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Optimizing large parameter sets in variational quantum Monte Carlo
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We present a technique for optimizing hundreds of thousands of variational parameters in variational quantum
Monte Carlo. By introducing iterative Krylov subspace solvers and by multiplying by the Hamiltonian and overlap
matrices as they are sampled, we remove the need to construct and store these matrices and thus bypass the most
expensive steps of the stochastic reconfiguration and linear method optimization techniques. We demonstrate
the effectiveness of this approach by using stochastic reconfiguration to optimize a correlator product state wave
function with a Pfaffian reference for four example systems. In two examples on the two dimensional Fermionic
Hubbard model, we study 16 and 64 site lattices, recovering energies accurate to 1% in the smaller lattice and
predicting particle-hole phase separation in the larger. In two examples involving an ab initio Hamiltonian,
we investigate the potential energy curve of a symmetrically dissociated 4 × 4 hydrogen lattice as well as the
singlet-triplet gap in free base porphin. In the hydrogen system we recover 98% or more of the correlation energy
at all geometries, while for porphin we compute the gap in a 24 orbital active space to within 0.02 eV of the exact
result. The number of variational parameters in these examples ranges from 4 × 103 to 5 × 105.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) is a powerful technique
for extracting predictions from the electronic Schrödinger
equation.1,2 The variational (VMC) and diffusion (DMC)
Monte Carlo methods in particular can produce highly accurate
predictions provided that a sufficiently flexible trial wave
function is available and that the variational parameters of
this wave function can be optimized. However, VMC and
DMC suffer from the major limitation that the most effective
stochastic optimization algorithms cannot handle more than
a few thousand variational parameters. These algorithms,
which include the Newton,3 approximate Newton,4 linear
(LM)5–8 and stochastic reconfiguration (SR)9,10 methods, are
currently constrained by their need to build and store matrices
that become unmanageable when the number of variational
parameters becomes large. Other stochastic optimization
algorithms11,12 that rely only on stochastic estimates for the
energy gradient can treat more variational parameters, but their
steepest-descent character makes for less efficient convergence
to the energy minimum, especially compared to the LM.
In order to make effective use of sophisticated trial wave
functions, such as tensor networks, which can contain millions
of variational parameters, it is imperative that more capable
optimization methods be developed.

The LM and SR optimization methods reduce to solving
either a system of linear equations or a linear eigenvalue
problem in which the matrices in question are determined by
stochastic sampling. The essential difficulty in this approach
is that the dimension of these matrices is equal to the number
of variational parameters, preventing their construction when
there are more than a few thousand variables. Here we
propose solving the central linear algebra problems of these
optimization methods by using iterative Krylov subspace
algorithms, which do not require the matrices to be built
explicitly. Instead, these solvers require that one evaluate
matrix-vector products, which we will show to be far less

computationally expensive than actually building the relevant
matrices. In VMC this approach is made particularly efficient
by the strategy of operating by the matrices during the
sampling process, as each sampled configuration contributes
an outer product to the overall matrix, and outer products are
particularly easy to operate by.

In this paper we will demonstrate this approach by using
the conjugate gradient (CG) iterative solver to improve the SR
method. We also derive a method for improving the LM using
the generalized Davidson solver, although we will present
numerical results only for SR (a computer implementation
for the LM is underway). We begin by developing the theory
for the accelerated SR and LM and also for the particular
wave-function ansatz that we employ. After developing the
theory, we present numerical results for the SR method in four
examples: (a) the Fermionic Hubbard model on a 4 × 4 lattice,
(b) phase separation behavior in the 8 × 8 Fermionic Hubbard
model, (c) the potential energy curve of a symmetrically
dissociated 4 × 4 hydrogen lattice, and (d) the singlet-triplet
gap of free base porphin. Note that the numerical studies
carried out here are primarily concerned with the optimization
problem. A detailed examination of the physics of these
examples is left for future investigations.

II. THEORY

A. Accelerated stochastic reconfiguration

The SR method9,10 can be viewed as an approximate
imaginary time evolution in a specially chosen subspace �

of the full Hilbert space. For a wave function |�(α1,α2, . . .)〉
with nv variational parameters α, this subspace is spanned by
the wave function and its α derivatives:

� = span(|�0〉,|�1〉,|�2〉, . . .), (1)

where |�0〉 ≡ |�〉 and |�i〉 ≡ ∂|�〉/∂αi for i > 0. The
strategy of the SR method is to minimize the wave-function’s
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energy by repeatedly operating by T = 1 − τH (the imaginary
time evolution operator e−τH expanded to first order), where
τ is a small number and H is the Hamiltonian. After each
application of T , the result is projected into � to produce a
new wave function of the form |� ′〉 = ∑

i xi |�i〉, in which
the coefficients x are given by

〈�i |(1 − τH )|�〉 =
nv∑
j

〈�i |�j 〉xj . (2)

Finally, because τ and therefore xi/x0 are small, the new wave
function |� ′〉 can be closely approximated by |�(α′

1,α
′
2, . . .)〉,

where α′
i = αi + xi/x0. To summarize, one solves the linear

equation given in Eq. (2) and updates α accordingly, after
which the subspace � is redefined for the new wave function.
This entire procedure is repeated until the energy of the wave
function has converged.

Previously, the SR overlap matrix Sij = 〈�i |�j 〉 was
constructed explicitly. Here we will avoid building S entirely,
relying instead on the CG algorithm to solve Eq. (2). This
method proceeds iteratively, using information gained from a
series of matrix-vector multiplications to successively refine
an approximation to the solution x in a space of orthonormal
conjugate vectors. The iteration proceeds until an arbitrary
accuracy is achieved and typically converges in a number of
steps far smaller than the dimension of the matrix. To see the
advantages of using the CG algorithm, consider the following
expressions showing how the overlap matrix was previously
constructed through stochastic sampling:

Sij

〈�|�〉 =
∑

n

|�n|2
〈�|�〉

(
�i

n

�n

)∗ (
�

j
n

�n

)
, (3)

|�〉 =
∑

n

�n|n〉, (4)

|�i〉 =
∑

n

�i
n|n〉. (5)

Here a resolution of the identity
∑

n |n〉〈n| has been inserted,
creating a summation over all possible system configurations
|n〉. By multiplying and dividing by |�n|2, the summation has
been formulated so that it can be evaluated stochastically by
sampling from the distribution |�n|2/〈�|�〉. [In a stochastic
evaluation, the sum over all system configurations and the
factor |�n|2/〈�|�〉 in Eq. (3) are replaced by a sum over
Monte Carlo samples drawn from this distribution.] However,
building S stochastically using Eq. (3) takes at least O(nsn

2
v)

time, where ns is the number of samples and nv is the number
of variational parameters. Using the CG algorithm we may
avoid this cost by instead evaluating matrix-vector products of
the form Sz. As with the expression for constructing S, this
expression can be evaluated by stochastic sampling if we insert
a resolution of the identity,

nv∑
j

Sij

〈�|�〉zj =
nv∑
j

∑
n

|�n|2
〈�|�〉

(
�i

n

�n

)∗ (
�

j
n

�n

)
zj . (6)

By interchanging the order of summations we can rewrite this
product as

nv∑
j

Sij

〈�|�〉zj =
∑

n

|�n|2
〈�|�〉

(
�i

n

�n

)∗
⎛
⎝ nv∑

j

�
j
n

�n
zj

⎞
⎠ , (7)

which can be evaluated in O(nsnv) time provided that the
derivative ratios �i

n/�n have been precomputed and stored,
which is not difficult as the storage can be trivially divided
between the different processors. In practice, we also add a
small diagonal shift when multiplying by the overlap matrix
to remove linear dependencies that can arise from redundant
variational parameters or stochastic error. While the CG
algorithm does require multiple matrix-vector products to be
evaluated, we will see that the number of such products will
be much smaller than nv , greatly improving the efficiency of
the SR method.

B. Accelerated linear method

The linear method, formulated by Nightingale for lin-
ear parameters5 and later extended to optimize nonlinear
parameters,6–8 works in the same subspace � as the SR method
but typically converges more rapidly to the energy minimum. It
can be viewed as an approximate Newton method with a built
in stabilization7 and often converges even more rapidly than
the Newton method. Note that the LM should not be confused
with similarly named linear scaling techniques, where the goal
is typically to reduce the cost of evaluating Slater determinant
ratios in systems with large numbers of electrons. Here we
are concerned with reducing the cost of optimizing large
numbers of variational parameters, and the way in which we
take advantage of iterative Krylov methods differs significantly
from recent work13 employing them in order to reduce the cost
of determinant ratio evaluations.

Instead of using imaginary time evolution, the LM opti-
mizes |�〉 by finding the eigenstate of lowest energy in the
� subspace. This eigenstate can be found by solving the
following generalized eigenvalue problem:∑

j

〈�i |H |�j 〉xj = E
∑

k

〈�i |�k〉xk, (8)

where we now take x to be the coefficients of the desired
eigenvector. Once these coefficients are found, the variables
α can be updated to their new values in the same manner
as in SR, though care must be taken to check that for large
parameter changes, the resulting parameters give an energy
that is not higher outside of statistical errors. If they do not,
the step can be scaled down by using a line search, or rotated
and scaled down by adding a diagonal shift. In practice, it is
essential to modify the update in order to make it orthogonal to
the original wave function, a procedure that can be performed
using the information resulting from a single matrix-vector
multiplication involving the overlap matrix.

As in the SR method, the eigenvector x can be found
without explicitly building the matrices H and S by using a
Krylov subspace method, in this case the generalized Davidson
algorithm.14 As with the CG algorithm, it is sufficient to
evaluate the matrix-vector products of H and S with arbitrary
trial vectors. For S, this product can be performed efficiently
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as explained above. For H , the difficulty of the multiplication
depends on the complexity of the system’s Hamiltonian, but
for the relatively general case of the nonrelativistic Born-
Oppenheimer Hamiltonian in an orthonormal one-particle
basis, an efficient evaluation is possible. If we assume a fixed
particle number, we may use a matrix factorization, such as
the Cholesky decomposition,15 to express this Hamiltonian as

H =
∑

μ

∑
pqrs

Lμ
pqR

μ
rsa

†
paqa

†
r as, (9)

where the operator a
†
p (ap) is the Fermionic creation (de-

struction) operator for the pth spin orbital, the index μ has a
range of O(n2

o) (no is the number of orbitals/one-particle basis
functions), and the indices p, q, r , and s each have range no. In
practice, the range of μ can often be taken to be much smaller
than n2

o while still representing H with sufficient accuracy. By
inserting an identity operator in the center of the Hamiltonian,
the matrix-vector product on the left hand side of Eq. (8) can
be written as

1

〈�|�〉
∑

j

〈�i |H |�j 〉xj

=
∑

jnμpqrs

|�n|2
〈�|�〉L

μ
pqR

μ
rs

〈�i |a†
paq |n〉

�∗
n

〈n|a†
r as |�j 〉
�n

xj

=
∑

n

|�n|2
〈�|�〉

∑
pq

Q∗
nqpi

∑
μ

Lμ
pq

∑
rs

Rμ
rs

∑
j

Qnrsj xj , (10)

where we have defined the intermediate tensor Qnrsj =
〈n|a†

r as |�j 〉/�n. For the wave function presented in the next
section, for which nv ∼ n2

o due to the pairing matrix and
long range pair correlators, this intermediate can be evaluated
in O(n4

o) time for a given configuration |n〉. If we sample
the configurations |n〉 from the distribution |�n|2/〈�|�〉, we
see that the entire matrix-vector product can be evaluated
in O(nsn

4
o) time by performing the summations in the last

line of Eq. (10) from right to left. For comparison, the
cost of explicitly constructing the Hamiltonian matrix in the
� subspace using our wave function is O(nsn

6
o). Thus by

introducing an iterative Krylov solver, the cost of performing
the LM for a nonrelativistic Born-Oppenheimer Hamiltonian
in an orthonormal one-particle basis can be reduced by a factor
of the system size squared.

C. Wave-function ansatz

For our variational ansatz, we use a product of a correlator
product state (CPS) tensor network16,17 and a Pfaffian pairing
wave function.18–21 As discussed in Ref. 22, the CPS ansatz can
be expressed as a product of correlators acting on a reference
wave function. Here we take the same approach, but with a
Pfaffian as the reference rather than a Slater determinant. The
wave function is written as

|�〉 =
∏
p

Ĉp

⎛
⎝∑

i<j

fij a
†
i a

†
j

⎞
⎠

N/2

|0〉, (11)

where the operators Ĉp are correlators, f is the pairing matrix,
N is the number of electrons, and |0〉 is the vacuum. The

indices i,j range over all spin orbitals, so our pairing function
creates both singlet and triplet pairs, unlike the more restrictive
antisymmetrized geminal power.23,24 Two typical types of
correlators are long range pairs and n × n square plaquettes. In
each case, both the spin ↑ and ↓ versions of the spatial orbitals
are included in a correlator, so the number of spin orbitals
(variational parameters) is 4 (24) for a pair correlator and 2n2

(22n2
) for an n × n plaquette. Note that when we employ both

squares and long range pairs, we do not include pairs that are
contained within a square as such pairs are redundant.

III. RESULTS

Here we demonstrate the accelerated SR method by
applying it to four example systems in conjunction with our
CPS-Pfaffian ansatz. In each system, we restrict our sampling
to configurations with the correct total number of electrons and
the correct total Sz. We are currently constructing a computer
implementation of the accelerated LM and will present results
for it in a future publication.

A. 4 × 4 Fermionic Hubbard model

In our first example we studied a 4 × 4 Fermionic Hubbard
model at half filling with periodic boundary conditions, which
was chosen as it is an exactly soluble system that contains many
of the challenging features of the general two-dimensional
(2D) Fermionic Hubbard model. In one set of calculations,
two translationally invariant 3 × 3 correlators were used (no
additional symmetries were enforced), one anchored on each
sublattice, giving a wave function with a total of 524784
variational parameters (524288 are from the CPS part of the
wave function). In Fig. 1 and Table I, we compare our results
to the exact energies, seeing that for all ratios U/t our relative
error is less than 1%. The exact result was computed using our
own unpublished exact diagonalization software.

In a separate set of calculations, we investigated the
convergence of the ground state energy with respect to the
number of parameter update iterations. In this case we used as
our correlators all 2 × 2 squares and all long range pairs. As
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FIG. 1. Relative energy errors for the CPS-Pfaffian ansatz on a
periodic 4 × 4 Hubbard lattice. Statistical errors are smaller than the
symbol size and lines are guides to the eye. See Sec. III A.
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TABLE I. Total ground state energies in units of t of a periodic 4 ×
4 Hubbard lattice at half filling with different ratios U/t . Statistical
errors in the final digit are given in parentheses. See Sec. III A.

U/t CPS-Pfaffian Exact

1 −1.29871(1) −1.299602
2 −1.12340(2) −1.126098
4 −0.84539(4) −0.851366
6 −0.65326(4) −0.659514
8 −0.52440(4) −0.529305
10 −0.43689(2) −0.439313
12 −0.37281(2) −0.374514
14 −0.32434(1) −0.325925
16 −0.28697(1) −0.288241

seen in Fig. 2, the SR method converged in roughly one-fifth
as many iterations as the steepest descent, even when only
ten CG iterations were used to compute each update step. We
also see that there is no improvement when increasing the
number of CG iterations to 100, showing that very few CG
iterations are necessary compared to the number of variational
parameters (5488 in this case). One should note that in the
case of an ab initio Hamiltonian, the cost of a few hundred CG
iterations will be negligible compared to the cost of computing
the gradient or the left hand side of Eq. (2). Thus in the ab
initio case, the cost per parameter update iteration of SR and
steepest descent will be essentially the same, greatly favoring
the faster convergence of SR.

B. 8 × 8 Fermionic Hubbard model

We have also applied our method to test for phase separation
in the 2D Hubbard model, the exact nature of which remains an
interesting and unresolved problem in solid state physics. To
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FIG. 2. (Color online) Convergence of the total energy of the
4 × 4 Hubbard model at U = 4 and t = 1 with respect to the number
of parameter update iterations for steepest descent and stochastic
reconfiguration. The same random seed and a step size of τ = 0.01
were used for both steepest descent and stochastic reconfiguration (for
steepest descent the step taken was −τ times the energy gradient).
The initial guess for the wave function is an unrestricted Hartree-Fock
solution with slightly randomized molecular orbitals. See Sec. III A.
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FIG. 3. The hole energy eh(h) on an 8 × 8 Hubbard lattice with
twist-averaged boundary conditions, U = 4, and t = 1. The presence
of a minimum implies that our ansatz predicts phase separation in the
2D Hubbard model. See Sec. III B.

do so we studied an 8 × 8 lattice with twist-averaged boundary
conditions (TABC)25–27 (we used 12 randomly chosen twists),
U = 4, and t = 1. We used translationally invariant 2 × 2 and
long range pair correlators, again using separate correlators for
each sublattice. To check whether the system phase separates,
we computed the hole energy eh(h) employed in Ref. 27, which
will display a minimum at the critical hole density hc if phase
separation occurs. The hole energy is defined as

eh(h) ≡ e(1 − h) − e(1)

h
, (12)

where h is the hole density and e(x) is the energy per site
for a particle density x. As seen in Fig. 3, our approach
predicts that the system will phase separate at a critical hole
density 0.14 < hc < 0.15. This result provides a qualitative
corroboration of the constrained-path auxiliary field QMC
(CP-AFQMC)27 results of Zhang et al., who predicted phase
separation at hc = 0.1 for the 8 × 8 lattice with TABC and
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FIG. 4. Total energies, in Hartrees, of a 4 × 4 hydrogen lattice.
Statistical errors are smaller than the symbol size and lines are guides
to the eye. See Sec. III C.
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TABLE II. Total ground state energies in Eh for the 4 × 4
hydrogen lattice at various nearest-neighbor distances R in the
STO-3G basis. Statistical errors in the final digit are given in
parentheses. See Sec. III C.

R (Å) RHF CPS-Pfaffian FCI

0.6 −3.304481 −3.4541(4) −3.460659
1.0 −7.534453 −7.7765(2) −7.785104
1.4 −7.396180 −7.8914(1) −7.903634
1.8 −6.669009 −7.6767(1) −7.684200
2.2 −5.997164 −7.53726(3) −7.539753
2.6 −5.438428 −7.48167(3) −7.486036
3.0 −5.196679 −7.46921(1) −7.470067

U/t = 4. At half filling, our twist-averaged energy per site of
−0.855 ± 0.002 is in close agreement with the CP-AFQMC
result of −0.856.

C. 4 × 4 Hydrogen lattice

As an example of a strongly correlated problem involving an
ab initio Hamiltonian, we have studied a 4 × 4 square lattice
of hydrogen atoms in the STO-3G orbital basis28 at various
nearest-neighbor distances. While this one particle basis is by
no means large enough to capture all the details of electron
correlation, it is sufficient to capture the particularly chal-
lenging strong correlations that arise during the simultaneous
breaking of multiple bonds. As this system has open boundary
conditions, we did not use translationally invariant correlators.
Instead, we used all 2 × 2 and long range pair correlators,
which resulted in a wave function with 4048 variational
parameters. As seen in Fig. 4 and Table II, the results closely
match those of the exact wave function in our chosen one
particle basis, as obtained by full configuration interaction
(FCI) using the MOLPRO29 quantum chemistry package. At the
H-H distance with the worst error, our approach still captures
98% of the correlation energy, which we define as the energy
difference between the restricted Hartree Fock (RHF) and
exact wave functions.

D. Free base porphin

As our final example, we computed the singlet-triplet gap of
free base porphin in the 6-31G orbital basis.30 This system was
chosen as an important quantum chemical problem for which
exact results in the active space are available for comparison.
For both the singlet and triplet wave functions, the 1s and
σ bonding orbitals resulting from a restricted Hartree-Fock
calculation were treated as a closed shell determinant, while
the 24 out-of-plane 2p orbitals from the RHF solution were
localized by the Pipek-Mezey31 scheme to form an active
space containing the remaining 26 electrons. This active space

FIG. 5. (Color online) In treating free base porphin, we used
the following correlators between out-of-plane 2p orbitals: (i) all
long range orbital pairs, (ii) the three-orbital elbows highlighted by
rectangles, and (iii) the five-orbital rings highlighted by pentagons.
See Sec. III D.

was treated with our CPS-Pfaffian ansatz, with the correla-
tors taken to be all pairs as well as those shown in Fig. 5, for a
total of 9064 variational parameters. Holding the core orbitals
frozen, we computed an active space singlet-triplet gap of
1.77 eV, which compares very favorably with the converged
spin-adapted density matrix renormalization group32 result of
1.75 eV.

IV. CONCLUSIONS

We have shown that by using the conjugate gradient
iterative solver, it is possible to optimize hundreds of thousands
of variational parameters with the stochastic reconfiguration
algorithm in the context of variational Monte Carlo. In
addition, we have presented an outline showing how the
generalized Davidson solver can be used to provide a similar
improvement for the linear method. Using our accelerated
stochastic reconfiguration algorithm, we demonstrated that a
CPS-Pfaffian wave-function ansatz is capable of treating a
number of challenging two dimensional systems that display
both weakly and strongly correlated physics. Together, these
advances provide a powerful new method for modeling both
quantum chemical and solid state systems.
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