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Single-wall carbon nanotubes as coherent plasmon generators
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The possibility of low-energy surface plasmon amplification by optically excited excitons in small-diameter
single-wall carbon nanotubes is theoretically demonstrated. The nonradiative exciton-plasmon energy transfer
causes the buildup of macroscopic population numbers of coherent localized surface plasmons associated with
high-intensity coherent local fields formed at nanoscale throughout the nanotube surface. These strong local
fields can be used in a variety of new optoelectronic applications of carbon nanotubes, including near-field
nonlinear-optical probing and sensing, optical switching, enhanced electromagnetic absorption, and materials
nanoscale modification.
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I. INTRODUCTION

Single wall carbon nanotubes (CNs)—graphene sheets
rolled-up into cylinders of ∼1–10 nm in diameter and
from ∼1 μm up to ∼1 cm in length1–3—are shown to be
very useful as miniaturized electromechanical and chemical
devices,4 scanning probe devices,5,6 and nanomaterials for
macroscopic composites.7–9 The area of their potential ap-
plications was recently expanded to nanophotonics10–15 after
the demonstration of controllable single-atom incapsulation
into single-walled CNs,16 and even to quantum cryptography
since the experimental evidence was reported for quantum
correlations in the photoluminescence spectra of individual
nanotubes.17

The true potential of CN-based optoelectronic device
applications lies in the ability to tune their properties in a
precisely controllable way. In particular, optical properties
of semiconducting CNs originate from excitons, and may be
tuned by either electrostatic doping,15,18,19 or via the quantum
confined Stark effect (QCSE) by means of an electrostatic
field applied perpendicular to the nanotube axis.20,21 In both
cases the exciton properties are mediated by collective plasmon
excitations in CNs.22,23 In the latter case (Fig. 1), we have
shown recently that the QCSE allows one to control the
exciton-interband-plasmon coupling in individual undoped
CNs and their optical absorption properties, both linear20 and
nonlinear,21 accordingly.

In general, plasmons cannot be excited by light in optical ab-
sorption since they are longitudinal excitations while photons
are transverse. In small-diameter (∼1 nm) semiconducting
CNs, light polarized along the CN axis excites excitons which,
in turn, can couple to the nearest (same-band) interband
plasmons.10,11,20 Both of these collective excitations originate
from the same electronic transitions and, therefore, occur at
the same energies ∼1 eV, as opposed to bulk semiconductors
where they are separated by tens of eVs. They do have different
physical nature. Their coexistence at the same energies in CNs
is a unique general feature of confined quasi-1D systems where
the transverse electronic motion is quantized to form 1D bands
and the longitudinal one is continuous.

The formation of coupled exciton-plasmon excitations can
be viewed as an additional nonradiative channel (in addition
to phonons24 and defects25) for the exciton relaxation in
CNs, where optically excited excitons decay into low-energy

interband plasmons. In so doing, excitons generate the quanta
of plasma oscillations on the CN surface, on the one hand, and
this shortens their lifetime, on the other. Thus, by varying
the exciton-plasmon coupling strength using the QCSE,
one controls both the radiative emission from an individual
CN and surface electric field fluctuations associated with
plasmons generated by excitons on the CN surface. This
latter phenomenon is pretty much similar to the SPASER
effect (surface plasmon amplification by stimulated emission
of radiation) reported earlier for hybrid metal-semiconductor-
dielectric nanosystems,26 and is the focus of the studies here
for individual small-diameter CNs. The nonradiative exciton-
to-plasmon energy transfer is shown to result in the large
population numbers of coherent surface plasmons associated
with high-intensity coherent oscillating fields concentrated
at nanoscale across the CN diameter along the CN length.
These strong local fields can be used in a variety of new
CN-based optoelectronic applications, including near-field
nonlinear-optical probing and sensing, optical switching,
enhanced electromagnetic absorption, and materials nanoscale
modification.

II. PLASMON GENERATION BY EXCITONS

In small-diameter semiconducting carbon nanotubes, be-
cause of their quasi-one-dimensionality, excitons are excited
by the external electromagnetic (EM) radiation polarized
along the CN axis.27 As a consequence, they have their
transition dipole moment and translational quasi-momentum
both directed along the nanotube axis (z axis of the problem—
see Fig. 1; cylindrical coordinates are used). That is why
they are able to couple to their neighboring longitudinal
interband plasmon modes.11,20 Figure 2 shows an example
for the excitons and interband plasmons [Fig. 2(a)], and the
exciton-plasmon dispersion relation [Fig. 2(b)] in the (11,0)
CN (in part from Ref. 20 wherein similar data for other CNs
are found). In (b), we see the anticrossing ∼0.1 eV, both in
the energy-momentum plane and in the energy-field plane,
revealing the QCSE to be an efficient tool to control the
exciton-plasmon coupling strength in individual CNs.

When the exciton is excited and the CN surface EM field
subsystem is in the vacuum state, the time-dependent wave
function of the whole system “exciton + surface EM field” is
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FIG. 1. (Color online) The geometry of the problem.

of the form

|ψ(t)〉 =
∑
k,f

Cf (k,t) e−iẼf (k)t/h̄|{1f (k)}〉ex|{0}〉

+
∑

k

∫ ∞

0
dω C(k,ω,t) e−iωt |{0}〉ex|{1(k,ω)}〉.

(1)

Here, |{1f (k)}〉ex is the single-quantum Fock state with one
f -internal-state exciton excited of quasi-momentum k =
{kϕ,kz} with quantized kϕ component (transverse quantization
that results in electron-hole subbands) and continuous kz

component representing the longitudinal motion of the exci-
ton. The excited single-quantum state |{1(k,ω)}〉 represents
longitudinally polarized surface EM mode of frequency ω

(the plasmon). The respective vacuum states are |{0}〉ex for
the exciton subsystem and |{0}〉 for the surface EM field
subsystem. The coefficients Cf (k,t) and C(k,ω,t) stand
for the population probability amplitudes of the exciton
subsystem and field subsystem, respectively. The exciton
energy is of the form Ẽf (k) = Ef (k) − ih̄/τ , where Ef (k) =
E

(f )
exc (kϕ) + h̄2k2

z /2Mex(kϕ) stands for the total energy of the f -
internal-state exciton and τ represents the phenomenological
relaxation time to account for all possible (but into plasmons)
slow exciton relaxation processes (normally attributed to the
exciton-phonon scattering20,24). The energy Ef (k) consists of
the exciton excitation energy E

(f )
exc (kϕ) = Eg(kϕ) + E

(f )
b (kϕ),

[where Eg(kϕ) = εe(kϕ) + εh(kϕ) is the band gap with εe,h

being the transversely quantized azimuthal electron-hole sub-
bands, and E

(f )
b is the (negative) binding energy of the exciton],

and the kinetic energy of the translational longitudinal motion
of the exciton with the effective mass Mex = me + mh, where
me and mh are the (subband-dependent) electron and hole
effective masses.

The time-dependent Schrödinger equation with the Hamil-
tonian of the whole system “exciton + surface EM field”
applied to the wave function (1) results in the set of the coupled
differential equations for Cf (k,t) and C(k,ω,t) as follows:20

ih̄Ċf (k,t) e−iẼf ( k)t/h̄ =
∫ ∞

0
dω g(+)

f (k,k,ω)C(k,ω,t)e−iω t ,

ih̄Ċ(k,ω,t) e−iω t =
∑
f

[g(+)
f (k,k,ω)]∗Cf (k,t)e−iẼf ( k)t/h̄.

FIG. 2. (Color online) Calculations for the (11,0) CN. (a) Frag-
ment of the energy dependence of the dimensionless (normalized by
e2/2πh̄) axial surface conductivity σzz along the CN axis.20 Ovals
mark exciton (E11, E22) and interband plasmon (P11, P22) excitations
[peaks of Re σzz and Re(1/σzz), respectively]. (b) Exciton-plasmon
dispersion relation as a function of the perpendicular electrostatic field
applied (see Fig. 1) and longitudinal momentum for the lowest bright
exciton [E11 in (a)] when coupled to the nearest interband plasmon
[P11 in (a)]. Dimensionless momentum and dimensionless energy
are defined as 3b[Momentum]/(2πh̄) and [Energy]/2γ0, respectively,
where b = 1.42 Å is the C-C interatomic distance and γ0 = 2.7 eV
is the C-C overlap integral.

Here, the interaction matrix element squared is given by

|g(+)
f (k,k,ω)|2 = h̄S0

∣∣df
z

∣∣2
ω3

16π3c2R2
CN

Re
1

σzz(k,ω)
, (2)

where d
f
z = ∑

n〈0|(d̂n)z|f 〉 with 〈0|(d̂n)z|f 〉 being the electric
dipole transition matrix element where the f -internal-state
exciton is excited in the lattice site n of the CN surface, σzz

stands for the CN surface axial conductivity with Re(1/σzz)
representing the plasmon density of states [DOS; see Fig. 2(a)],
RCN is the CN radius, and S0 = (3

√
3/4)b2 is the area of an

elementary equilateral triangle selected around each carbon
atom in a such a way as to cover the entire CN surface; b =
1.42 Å is the C-C interatomic distance.

In terms of the probability amplitudes Cf (k,t) and
C(k,ω,t), the exciton emission intensity distribution to gener-
ate plasmons is given by the final-state probability at long times
corresponding to the decay of all initially excited excitons, i.e.,
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I (k,ω) = |C(k,ω,t → ∞)|2. This is related to the exciton
probability amplitude Cf (k,t), according to the equations
above, and thereby is also associated with light absorption by
excitons. The peak intensity represents the long-time plasmon
population generated by optically excited excitons with the
momentum k.

III. PLASMON INDUCED SURFACE FIELD

Plasma oscillations generated by nonradiative exciton
decay into the nearest interband plasmon mode [Fig. 2(a)] can
be viewed as standing charge density waves due to the periodic
opposite-phase displacements of the electron shells with
respect to the ion cores in the neighboring elementary cells
on the CN surface. Such periodic displacements induce local
coherent oscillating electric fields of zero mean, but nonzero
mean-square magnitude, concentrated at the nanoscale across
the diameter throughout the length of the nanotube. The mean-
square longitudinal local field magnitude can be calculated as
the observable, the expectation value

E2
z (n) = 〈

[−∇n ϕ̂(n)]2
z

〉
(3)

of the quantum electrodynamical (QED) longitudinal-electric-
field operator at the lattice site n = {RCN,ϕn,zn} of the CN
surface in the state with the wave function (1). This results in
(see Appendix)

E2
z (n) = h̄L

2π2c2RCN

∑
k=kϕ,kz

fex(k,T )

×
∫ ∞

0
dω ω3 Re

1

σzz(k,ω)

[
N (k,ω) + 1

2

]
, (4)

where N (k,ω) = (4πc/L)I (k,ω) is the number of plasmons
generated by excitons with momentum k of the first Brillouin
zone on the surface of the tubule of length L, and fex(k,T ) =
exp[−h̄2k2

z /2Mex(kϕ)kBT ]/Qex is the exciton momentum
distribution function with the partition function Qex(T ) =∑

k exp[−h̄2k2
z /2Mex(kϕ)kBT ].

Equation (4) tells us that in order to produce strong
local mean-square fields, the exciton nonradiative emission
resonance [given by I (k,ω ∼ Eexc)] must overlap with the
energy Ep of the neighboring plasmon DOS resonance
{the peak of Re[1/σzz(ω ∼ Ep)]}. By way of example
of the (11,0) CN in Fig. 2, we see that this can be achieved
by carefully tuning the exciton excitation energy Eexc and the
nearest interband plasmon energy Ep by means of the QCSE.
As this takes place, both Eexc and Ep experience red shift
with increasing perpendicular electrostatic field. However, the
red shift of Eexc is very small [barely seen in the constant
momenta energy-field planes in Fig. 2(b)] due to the negative
field-dependent contribution of the exciton binding energy
Eb.20 As a consequence, Eexc and Ep [E11 and P11 in Fig. 2(a)]
approach as the field increases, pushing the coupled exciton-
plasmon system into the strong-coupling regime where all of
the optically excited excitons decay nonradiatively to generate
interband (same-band) plasmons, yielding the peak optical
absorption at the same time. As the temperature increases,
higher-momenta excitons start contributing to the process,
lowering the field necessary to achieve the strong-coupling
regime [blue contrast in Fig. 2(b)].

FIG. 3. (Color online) Low (a) and high (b) temperature
longitudinal-momentum-averaged plasmon population (arbitrary
units) for the nonradiative decay of the first bright exciton in the
(11,0) CN. See Fig. 2 caption for the dimensionless energy.

Figure 3 shows plasmon population numbers av-
eraged over the longitudinal momentum distribution,28∑

kz
fex(k,T )N (k,ω), also representing light absorption by

excitons, calculated at low and high temperatures for the first
bright exciton in the (11,0) CN with Eexc and Ep [E11 and
P11 in Fig. 2(a)] tuned using the QCSE. The same exciton-
plasmon parameters and their perpendicular-electrostatic-field
dependences are used as in Ref. 20 (Eexc = 1.21 eV, Eb =
−0.76 eV, Ep = 1.51 eV in the zero field, and τ = τph =
30 fs to account for the exciton-phonon relaxation24). We
see the dramatic increase in the peak intensities, associated
with increased optical absorption, when the field strength
exceeds 5 × 104 V/m, both at low and at high temperatures.29

Rabi splitting occurs as the field drives the exciton-plasmon
system into the strong-coupling regime, whereby the effective
plasmon generation starts. Temperature generally smoothes
the effect due to higher-momenta excitons contributing to the
process.

Large plasmon population numbers are, according to
Eq. (4), associated with coherent oscillating fields concen-
trated locally throughout the CN surface. Figure 4 shows
the calculations for the (11,0) CN. Huge local surface fields
∼108 V/m, just a few orders of magnitude less than intra-
atomic fields, are created under the resonance conditions.
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FIG. 4. (Color online) Local surface field amplitude, Ez, as a
function of temperature and perpendicular electrostatic field applied,
given by Eq. (4) for plasmons generated by the nonradiative decay of
the first bright exciton in the (11,0) CN.

The effect slightly decreases with temperature, but it starts
at lower electrostatic fields due to higher-momenta excitons
contributing to the plasmon generation. Strong local surface
fields created are the result of the efficient energy conversion,
whereby the external EM radiation energy absorbed to excite
excitons transfers into the energy of high-intensity coherent lo-
calized optical-frequency fields of charge plasma oscillations.

IV. CONCLUSIONS

The effect presented here for individual single wall CNs
is analogous to the SPASER effect reported earlier for hybrid
metal-semiconductor-dielectric nanostructures.26 The effect is
universal as it originates from the transverse quantization of
electronic degrees of freedom in quasi-1D systems. It can
manifest itself in densely packed aligned nanotube films as
well, both through plasmon enhanced inter-tube Casimir inter-
actions [N = 0 term in Eq. (4)], as it is recently demonstrated
for double wall CN systems,30 and through the exciton-to-
plasmon energy transfer tuned by means of the QCSE. In the
latter case, plasmon-induced coherent local surface fields can
be used in a variety of new tunable optoelectronic applications
with both individual nanotubes and nanotube composites, such
as enhanced electromagnetic absorption and optical switching,
near-field nonlinear-optical probing and sensing, materials
nanoscale modification.

ACKNOWLEDGMENTS

Support from the NSF (Grants No. ECCS-1045661 and
No. HRD-0833184), NASA (Grant No. NNX09AV07A), ARO
(Grant No. W911NF-11-1-0189), and DOE (Grant No. DE-
SC0007117) is acknowledged.

APPENDIX: DERIVATION OF EQ. (4)

Here, the exciton-plasmon coupling theory of Ref. 20
developed earlier for individual single wall semiconducting
CNs, is used to derive Eq. (4) for the mean-square longitudinal

local field induced by plasmons generated by optically excited
excitons on the CN surface. In this theory, the nanotube
is modelled by the neutral, infinitely long, infinitely thin,
anisotropically conducting cylinder, where only the axial
conductivity σzz is taken into account while the azimuthal
one is neglected being strongly suppressed by the transverse
depolarization effect. The vector ez of the orthonormal
cylindrical basis {er ,eϕ,ez} is directed along the CN axis as
shown in Fig. 1.

The longitudinal surface electric field operator at the
lattice site n = {RCN,ϕn,zn} of the CN surface is of the form
(Gaussian units)

−∇n ϕ̂(n) =
∫ ∞

0
dω Ê

‖
(n,ω) + H.c., (A1)

where

Ê
‖
(n,ω) = i

4πω

c2

∑
m

‖G(n,m,ω) · Ĵ (m,ω) (A2)

is the longitudinally polarized Fourier-domain surface electric
field operator in the Schrödinger picture with ‖G(n,m,ω) being
the longitudinal part of the classical EM field Green tensor on
the CN surface, and

Ĵ (n,ω) =
√

h̄ω Re σzz(ω)

π
f̂ (n,ω)ez (A3)

representing the CN axial surface current density operator
defined in such a way as to preserve the fundamental QED
equal-time commutation relations for the EM field operator
components in the presence of the CN medium assisted
absorption (see, e.g., Ref. 31). Here, f̂ (n,ω) along with its
counterpart f̂ †(n,ω) stand for the scalar bosonic field operators
to annihilate and create, respectively, single-quantum EM field
excitations of frequency ω at the lattice site n of the CN surface.

The CN axial current density operator convoluted with the
longitudinal EM field Green tensor per Eq. (A2) yields the
correctly quantized longitudinal surface electric field operator
(A1), whose z component associated with the zz component
of the longitudinal Green tensor

‖Gzz(n,m,ω) = −c
√

S0 δ(ϕn − ϕm)

8πRCN σzz(ω)
eiω|zn−zm|/c, (A4)

is responsible for plasmon-induced coherent local surface
fields as given by Eqs. (3) and (4).

The longitudinal Green tensor component (A4) has the
following property:∑

n

‖G∗
zz(n,m,ω)‖Gzz(n,m′,ω′)

=
[

2πδ(ω−ω′)− i

ω − ω′

]

× c3δ(ϕm − ϕm′) cos[ω(zm − zm′)/c]

32π2RCNσ ∗
zz(ω)σzz(ω′)

. (A5)

This can be proven by replacing the summation over lattice
sites by the integration over the nanotube surface according to
the rule∑

n

· · · = 1

S0

∫
dRn · · · = 1

S0

∫ 2π

0
dϕnRCN

∫ ∞

−∞
dzn · · · ,
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where S0 = (3
√

3/4)b2 (b = 1.42 Å being the C-C distance)
is the equilateral triangle area selected around each carbon
atom in such a way as to cover the entire CN surface. The
integration over ϕn is trivial, and the one over zn is performed
by representing the cosine-function in the exponential form,
writing the integral as∫ ∞

−∞
dzn · · · = lim

L→+∞

∫ L/2

−L/2
dzn · · · ,

with L being the CN length, and dividing it into parts by means
of the equation

eiω|zn−zm|/c = θ (zn − zm) eiω(zn−zm)/c

+ θ (zm − zn) e−iω(zn−zm)/c.

This, after some algebra with the use of the following
representation for the δ function (see, e.g., Ref. 32)

δ(x) = i

2π
lim

ε → +0
t → +∞

e−ixt

x + iε
, (A6)

brings one to the equation

lim
L→+∞

∫ +L/2

−L/2
dzn e−iω|zn−zm|/c+iω′ |zn−zm′ |/c

= 2c cos

[
ω

c
(zm − zm′)

] [
2πδ(ω − ω′) − i

ω − ω′

]

to eventually result in Eq. (A5). The δ-function representation
(A6) can also be written in a more general form

δ(x) = ip(p − 1)!

2π tp−1
lim

ε → +0
t → +∞

e−ixt

(x + iε)p
, p = 1,2,3, . . . ,

(A7)

which is proved by using the complex-plane contour integra-
tion technique and the Cauchy integral theorem.

The property (A5) can be converted to the momentum space
to yield∑

n

‖G∗
zz(n,k,ω) ‖Gzz(n,k′,ω′)

= Nc3 δkk′

64π3RCNσ ∗
zz(ω)σzz(ω′)

[
2πδ(ω − ω′) − i

ω − ω′

]
,

(A8)

where

‖Gzz(n,k,ω) = 1√
N

∑
m

‖Gzz(n,m,ω) eik·m,

with N = 2πRCNL/S0 being the number of the lattice sites
(carbon atoms) on the CN surface, and

δkk′ = δkϕk′
ϕ
δkzk′

z
= 1

2π

∫ 2π

0
dϕn e−i(kϕ−k′

ϕ )ϕn

× lim
L→+∞

1

L

∫ +L/2

−L/2
dzn e−i(kz−k′

z)zn . (A9)

From Eqs. (A1)–(A4), taking only the single-quantum
states into account [in line with Eq. (1)], one has

[−∇n ϕ̂(n)]2
z =

∫ ∞

0
dω dω′A∗(ω)A(ω′)

×
∑
k,k′

‖G∗
zz(n,k,ω) ‖Gzz(n,k′,ω′)

× [2f̂ †(k,ω)f̂ (k′,ω′) + δk,k′δ(ω − ω′)],
(A10)

where

A(ω) = i
4πω

c2

√
h̄ω Re σzz(ω)

π
= −A∗(ω) ,

f̂ †(k,ω) = 1√
N

∑
m

f̂ †(m,ω) eik·m, (A11)

f̂ (k,ω) = [f̂ †(k,ω)]†,

with the k summation running over the first Brillouin zone of
the CN. Further, in view of the fact that all the lattice sites are
equivalent, one has

[−∇n ϕ̂(n)]2
z = 1

N

∑
m

[−∇m ϕ̂(m)]2
z (A12)

for any arbitrary n. Equations (A12) and (A8) allow one to
reduce Eq. (A10) to the form

[−∇n ϕ̂(n)]2
z =

∫ ∞

0
dω dω′A∗(ω)A(ω′)

× c3

32π3RCN σ ∗
zz(ω)σzz(ω′)

×
[

2πδ(ω − ω′) − i

ω − ω′

]

×
∑

k

[
f̂ †(k,ω)f̂ (k,ω′) + 1

2
δ(ω − ω′)

]
.

(A13)

Now, the expectation value (3) can be calculated. Equa-
tion (3) contains two types of averaging. They are the quantum
mechanical averaging with the wave function (1) and the
statistical one over the exciton quasi-momentum k. Since the
typical CN exciton excitation energies are �1 eV (see, e.g.,
Ref. 33), the excitons are assumed to be originally excited by
the external EM radiation. Once excited, the thermal exciton
momentum relaxation starts in subbands. This situation is
properly accounted for by the use of the density operator

ρ̂(t) =
∑

k

fex(k,T ) |ψ(k,t)〉〈ψ(k,t)| , (A14)

where k = {kϕ,kz} runs over the first Brillouin zone of the
nanotube,

|ψ(k,t)〉 =
∑
f

Cf (k,t) e−iEf (k)t/h̄|{1f (k)}〉ex|{0}〉

+
∫ ∞

0
dω C(k,ω,t) e−iωt |{0}〉ex|{1(k,ω)}〉

(A15)
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with the normalizing condition 〈ψ(k,t)|ψ(k′,t)〉 = δkk′ [cf.
Eq. (1)], and

fex(k,T ) = 1

Qex
exp

[
− h̄2k2

z

2Mex(kϕ)kBT

]
(A16)

is the normalized classical (Boltzmann) exciton momentum
distribution function with the partition function

Qex(T ) =
∑

k

exp

[
− h̄2k2

z

2Mex(kϕ)kBT

]
. (A17)

This latter one can be evaluated explicitly as follows:

Qex(T ) =
∑
kϕ

L

2π

∫ k̃z

−k̃z

dkz exp

[
− h̄2k2

z

2Mex(kϕ)kBT

]

= L

√
kBT

2πh̄2

∑
kϕ

√
Mex(kϕ) Erf

[√
h̄2k̃2

z

2Mex(kϕ)kBT

]

≈ mL

√
MexkBT

2πh̄2 Erf

(√
h̄2k̃2

z

2MexkBT

)
.

Here, the first Brillouin zone of the CN of (m,n) type
(n � m) is taken to consist of m parallel lines, as per quan-
tized kϕ = kϕ(s) = s/RCN with s = 1,2, . . . ,m and RCN =
(
√

3 b/2π )
√

m2 + mn + n2 , each of length 2k̃z = 2B/kϕ(m),
where 2B = 2(4π2/3

√
3 b2) is the rectangular area of the re-

ciprocal space covered by the lines. This yields k̃z = 2π/3b for
the (m,0) type CNs (zigzag) and k̃z = 2π/

√
3 b for the (m,m)

type CNs (armchair), in particular. The last expression above
is the approximation neglecting the difference in the effective
masses for different subband excitons, yielding Mex(kϕ) ≈
Mex for all kϕ , to result in

∑
kϕ

{· · ·} ≈ {· · ·}∑m
s=1 1 = {· · ·}m.

Using the density operator (A14), one has

E2
z (n) = lim

t→+∞ Tr
{
[−∇n ϕ̂(n)]2

z ρ̂(t)
}
. (A18)

This expands further as

E2
z (n) = lim

t→+∞

∑
k

〈ψ(k,t)
∣∣[−∇n ϕ̂(n)]2

z ρ̂(t)
∣∣ψ(k,t)〉

= lim
t→+∞

∑
k

fex(k,T )〈ψ(k,t)
∣∣[−∇n ϕ̂(n)]2

z

∣∣ψ(k,t)〉,

wherein, upon substitution of Eqs. (A13) and (A15) in it, one
has

〈ψ(k,t)|
∑

k′
f̂ †(k′,ω)f̂ (k′,ω′)|ψ(k,t)〉

= C∗(k,ω,t)C(k,ω′,t) e−i(ω′−ω)t ,

to result in

E2
z (n) = lim

t→+∞

∑
k

fex(k,T )
∫ ∞

0
dω dω′A∗(ω)A(ω′)

× c3

32π3RCN σ ∗
zz(ω)σzz(ω′)

[
2πδ(ω − ω′)− i

ω−ω′

]

×
[
C∗(k,ω,t)C(k,ω′,t) e−i(ω′−ω)t + 1

2
δ(ω − ω′)

]
.

(A19)

Multiplying the terms in square brackets here yields four terms
to be taken in the limit of t → +∞, followed by the integration
over ω′. The four terms are

2πC∗(k,ω,t)C(k,ω′,t) e−i(ω′−ω)t δ(ω − ω′)

+ iC∗(k,ω,t)C(k,ω′,t)
e−i(ω′−ω)t

ω′ − ω

+πδ(ω − ω′)δ(ω − ω′)

+ 1

2
δ(ω − ω′)

i

ω′ − ω
.

The first term here is trivial to deal with. The second term is
treated by formally adding a positive imaginary infinitesimal to
its denominator to write ω′ − ω + iε with ε → +0, followed
by using Eq. (A6). The term sums up with the first one. To
treat the third term correctly, one first has to represent one of
the δ functions as

δ(ω − ω′) = lim
L→+∞

1

2πc

∫ +L/2

−L/2
dzn e−i(ω−ω′)zn/c (A20)

and then integrate the whole contribution over ω′. This gives
the term proportional to the CN length L. Finally, the fourth
term can be shown to yield zero principal value by noticing
that it is an odd function of its variable. The δ function makes
it zero for all ω �= ω′, where it must be zero, too, since it
is odd. More accurate proof of this fact can be obtained
in several ways, e.g., by using the identity δ′(x) = −δ(x)/x
with x = ω − ω′, followed by partial integration of the whole
contribution, or starting from the δ-function representation
(A20), followed by manipulating the integration order over
ω and ω′ with the use of the general properties of the
integrands.

Inserting the contributions discussed into Eq. (A19), adding
them all together in the limit of t → +∞ with the use
of Eq. (A11) for the coefficient A(ω), and taking into
account the fact that Re[1/σzz(ω)] is a sharp peak structure
[where peaks should be attributed to different kϕ(s) = s/RCN,
s = 1,2, . . ., to represent different interband transitions;28

see an example in Fig. 2(a)], one eventually arrives at
Eq. (4).
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