time
integral of the Chern-Simons form �

(0)
4k+1 of �4k+2, which is

obtained from �4k+2 by using the descent relation, d�
(0)
4k+1 =

�4k+2, describes the term of topological origin in the effective
action for the linear responses in D = 4k + 1 space-time
dimensions. This corresponds to a “mixed anomaly” �

(1)
4k in the

corresponding boundary theory in 4k space-time dimensions.
For this reason, one predicts the occurrence of additional
topological insulators in spatial dimensionalities d = 0 and 4
(besides the ones in Sec. V A 1), for the two symmetry classes

class AI (d = 0), class AII (d = 4), (60)

as well as for all their higher-dimensional equivalents obtained
from the Bott periodicity (These are colored magenta in
Table II.)

4. Atiyah-Singer index theorem

For all the symmetry classes with chiral symmetry, the
Hamiltonian can be brought into block off-diagonal form.8

Above, we have discussed all symmetry classes of this form
that possess topological insulators with a Z classification (i.e.,
AIII in D = 2n, DIII in D = 4 + 8k, CI in D = 8 + 8k,
CII in D = 6 + 8k, BDI in D = 10 + 8k). A Dirac Hamil-
tonian H with chiral symmetry possesses an index, and the
Atiyah-Singer index theorem34 relates the integral of the
anomaly polynomial discussed above to this index through
the formula

index(H) =
∫

MD

�D(R,F), (61)

where �D(R,F) is the most general anomaly polynomial, as
defined in Eq. (58) above. Here, the Dirac Hamiltonian H
refers to the Hamiltonian in a gravitational background and a
background (Abelian or non-Abelian) gauge field. The index
index(H) is by definition an integer. We note that it is because
of this theorem that the space-time integral of the anomaly
polynomial represents a θ term for the theory of the space-
time-dependent linear gauge and gravitational responses, and
that the θ terms only occur for symmetry classes possessing a
chiral symmetry.

5. Global gravitational anomalies

The discussion that we have presented so far for the
connection between anomalies and topological insulators and
superconductors in “the primary series” (those located in
the diagonal of the Periodic Table and characterized by an
integer topological invariant) can be extended to some of the
“first and second descendants” (the topological insulators and
superconductors in the same symmetry class, but in one and
two dimensions less than the one with a Z invariant; these
are each characterized by a Z2 invariant). We propose that for
these we need to use so-called global anomalies, instead of
the so-called perturbative anomalies that we have made use of
in this section. Such anomalies do not affect infinitesimal, but
rather large (of order 1) symmetry transformations.
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It was found in Ref. 55 that global gravitational anomalies
can exist, given certain assumptions are satisfied, (i) in D =
8k, (ii) in D = 8k + 1, and (iii) in D = 4k + 2 space-time
dimensions. If so, then following the same reasoning as above,
the presence of these anomalies would indicate the existence of
a topological insulator in one dimension higher (of which the
anomalous system is the boundary). This would then indicate
the existence of topological insulators (superconductors) in
space-time dimensions (i) D = 8k + 1, (ii) D = 8k + 2, and
(iii) D = 4k + 3 [corresponding to spatial dimensions (i) d =
8k, (ii) d = 8k + 1, and (iii) d = 4k + 2]. Indeed, there exist
Z2 topological insulators in these dimensions (Table II). More
precisely, there exist two Z2 topological insulators in these
dimensions, and at this point we have not yet explored in
detail which of the two (or if both) could be related to this
global gravitational anomaly. Moreover, we note that there
also exist other (i.e., not gravitational) global anomalies, and
we propose that the other, as yet not yet covered,Z2 topological
insulators can be obtained from considering these other global
anomalies.

We end by mentioning that the notions presented in
this section (Sec. V) may also be further supported by the
connection with the tenfold classification of D-branes:46,47

In the D-brane realizations of topological insulators and
superconductors, massive fermion spectra arise as open string
excitations connecting two D-branes, which are in one-to-one
correspondence with the Dirac representative of the tenfold
classification of topological insulators and superconductors,
and come quite naturally with gauge interactions. The Wess-
Zumino term of the D-branes gives rise to a gauge field theory
of topological nature, such as those with the Chern-Simons
term or the θ term in various dimensions.

VI. CONCLUSIONS

There are various important future research directions in
the field of topological insulators and superconductors. Let
us mention two here. One is the search for experimental
realizations of the topological singlet and triplet supercon-
ductors in three spatial dimensions, besides the B phase of
the 3He superfluid. Given how fast experimental realizations
of the quantum spin Hall effect in two spatial dimensions
and the Z2 topological insulators in three dimensions have
been found, one may perhaps anticipate a similar develop-
ment for these three-dimensional topological superconducting

phases. Notably, CuxBi2Se3, which arises from the familiar
three-dimensional topological insulators Bi2Se3, was found
to be superconducting at 3.8 K.57 Subsequent theoretical
work proposed that this superconducting phase should be a
topological superconductor.58 The various linear responses
discussed in this paper, as summarized in Table I, may become
helpful in the search for, and identification of, such various
topological phases.

Another important issue is to complete the study of the
effect of interactions for the symmetry classes so far not
yet included in the discussion given in Sec. V. (These
include, in general dimensionalities, the topological insulators
(superconductors) with a 2Z classification, as well as the
majority of those with a Z2 classification.) Moreover, this
includes the case of symmetry class BDI in d = 1 spatial
dimension (recall also Refs. 53 and 56), discussed in the work
of Refs. 59 and 61. Further important outstanding questions
concern possible topological phases (besides superconductors)
which may arise from interactions rather than from band
effects. How can one describe “fractional” versions of the
topological insulators (superconductors),23 and how can one
classify bosonic systems such as, e.g., spin systems?62 Clearly,
to address any of these interaction-dominated issues, one
cannot rely on a topological invariant defined in terms of
single-particle Bloch wave functions. Rather, a definition of
topological quantum states of matter in terms of responses to
physical probes is necessary. In this paper, we have developed
a description of this type for all topological insulators in three
spatial dimensions, and for a significant part of the topological
insulators in general dimensions. From a conceptual point of
view, the gravitational responses are the most fundamental
ones in that they apply to all topological insulators. Owing
to Luttinger’s derivation32 of the thermal Kubo formula, these
correspond physically to thermal response functions.
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