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Two-dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2
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We report two-dimensional Dirac fermions and quantum magnetoresistance in single crystals of CaMnBi2. The
nonzero Berry’s phase, small cyclotron resonant mass, and first-principles band structure suggest the existence of
the Dirac fermions in Bi square nets. The in-plane transverse magnetoresistance exhibits a crossover at a critical
field B∗ from semiclassical weak-field B2 dependence to the high-field unsaturated linear magnetoresistance
(∼120% in 9 T at 2 K) due to the quantum limit of the Dirac fermions. The temperature dependence of B∗

satisfies quadratic behavior, which is attributed to the splitting of linear energy dispersion in high field. Our
results demonstrate the existence of two-dimensional Dirac fermions in CaMnBi2 with Bi square nets.
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The magnetoresistance (MR) of condensed matter gives
information about the characteristics of the Fermi surface
and provides promising candidates for magnetic memory or
other spintronic devices.1–3 The normal MR in conventional
metals is small because semiclassical transport gives quadratic
field-dependent MR in the low-field range which would
saturate in the high field.3 Application of a strong magnetic
field (B) leads to quantization of the orbital motion and results
in quantized Landau levels En (LLs). In the extreme quantum
limit where only the lowest LL dominates, a large linear MR
could be expected.4–8 However, the required magnetic field
for the quantum limit in metals with parabolic bands is usually
very large because LLs are equidistant. The exceptions are
large linear MR in Ag2−δTe/Se and Bi films below 6 T.5–7

Abrikosov proposed that the linear MR is intimately connected
with linear energy dispersion4 and recent first-principles
calculations confirmed the existence of surface states with
a linear energy-momentum relationship, the so-called Dirac
fermions.9

The distance between the lowest and first LLs of Dirac
fermions in a magnetic field is very large. The quantum
limit where all of the carriers occupy only the lowest LL is
easily realized in relatively small fields.10,11 Consequently
large linear MR could be achieved. Besides Ag2−δTe/Se,
the unsaturated linear MR and other quantum transport
phenomena were experimentally observed in other Dirac
materials, such as topological insulators (TIs), graphene, and
some organic conductors.12–16 Recently, highly anisotropic
Dirac states were observed in SrMnBi2,17 where linear energy
dispersion originates from the crossing of two Bi 6px,y bands
in a double-sized Bi square net, which is a part of (SrBi)+
layer.17,18

In this Rapid Communication, we report the quantum
oscillation and magnetoresistant behavior in CaMnBi2 single
crystals with a different layered structure but similar two-
dimensional (2D) Bi square nets when compared to SrMnBi2.
The nonzero Berry’s phase, small cyclotron resonant mass,
and first-principles band structure suggest the existence of
Dirac fermions in the Bi square nets. The quasi-2D in-plane
transverse magnetoresistance exhibits a crossover at a critical
field B∗ from a semiclassical weak-field B2 dependence
to a high-field linear-field dependence. The temperature

dependence of B∗ satisfies quadratic behavior attributed to
the splitting of linear energy dispersion in a high field.

Single crystals of CaMnBi2 were grown using a high-
temperature self-flux method.19 Stoichiometric mixtures of
Ca (99.99%), Mn (99.9%), and excess Bi (99.99%) with a
ratio of Ca : Mn : Bi = 1 : 1 : 9 were sealed in a quartz tube,
heated to 1050 ◦C, and cooled to 450 ◦C, where the crystals
were decanted. The resultant crystals are platelike and the
basal plane of a cleaved crystal is the crystallographic ab

plane. Electrical transport measurements up to 9 T were con-
ducted in a Quantum Design physical property measurement
system (PPMS-9) with a conventional four-wire method. In
the in-plane measurements, the current path was in the ab
plane, whereas the magnetic field was parallel to the c axis,
except in the rotator experiments. In the out-of-plane (c-axis)
resistivity measurements, electric current and magnetic fields
were parallel to the c axis. High-field MR oscillations up
to 35 T were performed at the National High Magnetic
Field Laboratory in the same configuration as the in-plane
MR. The magnetization measurements were performed in
a Quantum Design magnetic property measurement system
(MPMS) in both zero-field cooling (ZFC) and field cool-
ing (FC). First-principles electronic structure calculations
were performed using experimental lattice parameters within
the full-potential linearized augmented plane-wave (LAPW)
method20 implemented in the WIEN2K package.21 The general
gradient approximation (GGA) of Perdew et al.22 was used for
the exchange-correlation potential.

A CaMnBi2 unit cell with a P 4/nmmm space group
contains alternatively stacked two MnBi4 tetrahedron layers
and a 2D Bi square net separated by Ca atoms along the c

axis [Fig. 1(a)]. The MnBi4 tetrahedrons are less distorted
and the lattice is smaller when compared to SrMnBi2 with
a I4/mmm space group since Ca has a smaller radius than
Sr.17,23 The in-plane resistivity ρab(T ) [Fig. 1(b)] is metallic
with a weak anomaly at ∼50 K. The resistivity along the c

axis is higher in magnitude than the in-plane resistivity with
ρc(T )/ρab(T ) ∼ 10–15 below 100 K. In what follows we will
only discuss the in-plane MR. An external magnetic field
enhances the low-temperature resistivity, and the MR ratio
MR = [ρab(B) − ρab(0)]/ρab(0) reaches 120% at 2 K in a 9-T
field. As the temperature is increased, the magnetoresistance
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FIG. 1. (Color online) (a) Crystal structures of CaMnBi2. Bi
atoms in 2D square nets are shows by red balls. Ca atoms are
denoted by green balls. Another location of Bi atoms is denoted by
purple balls. Mn atoms are denoted by orange balls. Blue lines define
the unit cell. (b) Temperature dependence of the in-plane resistivity
ρab(T ) (open symbols) and c-axis resistivity ρc(T ) (solid symbols)
of the CaMnBi2 single crystal in the B = 0 T (squares) and B =
9 T (circles) magnetic fields, respectively. (c) Magnetization (M)
in B = 1 T field applied parallel (open symbols) and perpendicular
(solid symbols) to the c axis in both ZFC (squares) and FC (circles)
runs. (d) The total DOS and local DOS from Ca, Mn, Bi square nets
(Bi1) and Bi in MnBi4 tetrahedron (Bi2) for AFM CaMnBi2. The
dotted line indicates the position of the Fermi energy. (e) The band
structure for CaMnBi2. The heavy lines with circles denote the bands
from Bi square nets and the dotted line indicates the position of the
Fermi energy.

is gradually suppressed and becomes negligible above
∼50 K. Magnetization shows a kink at ∼250 K, indicating an
antiferromagnetic (AFM) transition [Fig. 1(d)]. The anomaly
in the resistivity at 50 K is clearly not related to the AFM order
and is possibly due to the weak ferromagnetic order or impurity
scattering since the magnetization shows an upturn around that
temperature, which is denoted by the arrow in Fig. 1(c).

The spin-polarized first-principles calculation reveals that
the net magnetization in the unit cell is nearly zero, confirming
the AFM ground state [Figs. 1(d) and 1(e)]. The structure with
a Néel-type AFM configuration in the ab plane has the lowest
energy in the first-principles calculation because the MnBi4
layers are separated by Ca and Bi layers along the c axis
and consequently the interlayer coupling is rather weak.24,25

The density of states (DOS) at the Fermi level of CaMnBi2
[Fig. 1(d)] is dominated by the contribution from states in Bi

square nets since the AFM order of Mn ions expels the states of
Mn away from the Fermi level. The band structure [Fig. 1(e)]
confirms this. There are two narrow bands at the Fermi level
with nearly linear energy dispersion along the �-M and the
A-Z directions, in addition to a wide band along the X-R
direction. Hence the 2D Bi square nets of CaMnBi2 host Dirac
states with quasi-2D Fermi surfaces (FSs).

The magnetotransport of solids only responds to the
extremal cross section SF of the Fermi surface along the
field direction. For a (quasi-)2D FS, the cross section has
SF (θ ) = S0/|cos(θ )| angular dependence, and 2D states will
only respond to perpendicular component of the magnetic
field B|cos(θ )|.3 For example, the 2D states in graphene and
the surface states of TIs exhibit |cos θ | angular-dependent
magnetotransport.11,12 The magnetoresistance of CaMnBi2
shows significant dependence on the field direction (Fig. 2).
The crystal was mounted on a rotating stage such that the tilt
angle θ between the crystal surface (ab plane) and the magnetic
field can be continuously changed with currents flowing in the
ab plane perpendicular to magnetic field, as shown in the inset
of Fig. 2(a). Angular-dependent magnetoresistance ρ(B,θ ) at
T ∼ 2 K is shown in Figs. 2(b) and 2(c). When B is parallel
to the c axis (θ = 0◦,180◦), the MR is maximized and is linear
in field for high fields. With an increase in the tilt angle θ ,

FIG. 2. (Color online) (a) In-plane resistivity ρ vs the tilt angle
θ from 0◦ to 360◦ at B = 9 T and T = 2 K for CaMnBi2. The red
solid line is the fitting curve using |cos(θ )| (see text). The inset shows
the configuration of the measurement. (b) In-plane resistivity ρ vs
magnetic field B of the CaMnBi2 crystal with different tilt angles θ

between the magnetic field and the sample surface (ab plane) at 2 K.
(c) ρ vs the tilt angle θ in the fixed magnetic fields (3, 6, and 9 T) and
2 K.
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FIG. 3. (Color online) (a) Magnetic field dependence of resis-
tance of CaMnBi2 crystal and (b) magnetoresistant SdH oscillations
�Rxx = Rxx − 〈Rxx〉 as a function of 1/B below 35 T. (c) Tem-
perature dependence of the oscillation amplitude (Osc. Amp.) in
magnetoresistant SdH oscillations. The red (light gray) line is the
fitting results giving cyclotron mass. The inset shows the Fourier
transform spectrum of the SdH oscillation. (d) The integer Landau
levels as a function of inverse field. The inset shows the oscillation
of �Rxx at 0.36 K, where the arrows indicate the positions of the
estimated LL index n labeled by the numbers.

the MR gradually decreases and becomes nearly negligible for
B in the ab plane (θ = 90◦). Angular-dependent resistivity in
B = 9 T and T = 2 K shows a wide maximum when the field
is parallel to the c axis (θ = 0◦,180◦), and a sharper minimum
at approximately θ = 90◦, 270◦ [Fig. 2(a)]. The whole curve
follows the function of |cos(θ )| very well [red/light gray line in
Fig. 2(a)]. The angular-dependent in-plane magnetoresistance
suggests a quasi-2D Fermi surface.3

In Figs. 3(a) and 3(b), the in-plane magnetoresistance
Rxx and the �Rxx = Rxx − 〈Rxx〉 shows clear Shubnikov–de
Hass (SdH) oscillations below 45 K. The Fourier transform
spectrum of the oscillation at 0.36 K [inset in Fig. 3(c)]
reveals a periodic behavior in 1/B with a frequency F =
185 T. The temperature dependence of the oscillation am-
plitude can be used to determine cyclotron effective mass
through the Lifshitz-Kosevitch formula.26 Using the highest
oscillation peak [indicated by the arrow in Fig. 3(b)], the
fitting gives a m ≈ 0.35me, where me is the bare electron
mass [Fig. 3(c)]. In metals, SdH oscillations correspond to
successive emptying of LLs as the magnetic field is increased.
The LL index n is related to the cross section of FS SF by
2π (n + γ ) = SF

h̄
eB

. In the index plot [Fig. 3(d)], the inverse
peak and minimum fields 1/B fall on a straight line (red/light

FIG. 4. (Color online) (a) The magnetic field (B) dependence of
the in-plane MR at different temperatures. (b) The field derivative of
in-plane MR at different temperatures, respectively. The lines in the
high-field regions were fitting results using MR = A1B + O(B2), and
the lines in the low-field regions using MR = A2B

2. (c) Temperature
dependence of the critical field B∗ (black squares) and the effective
MR mobility μMR extracted from the weak-field MR (blue circles).
The red solid line is the fitting results of B∗ using B∗ = 1

2eh̄v2
F

(EF +
kBT )2.

gray line) versus the integers n and the extrapolation of
the high-field SdH peaks and minimum gives γ � 0.45. γ

should be zero for conventional metals but (±)1/2 for Dirac
fermions due to the nonzero Berry’s phase associated with their
cyclotron motion. The Berry’s phase and the ∼1/2 intercept
of the linear fit of LLs have been observed in Dirac fermion
systems, such as monolayer graphene10 and topological
insulators.12,13 The resulted γ ∼ 1/2, as well as the small cy-
clotron mass 0.35me, reveals the presence of Dirac fermions in
CaMnBi2.

Figure 4(a) shows the magnetic field dependence of MR at
different temperatures and Fig. 4(b) shows the field derivative
of MR, dMR/dB. dMR/dB initially decreases with an
increase in field, indicating the B1/2 dependence of MR, and
then linearly increases with field in the low-field region, which
indicates a B2-dependent MR by linear fitting (lines in the low-
field region). But above a characteristic field B∗, dMR/dB

saturates to a much reduced slope. This indicates that in the
high fields the MR is dominated by a linear field dependence
plus a very small quadratic term [MR = A1B + O(B2)], as
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shown by the lines in the high-field region. With an increase
in temperature, MR decreases and the crossover field B∗
increases gradually. Above 50 K, MR becomes negligible.
Below 9 T and 50 K, the evolution of B∗ with temperature is
parabolic [squares in Fig. 4(c)].

The energy splitting between the lowest and first LLs of
Dirac fermions can described by �LL = ±vF

√
2eh̄B, where

vF is the Fermi velocity.10–13 In the quantum limit at specific
temperature and field, �LL becomes larger than both the
Fermi energy EF and the thermal fluctuations kBT at a
finite temperature. Consequently all carriers occupy the lowest
Landau level and eventually the quantum transport with linear
magnetoresistance shows up. The critical field B∗ above which
the quantum limit is satisfied at a specific temperature T is
B∗ = 1

2eh̄v2
F

(EF + kBT )2.14 The temperature dependence of

the critical field B∗ in CaMnBi2 clearly deviates from the
linear relationship and can be well fitted by the above equation,
as shown in Fig. 4(c). This confirms the existence of Dirac
fermion states in CaMnBi2.

In a multiband system with both Dirac and conventional
parabolic-band carriers (including electrons and holes) where
the Dirac carriers are dominant in transport, the coefficient
of the low-field semiclassical B2 quadratic term A2 is related
to the effective MR mobility

√
A2 =

√
σeσh

σe+σh
(μe + μh) = μMR

(where σe,σh,μe,μh are the effective electron and hole
conductivity and mobility in zero field, respectively). The
effective MR is smaller than the average mobility of carriers
μavg = μe+μh

2 and gives an estimate of the lower bound.14,15

Figure 4(c) shows the dependence of μMR on the temperature.
At 2 K, the value of μMR is ∼1800 cm2/V s in CaMnBi2,
which is larger than the values in conventional metals.

Compared to SrMnBi2, the effective MR mobility in
CaMnBi2 is smaller (∼3400 cm2/V s in SrMnBi2), while
the crossover field B∗ ∼ 3 T at 2 K and the cyclotron mass
m ∼ 0.35me is larger, implying a smaller Fermi velocity of

Dirac fermions. This may be due to the contribution of the
wide parabolic band in CaMnBi2 [as shown in Fig. 1(d)]
which is absent in SrMnBi2.17,18,27 The Berry’s phase revealed
by the quantum oscillations, combined with the results of
our first-principles electronic structure calculations and the
quadratic-temperature dependence of the crossover field from
semiclassical transport to quantum linear magnetoresistance,
provide a convincing evidence for the existence of Dirac
fermions in 2D Bi square nets of CaMnBi2 and SrMnBi2.27 The
direct observation of the linear energy dispersion in Bi square
nets and the detailed information on multiband characteristics
deserve further study by more powerful spectroscopy methods
such as angle-resolved photoemission spectroscopy (ARPES)
and will be sought after.

In summary, we report two-dimensional Dirac fermions and
quantum magnetoresistance in single crystals of CaMnBi2.
The nonzero Berry’s phase, small cyclotron resonant mass,
and first-principles band structure suggest the existence of
2D Dirac fermions in Bi square nets. The in-plane transverse
magnetoresistance exhibits a crossover at a critical field B∗
from a semiclassical weak-field B2 dependence to the high-
field unsaturated linear magnetoresistance (∼120% in 9 T at
2 K) due to the quantum limit of the 2D Dirac fermions. The
temperature dependence of B∗ satisfies quadratic behavior,
which is attributed to the splitting of linear energy dispersion
in high field. Our results demonstrate the existence of two-
dimensional Dirac fermions in CaMnBi2 with similar Bi square
net structural components.
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