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Rolling and sliding of a nanorod between two planes: Tribological regimes and control of friction
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The motion of a cylindrical crystalline nanoparticle sandwiched between two crystalline planes, one stationary
and the other pulled at a constant velocity and pressed down by a normal load, is considered theoretically using a
planar model. The results of our model calculations show that, depending on load and velocity, the nanoparticle
can be either rolling or sliding. At sufficiently high normal loads, several sliding states characterized by different
friction forces can coexist, corresponding to different orientations of the nanoparticle, and allowing one to have
low or high friction at the same pulling velocity and normal load.
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I. INTRODUCTION

Because of its great importance for nanotechnological
applications, control of friction at the nanoscale is a hot
topic of current research. While conventional lubricants can
not be applied for this purpose, research efforts have been
guided by the vision of Feynman that the nanobearings can
“run dry.”1 It has been shown that decreasing the normal
load2 or pulling velocity,3 as well as normal load actuation,4

can lead to a dramatic friction reduction. A mechanism of
friction control particularly pertinent to our present work is
the so-called structural lubricity, or superlubricity,5–13 arising
due to the structural incommensurability of the two contacting
surfaces. More precisely, each atom of the sliding surface
feels the force generated by the periodically arranged atoms
of the substrate, so that the total friction force is the sum of
the forces felt by each atom of the slider. If the slider and the
substrate are incommensurate, these forces add up randomly,
resulting in nearly frictionless sliding. The phenomenon of
superlubricity has been observed experimentally.7,11–13 On the
other hand, it has been demonstrated by means of molecular
dynamics simulations,14 as well as stochastic modeling and
experiment,15 that a flat nano-object (e.g., a graphite flake)
in contact with the surface quickly reorients itself into the
“commensurate” state of high friction, even though the initial
orientation may be the superlubric one.

Finally, one can influence the friction forces by using
the rolling motion of round nanoparticles in-between the
surfaces.16–21 Nanoparticle rolling can be identified experi-
mentally by making a small indentation on its surface with a
sharp tip of an atomic-force microscope and subsequent local-
ization of this mark after the manipulation.19 Alternatively, for
a highly symmetric nanoparticle, such as a carbon nanotube,
a rolling regime can be identified from the characteristic
periodicity of the time-dependent friction force: in the rolling
state, this periodicity is proportional to the circumference of
the nanoparticle.20,21

In this paper, we consider the motion of a cylindrical
nanoparticle sandwiched between two planes (see Fig. 1).
Because of the unavoidable deviations from a perfect rotational
symmetry, the surface of the nanoparticle actually consists
of facets. Those facets may be characterized by different
lattice constants, and hence by different commensurabilities
with both planes. For instance, in the experimental studies,
Refs. 22–24, it has been suggested that golden nanorods
exhibit an octagonal cross section similar to Fig. 1 with

alternating {100} and {110} facets. Based on a simple
model described in Sec. II, we show in Sec. III that the
nanoparticle can be stabilized in several friction states,
namely, rolling friction and different sliding regimes that can
be realized depending on which facets of the nanoparticle are
in contact with the upper and lower surfaces. These results are
summarized in a state diagram showing the stability regions
of different friction states depending on the two experimental
control parameters: normal load and pulling velocity. The
state diagram contains a region, where sliding friction
regimes characterized by commensurate contact (high-friction
forces) and incommensurate contact (low-friction forces) of
the nanoparticle coexist. We propose a friction-switching
scenario, allowing one to realize either low- or high-friction
forces at the same pulling velocity and normal load.

II. THE MODEL

A. Equations of motion

We consider a crystalline nanoparticle, approximating as
close as possible a round shape of some preset radius (see
Fig. 1). Unlike the symmetric fullerene-like molecules with
equivalent facets studied in Refs. 16–18, in our system, the
facets have different number of atoms and different commensu-
rability with the planes (see Fig. 1) so that, depending on which
facets are in contact with the planes, different friction regimes
may be realized. While our model system from Fig. 1 is two
dimensional, the main results immediately carry over to some
three-dimensional objects, such as nanorods. We henceforth
consider a single particle, expecting analogous findings for the
case of many particles, provided they are sufficiently dilute.

The overall geometric configuration of the system is
completely determined by the nanoparticle’s center of mass
r = xex + yey , its rotation angle φ, and the position R =
Xex + Y ey of some reference atom from the top plane, which
we assume to be horizontal at all times; here, ex,y are the unit
vectors in the x and y directions. If the nanoparticle and the
planes could be viewed as rigid bodies, the equations of motion
for the generalized coordinates (r,φ,R) would be derivable
from the Lagrangian

L(r,φ,R,ṙ,φ̇,Ṙ)

= mṙ2

2
+ I φ̇2

2
+ MṘ2

2
− UB(r,φ)

−UT (R − r,φ) − κ(X − V t)2

2
+ fNY, (1)
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FIG. 1. Schematic illustration of the system: a nanoparticle is
sandwiched between the stationary lower plane and the upper plane
pressed down by the normal load fN and attached to a spring of
stiffness κ , the other end of which is pulled with the velocity V . The
friction force f is deduced from the elastic deformation of the spring
attached to the upper plane [cf. Eq. (2)].

where the first two terms represent the translational and
rotational kinetic energy of the nanoparticle with mass m and
moment of inertia I ; the third term describes the kinetic energy
of the upper plane of mass M; the fourth and the fifth terms
correspond to the interaction between the nanoparticle and
the bottom and top planes, respectively; the last two terms
correspond to the energy of elastic deformation of the spring
of stiffness κ , the other end of which is pulled at the constant
velocity V , and the energy of the upper plane produced by
the normal load. Therefore, the elastic force generated by the
spring is equal in magnitude to the instantaneous friction force

f = −κ(X − V t). (2)

We furthermore assume that the separation between the two
planes, i.e., the nanoparticle’s diameter, is sufficiently large,
so that the interaction energy between them is negligible.

In reality, the atoms of the nanoparticle and the planes are
not rigidly coupled to each other, and their motion affects
the motion of the global coordinates r, φ, and R. If the time
scales of the overall nanoparticle motion are much slower than
the time scale of individual atoms, the interaction between
the global degrees of freedom r, φ, R and those of atoms
composing the nanoparticle, both planes, and the spring can
be approximately taken into account by means of the following
three modifications of the equations of motion generated by
the Lagrangian (1) (Ref. 25):

(i) renormalization of the forces and torques acting on the
relevant coordinates r, φ, and R;

(ii) introduction of velocity-dependent dissipation forces
describing the effect of energy loss from the global degrees of
freedom r,φ, and R into the atomistic degrees of freedom of
the nanoparticle, both planes, and the spring attached to the
upper plane;

(iii) introduction of noise corresponding to the inverse
process of energy transfer from random atomic vibrations into
the global degrees of freedom.

The effect (i) is accounted for by reinterpreting the energies
UB,T as free energies. In particular, they include the energies of
the elastic deformation of the nanorod and both planes. This is

a valid approximation, provided that the elastic deformations
occur much faster than the temporal variations of the global
coordinates r,φ,R. Next, the dissipative forces (ii) due to the
internal degrees of freedom of the nanoparticle and the planes
can be derived from the dissipation function26

�(r,φ,R,ṙ,φ̇,Ṙ) = 1

2

∑

q,q ′
ηqq ′ (r,φ,R) q̇q̇ ′, (3)

where the generalized coordinate indices q,q ′ run over the
values (x,y,φ,X,Y ), and the dissipation coefficients are
symmetric:

ηqq ′ = ηq ′q . (4)

These forces are written as velocity derivatives of the dissi-
pation function f diss

q = −∂�/∂q̇ = −∑
q ′ ηqq ′ q̇ ′. Similarly,

an additional dissipative force on the upper plane arises due
to the internal degrees of freedom of the spring: f diss

spring =
−ηS(Ṙ − V ex). This additional dissipation channel is not
present in the dissipation function (3) because the position V t

of the pulled end of the spring is not a generalized coordinate
in the Lagrangian (1); therefore, the dissipative force f diss

spring
should be included “by hand.” Finally, we account for the
noise effect (iii) by adding suitably chosen Gaussian white
noises to the right-hand side of the equations of motion:

mr̈ = −∇[UB(r,φ) − UT (R − r,φ)]

− ηrrṙ − ηrφφ̇ − ηrRṘ + ξr(t),

I φ̈ = −∂[UB(r,φ) + UT (R − r,φ)]

∂φ
(5)

− ηφrṙ − ηφφφ̇ − ηφRṘ + ξφ(t),

MR̈ = −∇UT (R − r,φ) − κ(X − V t)ex − fNey

− ηRrṙ − ηRφφ̇ − ηRRṘ

− ηS(Ṙ − V ex) + ξR(t) + ξS(t).

Here, ηrr is a tensor with components ηxx,ηxy,ηyx = ηxy,ηyy ,
with similar definitions for ηrR and ηRR. Also, ηrφ and ηRφ are
vectors, e.g., ηrφ = ηxφex + ηyφey with a similar definition for
ηRφ , and ηφr = ηT

rφ , ηφR = ηT
Rφ are the respective transposed

vectors. The Gaussian white noises ξq (t), q = x,y,φ,X,Y have
zero mean and obey the fluctuation-dissipation theorem of
the second kind 〈ξq(t)ξq ′(t ′)〉 = 2T ηqq ′ (r,φ,R)δ(t ′ − t). The
noise ξS(t) due to the spring is uncorrelated with the noises
ξq(t) and its autocorrelation function is 〈ξSα(t)ξSβ(t ′)〉 =
2T ηSδαβδ(t ′ − t), where α,β refer to the coordinates x,y.

B. Choice of the functional form for the potentials and
dissipation coefficients

Having written down the general equations of motion (5)
for the relevant coordinates, we should specify the functional
forms of the potentials UB,T as well as the dissipation
coefficients ηrr, ηrφ , etc. We consider the potentials first. For
simplicity, we assume the upper and the lower planes to be
equivalent, leading to

UT (R − r,φ + π ) = UB(r,φ) =: U (r,φ), (6)
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and leaving us with the necessity to determine the function
U (r,φ). This function should possess the symmetries

U (r,φ) = U (r + aex,φ) = U (r,φ + 2π/N ), (7)

where a is the lattice constant of the plane, and N is an integer
related to the rotational symmetry of the particle. For example,
for a nanoparticle as sketched in Fig. 1, we have N = 4.
There are many functions with the property (7). To make a
physically motivated choice, we view the nanoparticle as a
collection of periodically arranged “pseudoatoms,” where each
pseudoatom represents a group of closely arranged real atoms
of the particle. In particular, if Fig. 1 depicts a cross section
of a nanorod, then each pseudoatom describes the cumulative
effect of an atomic row along the axis perpendicular to the
plane of the figure. The ith pseudoatom of the nanoparticle
has the coordinate

ri(r,φ) = r + diei(φ), (8)

where di = |ri − r| is the rigidly fixed distance of the ith
pseudoatom from the center of mass, and ei(φ) = ex cos(θi +
φ) + ey sin(θi + φ) is the unit vector pointing from the center
of mass to the ith pseudoatom. The constant angles θi

are completely determined by the crystal structure of the
nanoparticle.

The potential of interaction with the bottom plane is the
sum of the respective interaction energies of all pseudoatoms

U (r,φ) =
∑

i

u[ri(r,φ)]. (9)

The functions u(r) = u(r + aex) can be expanded into Fourier
series in x with the expansion coefficients depending on the y

component of r. Neglecting the second and higher harmonics,
we employ the functional form

u(r) = u0(y) + u1(y) cos
2πx

a
. (10)

To account for the possibility of adhesion, the zero-order term
is taken to be the Lennard-Jones potential

u0(y) = ε[(σ/y)12 − 2(σ/y)6], (11)

where ε is the adhesion energy and σ the equilibrium
separation from the surface.

The function u1(y) in Eq. (10) has the physical meaning
of the corrugation amplitude of the potential (10) in the
x direction. We assume it to increase exponentially upon
approaching the surface:

u1(y) = �Ue−(y−σ )/λ, (12)

where �U is the corrugation at the equilibrium separation σ ,
and λ is the characteristic decay length.

With respect to the dissipation coefficients of the nanoparti-
cle, we should distinguish between the contributions due to the
bottom and the top planes. We assume that in the course of its
translational and rotational motion, the total dissipative force
on the nanoparticle is a sum of the respective contributions
from all its pseudoatoms. That is, the motion of the ith
pseudoatom with the velocity ṙi relative to the bottom plane
results in the dissipative force −η(ri)ṙi on that pseudoatom.
The expression for the dissipative force contribution from

the top plane is similar, but with the dissipation coefficient
η(R − ri) and the relative velocity ṙi − Ṙ.

For simplicity, we assume isotropy of the damping coeffi-
cients η(ri), which are treated as scalar functions of the position
ri . We choose the following functional form:

η(ri) = η0e
−(yi−σ )/ξ , (13)

η0 being the damping coefficient at the minimum of the
Lennard-Jones potential (11), and ξ the decay length. Explic-
itly, the velocity of the ith pseudoatom is expressed in terms
of the generalized velocities ṙ and φ̇ as

ṙi(r,φ) = ṙ + diti(φ)φ̇, (14)

where the tangential vector is

ti(φ) = dei(φ)

dφ
= −ex sin(θi + φ) + ey cos(θi + φ). (15)

The dissipative force due to the bottom plane is

fB
diss = −

∑

i

η(ri)ṙi = −
∑

i

η(ri)ṙ −
∑

i

η(ri)diti φ̇. (16)

The dissipative force due to the top plane has a similar form,
but with the velocity ṙi replaced with ṙi − Ṙ and η(ri) with
η(R − ri), that is,

fT
diss = −

∑

i

η(R − ri)(ṙ − Ṙ) −
∑

i

η(R − ri)diti φ̇. (17)

By summing all the contributions, we obtain

ηrr =
∑

i

[η(ri) + η(R − ri)]I,

ηrφ =
∑

i

[η(ri) + η(R − ri)]diti , (18)

ηrR = −
∑

i

η(R − ri)I,

where I is a unit 2 × 2 tensor.
In view of the symmetry (4) of the dissipation coefficients,

the second of these equations (18) uniquely fixes ηφr =
ηT

rφ . To determine the remaining coefficients ηφφ and ηφR,
we should consider the torque produced by the dissipative
force as the nanoparticle rotates between both planes. The
magnitude of this torque is Kdiss = −∑

i di[η(ri)ṙi + η(R −
ri)(ṙi − Ṙ)] · ti . Upon substitution of the expression (14), we
find

ηφR = −
∑

i

η(R − ri)ditTi ,

(19)
ηφφ =

∑

i

[η(ri) + η(R − ri)] d2
i .

For the upper plane, we have from the symmetry (4) of
the dissipation coefficients ηRr = ηrR and ηRφ = ηT

φR. The
remaining tensor ηRR describes the effect of energy dissipation
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of the upper plane into the internal degrees of freedom of the
stationary nanoparticle and has the form

ηRR =
∑

i

η(R − ri)I. (20)

C. Overdamped zero-temperature limit

It is difficult to estimate the dissipation coefficients from
first principles because the basic building block of our
model, a pseudoatom, is a complex object consisting of
many real atoms. It is not unreasonable to assume though
that the dissipation coefficient of such a pseudoatom (and
of the nanoparticle itself) can be many orders of magnitude
higher than that of a true atom on a surface. Therefore, in
our numerical calculations, we assume that the dissipation
effects are much stronger than the inertia effects, allowing
us to consider the overdamped limit by formally setting the
nanoparticle’s mass and moment of inertia to zero: m = 0,
I = 0. Likewise, we assume that the spring attached to the
upper plane is overdamped, allowing us to set M = 0. Finally,
since the potential energies from Eq. (1) represent an effect
of many atoms, noise effects can be assumed extremely small
in comparison to the interaction forces and the normal load.
Therefore, we neglect thermal noise by setting T to zero in the
equations of motion (5), yielding

ηrrṙ + ηrφφ̇ + ηrRṘ = −∇[U (r,φ) − U (R − r,φ + π )],

ηφrṙ + ηφφφ̇ + ηφRṘ = −∂[U (r,φ) + U (R − r,φ + π )]

∂φ
,

ηRrṙ + ηRφφ̇ + ηRRṘ = −∇U (R − r,φ+π ) − ηS(Ṙ−V ex)

− κ(X − V t)ex − fNey. (21)

These equations can be simplified even further if we
consider a nanoparticle, which is symmetric with respect to
rotations by π , as in Fig. 1. Due to this symmetry, and due to
the equivalence of the upper and lower planes, we can state
that there is a solution of Eqs. (21), for which

r = R/2 (22)

up to an addition of an integer multiple of the lattice constant
a in the x direction. This is verified by inspection of the
first of the equations of motion (21), where substitution of
the relation (22) renders the force in the right-hand side
vanish. Considering the left-hand side, let us have a closer
look at the damping coefficients from Eq. (18). Because our
nanoparticle is symmetric with respect to rotations by π , for
each pseudoatom at ri = R/2 + diei , there is a symmetric
partner pseudoatom at rk = R/2 − diei . Then, comparison
of the first and the third equations (18) yields ηrr = −2ηrR.
Furthermore, since the tangential vectors (15) of the ith and
the kth pseudoatoms are opposite to each other, tk = −ti ,
the sum in the second equation (18) vanishes, ηrφ = 0,
automatically implying that ηφr = 0. Then, the first equation
(21) reduces to ηrR(Ṙ − 2ṙ) = 0, implying Eq. (22). By
numerically integrating the full set of equations (21), we have
verified that the relation (22) is stable: for all initial conditions
tried, the system eventually entered the regime with r = R/2.
Therefore, computational effort can be reduced by roughly a

factor of 2 by replacing five equations (21) with three equations
of motion for φ,X, and Y :

ηφφφ̇ + ηφRṘ = −2
∂U (R/2,φ)

∂φ
,

[ηS + ηRR + ηRr/2]Ṙ + ηRφφ̇ (23)

= −∇U (R/2,φ) + [ηSV −κ(X − V t)]ex − fNey.

III. RESULTS AND DISCUSSION

A. Parameters and units

In all our numerical results in the following, we have chosen
the lattice constant a as the unit of length, the adhesion energy
ε as the unit of energy, and the ratio η0a

2/ε as the unit of time.
This choice fixes the unit of force to ε/a, the unit of velocity
to ε/(aη0), and the unit of spring constant to ε/a2. The value
of the dissipation coefficient at the minimum of the potential
(11) in these units is η0 = 1, and, obviously, a = 1, ε = 1 in
these units.

Our nanoparticle is constructed from an arrangement of
pseudoatoms in a square lattice with a lattice constant b, which,
in general, is not equal to the lattice constant a of the two
planes. From this lattice, we select those pseudoatoms with a
distance from the center of mass that is smaller than the preset
radius. In numerical simulations of Eq. (23), we focused on an
approximately round crystalline nanoparticle with a radius of
5b. The “commensurate” facets of the nanoparticle correspond
to the rotational angle given by an integer multiple of π/2,
φcomm = nπ/2, whereas the “incommensurate” facets corre-
spond to its half-integer multiple, φincomm = (n + 1/2)π/2.

In our simulations, we have tried different values of b, and
obtained qualitatively the same behavior as for the b = a = 1
case reported below. As for other parameter values, we have
taken the equilibrium distance of the Lennard-Jones potential
(11) to be equal the lattice constant σ = 1. The corrugation
depth of the potential (12) was taken to be �U = 3/4, and
its decay length, as well as the decay length of the damping
coefficient (14), were set to λ = ξ = 1/5. Finally, the spring
constant was set to κ = 1, and the spring damping coefficient
was ηS = 10. Other values of these parameters of a comparable
order of magnitude produced qualitatively similar results.

B. State diagram

We have found that depending on normal load fN and
pulling velocity V , the nanoparticle can be rotating, or it can
be stabilized in a sliding state of either low or high friction.
The results of our numerical simulations are summarized in
the state diagram of the system, Fig. 2, showing which friction
regimes are stable for given values of fN and V . When the
normal load is sufficiently low, the nanoparticle can only exist
in the rolling (R) state of motion, where the magnitude of the
orientation angle steadily grows in time, as in Fig. 4(b). On
the other hand, high normal load stabilizes the sliding state of
motion, which can be either the low-friction sliding (LFS) or
the high-friction sliding (HFS) state. In both these states, the
orientation angle φ of the nanoparticle performs small rocking
motion around the value, which is either π/4 (LFS state) or
0 (HFS state), up to an integer multiple of π/2. The LFS
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FIG. 2. State diagram of the system from Fig. 1 showing the
stability regions of the low-friction sliding (LFS), high-friction sliding
(HFS), and rolling (R) states.

state corresponds to the incommensurate contact between the
nanoparticle and the planes, while the HFS state corresponds
to the commensurate contact. The LFS state is stable above
the solid line in Fig. 2, and the HFS state above the dashed
line. Above both separation lines, both LFS and HFS states
are stable, and the actual state of motion of the nanoparticle
depends on its initial preparation. Interestingly, to the left of the
intersection point at ca. V = 6, there is a region at lower normal
loads where the LFS state is the only stable state of motion;
similarly, to the right of this point, there is a region at higher
normal loads where the particle can exist only in the HFS state.

We now try to understand the state diagram from Fig. 2. In
order to destroy the contact, work must be performed against
the adhesion forces and the normal load. This work is done by
the viscous drag, which scales linearly with the velocity V , and
by the force generated by the moving corrugated potential. At
low pulling velocities, it is the latter force that is responsible
for breaking the contact. If the nanoparticle is in the LFS state,
the effective corrugation of the potential is lower than that
in the HFS state because the contact is incommensurate and
involves fewer atoms. Consequently, a smaller normal load
is required to stabilize the LFS state, explaining its stability
island in the low-velocity region.

At faster pulling, on the other hand, the effect of the
potential corrugation becomes less important. This is so
because the upper plane moves relatively fast with respect
to the particle, so that the particle can not follow the fast
temporal variations of its potential and feels, instead of the
true corrugation depth u1, a smaller time-averaged corrugation.
Therefore, it is the viscous drag that is responsible for turning
the nanoparticle at fast pulling. In order to break the contact,
one has to overcome the adhesion between the nanoparticle
and both planes. Since adhesion forces are larger in the HFS
state, smaller normal load is required to stabilize this state at
fast pulling.

C. Friction force

Figure 3 exemplifies the typical evolution of the friction
force (2) in the three states. The curves (a) and (b) resemble
the typical evolution of the friction force in an atomic friction
experiment in the stick-slip regime.27,28 During the stick

FIG. 3. Temporal evolution of the friction force (2) in (a) the LFS
state, (b) the HFS state, and (c) the R state. All curves are obtained
for the same pulling velocity V = 0.1, but different normal loads:
fN = 100 for the curves (a) and (b) and fN = 1 for the curve (c).
The difference between the LFS and HFS curves (a) and (b) is in the
orientation angle of the nanoparticle: namely, for the curve (a), the
angle φ is close to π/4, and for the curve (b), it is close to zero.

phases, the nanoparticle and the upper plane are almost
stationary, while the elastic deformation of the spring attached
to the top plane constantly increases due to pulling. When
elastic energy becomes sufficient to initiate the slip, the
nanoparticle gets displaced in the x direction by one lattice
constant, and the upper plane by two lattice constants [see
Eq. (22)], resulting in a sudden relaxation of the spring.
Consequently, the periodicity of the stick-slip curves in the
LFS regime (a) and the HFS regime (b) equals two lattice
constants. We note that the modulation amplitude of the
stick-slip curves (a) and (b) is about the same, while the mean
friction forces developed in both regimes are very different, in
spite of the fact the pulling velocity and the normal loads are
identical for the curves (a) and (b).

The curve (c) depicting the evolution of the friction force in
the rolling state is interesting in three respects: its periodicity
is notably larger than in the LFS and HFS cases (a) and (b);
its modulation amplitude is also surprisingly high; the slope
of the curve in a stick phase is much smaller than in the cases
(a) and (b). These peculiarities can be explained as follows.

The periodicity of the “stick-roll” curve (c) is equal to the
distance traveled by the upper plane during the “slip.”28 This
distance is quite large because the “slip” event, seen as the
sudden drop of the friction force, is associated not with the
transition of the nanoparticle by one lattice constant, but with
its rotation by an angle π/2 from one commensurate contact
state to the next. During this rotation, the particle’s center of
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mass travels a distance of about πR/2. The actual distance
is slightly smaller than this value because the nanoparticle is
not perfectly round. In view of Eq. (22), the periodicity of the
curve (c) twice that value, that is, slightly smaller πR. For
R = 5, this gives the periodicity that should be a bit smaller
than 16 lattice constants. The periodicity of the curve (c) is
indeed 14 lattice constants.

The second interesting feature is a roughly tenfold larger
amplitude of force variations in the rolling state compared to
the LFS and HFS curves in Fig. 3, in spite of the fact that the
normal load is two orders of magnitude smaller. As it turns
out, the reason is precisely the much smaller normal load. In
each stick phase, the elastic energy of the spring constantly
builds up and is suddenly released to induce a rotation of the
nanoparticle in the rolling state from Fig. 3(c). At the same
time, the nanoparticle in the stick phase can slightly turn and
lift the top plane up against the small normal load. Since part of
the torque applied to the particle by the spring is used to lift the
upper plane, a much larger elastic force is necessary to induce
the particle’s rotation, implying a large modulation amplitude
of the curve in Fig. 3(c). For the curves from Figs. 3(a) and
3(b), on the other hand, the normal load is too high to allow for
any significant lifting of the upper plane, so that practically all
of the force accumulated in the stick phase is used to initiate
the slip.

Finally, the observed rate of force increase in the stick phase
of the rotational regime (c) is much smaller than in the sliding
regimes (a) and (b) for a similar reason. The rate of force
increase in the stick phase is determined by an effective spring
constant κeff, which is given by a combination of the elasticity
of the spring κ attached to the upper plane and the spring
constant of the nanoparticle’s contacts with both planes κcont.

FIG. 4. Temporal evolution of (a) the friction force f from Eq. (2)
and (b) the rotational angle φ in the rolling state corresponding to the
pulling velocity V = 4 and normal load fN = 30.

Since this “contact” spring is attached to the spring of the upper
plane in series, the combination rule is 1/κeff = 1/κ + 1/κcont,
meaning that κeff < κcont. In view of the large difference in the
normal load, the contact in the sliding regimes (a) and (b) is
much more rigid than in the rolling regime (c). This implies a
much smaller effective spring constant in the case (c) than in
the cases (a) and (b), and a smaller rate of force increase.

Figure 4 shows that in the rolling state, the shape of the force
curve [Fig. 4(a)] can be quite different from the sawtoothlike
ones shown in Fig. 3. Here, the rotation angle [Fig. 4(b)] in
the stick phase has the value φ = nπ/2 + π/4, meaning that
the nanoparticle contacts the planes along its “incommensu-
rate” facets. In the end of such a stick phase, the nanoparticle
first quickly rotates by an angle of π/4 and enters another short-
lived stick phase, where the contact is formed along the “com-
mensurate” facets of the nanoparticle. Then, another rotation
into an incommensurate state occurs, and the process repeats
itself. As a result, the force evolution curve acquires an addi-
tional structure, with different stick phases corresponding to
different particle-surface contacts. We note that the force curve
observed in the carbon nanotube rolling experiments20 also
possesses a rather complex structure, presumably because of
the variation of the contact properties of the nanotube “facets.”

D. Control of friction

The coexistence of the LFS and HFS states in Fig. 2 opens
the possibility of switching between them by changing the
control parameters fN and V . This process is illustrated in
Fig. 5. Starting with the HFS state within the coexistence

FIG. 5. Evolution of the friction force f from Eq. (2) during
switching of the friction regime: (a) switching from HFS to LFS
is performed by means of applying a negative pulse of the normal
load at a constant velocity V = 2; (b) switching from LFS to HFS is
achieved by applying a positive velocity pulse at a constant normal
load fN = 100.
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region at fN = 100 and V = 2, we reduce the normal load to
fN = 30 keeping the velocity constant [Fig. 5(a)]. This brings
the system into that region of the state diagram from Fig. 2
where the LFS state is the only stable one and induces a rotation
of the nanoparticle by π/4. Restoring the normal load to its
initial value brings the nanoparticle back into the coexistence
region, but now its contact with both planes goes along the
incommensurate sides.

In order to switch the nanoparticle back into the HFS state,
one can increase the pulling velocity to a larger value, thus
bringing the system out of the coexistence region into the
HFS part of the state diagram [see Fig. 5(b)]. This results
in a sudden stretching of the spring and, correspondingly, in
a large spike of the elastic force. After the nanoparticle has
rotated into the HFS configuration, the velocity is reduced to
the initial value in the coexistence region of the state diagram.
Again, this velocity reduction results in a sudden relaxation of
the spring and in the large negative spike in the friction force.
After that spike, the friction force stabilizes at a high value,
corresponding to the HFS state of the system.

IV. CONCLUSIONS

To summarize, we have considered the rolling and sliding
motion regimes of a cylindrical crystalline nanoparticle be-
tween two crystalline planes and found that the rolling state
of motion is stable for sufficiently weak normal loads and
fast pulling. An intriguing feature of the state diagram from
Fig. 2 is the existence of the stability island of the LFS state,
where the contact between the nanoparticle and the planes is
incommensurate. This is in striking contrast with the finding
of Refs. 14 and 15, where the HFS commensurable state was
the only stable one. The reason for this difference is that,
in the works 14 and 15, the flat nanoparticle was rotating
around the axis perpendicular to the planes, while in our work,
the rotation axis is parallel to the planes and perpendicular
to the direction of motion. We have shown that using
nanoparticles as a lubricant, one can achieve either low or high
friction at the same values of normal load and pulling velocity.
This finding is at variance with the results from Refs. 2–4,
where adjustment of these parameters was essential for friction
control, so that different friction regimes could be realized only
for different values of V and fN .

Even though the results reported in this paper have been
obtained for the special case of equal lattice constants of
the nanoparticle and the planes, we have found qualitatively
similar behavior also in the case of unequal lattice constants.
The fact that some facets of the nanoparticle are commen-
surate or incommensurate with the surfaces facilitates the
discussion of the results, but is not central for the physical
mechanism underlying the friction states of the nanoparticle.
What is important is that different facets of the nanoparticle

are characterized by different interaction energies with the
surfaces. If this condition is fulfilled, then several sliding
states and the rolling state can be realized, even when all
facets are incommensurate with the surfaces, or if they are
commensurate, but differ in the number of contact atoms.

Coming back to our model nanoparticle from Fig. 1, we note
that while it agrees with the overall picture of golden nanorods
with eight alternating facets,22–24 this view has quite recently
been challenged in Refs. 29 and 30, suggesting that golden
nanorods may actually be octagonal cylinders with eight
equivalent facets.29,30 If this is the case, then one should expect,
instead of three, only two friction regimes for such nanorods:
rolling and sliding. Therefore, in view of the large difference
in the friction forces in the LFS and HFS states, a tribological
experiment on golden nanorods may shed additional light on
their surface morphology and help to settle this debate.

In our analysis, several important effects have been ne-
glected, such as the nanoparticle’s possible asymmetry, inertia
effects, and the effect of thermal noise. All these effects, when
properly taken into account, may lead to qualitatively new
friction regimes. In particular, nanoparticles of other shapes
can exhibit different state diagrams and, correspondingly,
can allow for different friction-switching mechanisms. For
instance, if the nanoparticle is asymmetric, it can stick to one
plane and slide against the other; or, it can slide with respect
to both planes, but with the velocity very different from half
the velocity of the upper plane. Next, the effects of thermal
noise are typically negligible compared to load and interaction
forces. However, in the systems where noise effects play a
significant role, the nanoparticle is expected to spontaneously
perform thermally induced transitions between the LFS and the
HFS states within the coexistence region, so that higher normal
loads would be required to stabilize them. In this case, one can
expect the appearance of new regions in the state diagram,
where friction is controlled by thermal noise. Finally, inertia
introduces new characteristic time scales into the problem: the
inverse resonance frequencies of the nanoparticle’s vertical,
horizontal, and angular oscillations within the potential of the
two surfaces. If the time of pulling by one lattice constant a/V

becomes comparable to any of these time scales, new friction
regimes associated with the nanoparticle’s resonant motion can
be expected. Exploring new friction regimes related to these
and possibly other factors can be an exciting subject for future
research, both theoretical and experimental.
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