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Thermal equilibration and thermally induced spin currents in a thin-film ferromagnet on a substrate
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Recent spin-Seebeck experiments on thin ferromagnetic films apply a temperature difference �Tx along the
length x and measure a (transverse) voltage difference �Vy along the width y. The connection between these
involves: (1) thermal equilibration between sample and substrate, (2) spin currents along the height (or thickness)
z, and (3) the measured voltage difference �Vy . The present work models in detail the first of these steps, and
outlines how to obtain the other two. In 1D, thermal equilibration between the magnons and phonons in the
sample as well as additional equilibration between the sample and the substrate leads to two surface modes with
lengths λ to provide thermal equilibration. Increasing the coupling between the two modes increases the longer
mode length and decreases the shorter mode length. In 2D, the applied thermal gradient along x leads to a thermal
gradient along z that varies as sinh (x/λ), which produces fluxes along z of the up- and down-spin carriers, and
gradients of their associated magnetoelectrochemical potentials μ̄↑,↓, which vary as sinh (x/λ). There is also an
infinite spectrum of shorter lengths λ that are geometrically determined. By the inverse spin Hall effect, the spin
current along z can produce a transverse voltage difference �Vy that also varies as sinh (x/λ). This is consistent
with experiments if the longest λ is comparable to or larger than the sample length L, and the shorter λ’s are
smaller than the separation between the input or output lead and the nearest voltage probe. In this model, even
seemingly linear voltage profiles are due to a surface mode.
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I. INTRODUCTION

In principle, a thermal gradient ∇T can produce a spin
current.1 This magnetic analog of the Seebeck effect, whereby
electric currents are generated by ∇T , is known as the spin-
Seebeck effect (SSE). Evidence for the spin-Seebeck effect has
recently been observed in ferromagnet films, with thicknesses
dF ∼ 10 nm along z and lengths L ∼ 10 mm along x, grown
on insulating substrates.2–5 When subjected to a temperature
difference across x [see Fig. 1(a)], a nonzero voltage difference
�Vy across the width of the sample is observed; this signal
is attributed to an inverse spin Hall effect (ISHE) due to an
inferred spin-Seebeck-induced potential gradient along z. (We
employ the magnetoelectrochemical potential μ̄↑,↓ introduced
in Ref. 1, and defined in Sec. VI.) The magnitude of �Vy

is observed to decay in space (along x) over a length much
greater than a spin-diffusion length.

The relation between the applied temperature difference
and the measured voltage difference is complicated; the
connection is represented by

�Tx

Equil−→∂zT
SSE−→∂zμ̄↑,↓

ISHE−→�Vy, (1)

where �Tx is applied and �Vy is measured, and “Equil” de-
notes thermal equilibration processes. The present work shows

the details of �Tx

Equil−→∂zT , and then discusses ∂zT
SSE−→∂zμ̄↑,↓

and ∂zμ̄↑,↓
ISHE−→�Vy . A recent experimental work by Huang

et al.6 suggests that ∂zT is indeed responsible for the spin-
Seebeck voltage �Vy .

The voltage is measured in one of two ways: (a) by
depositing narrow (∼10 nm along x) wires on top of the
sample that cross the width (from y = −w/2 to w/2), or (b)
by attaching point contacts on top of the sample at both edges
across the width (at y = −w/2 and w/2). In both cases, several
(wire or point) contacts are deposited at intervals along the
length x [note that each of Figs. 1(a) and 1(b) shows only one

such contact], the voltage difference �Vy is measured across y,
and determined as a function of x. Each of Refs. 2–5 measure
the SSE using Pt wires, and Ref. 2 measures the SSE using
point contacts. (Reference 5 also employs point contacts, but
its SSE signal is small enough to be ambiguous.) It has been
found that the SSE is not measured when Cu wires are used
instead of Pt; this is attributed to the weakness of the spin-orbit
interaction in Cu. Because the geometry is simpler, the present
work considers the effect for point contacts.

Reference 2 observes the voltage difference �Vy along
y to have a sinh (x/λ)-like form along the sample for some
λ = λexpt, thus indicating a surface effect associated with
heat input and output. It has been suggested7 that this surface
effect is governed by magnon-phonon thermal equilibration8

within the sample, which has a characteristic length of λmp.
However, Ref. 7 estimates that for permalloy (Ni81Fe19)
this equilibration should yield a maximum characteristic
length of only λmp = 0.3 mm, whereas experiment shows the
spin-Seebeck effect to have a characteristic length at least an
order of magnitude larger.3

An additional puzzling aspect of the experiments (partially
responsible for the recent flurry of interest in them9) is that
scratching off the center of the sample, to leave a region
only of substrate—which cannot carry spin current—has no
measurable effect on �Vy .2 However, it should be kept in
mind that the spin current, unlike the electric current, is not
associated with a strictly conserved quantity, that is, a physical
disconnection in the sample does not disallow spin currents
along any direction in the sample. Moreover, as our analysis
shows, because the spin currents are small and can be treated
as driven by the temperature gradients along x and z, the spin
currents along x and z are effectively independent. As noted by
Uchida et al.,3 and as we show in the analysis of Sec. VI, only
the spin current along z, driven by the temperature gradient
along z, is relevant to the ISHE that leads to the observed �Vy
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FIG. 1. The substrate (s, dark gray) and ferromagnetic sample (F,
light gray) of the spin-Seebeck experiment. Here, (a) shows the typical
experimental system and (b) shows the system with a disconnection
(scratch) in the sample (but not the substrate) of length �d . An external
magnetic field Bx is applied along x and a temperature difference �Tx

along x is maintained by a heater and a heat sink. A voltage difference
�Vy across the sample in the y direction is measured as a function of
x by point electrodes2,5 or by Pt wires (not shown) deposited on the
sample.2–4 For scratch length �d = 350 μm, Ref. 2 measures a similar
signal �Vy as for the unscratched sample. The figures are not to scale;
e.g., in the experiments dF � ds,�d . The heater and heat sink, which
contact each edge of the substrate along x, are not pictured; see Fig. 2.

profile. Therefore there is no contradiction between the voltage
profile being unaffected by the break in center of the sample
and the expectation that such a break should significantly alter
(or eliminate) the spin current along x. On the other hand, were
the scratch made within an equilibration length of the heater
or heat sink, where thermal gradients along z are significant,
then the spin current along z and the corresponding voltage
profile should no longer be nearly antisymmetric; this may be
experimentally measurable.

This work studies temperature and heat flow in this
system. We employ irreversible thermodynamics to justify and
extend the 1D, two-subsystem approach of Ref. 8. We first
consider a model 1D system with three subsytems: sample
phonons (designated by subscript p), sample magnons (m),
and substrate phonons (s). In addition to various geometrical
lengths, there are three different lengths associated with
Fig. 1: the sample magnon-phonon equilibration length λmp,
the substrate-sample phonon equilibration length λps, and an
infinite length that leads to the usual linear thermal profile.
Recall that Ref. 2 observes a sinh (x/λ) profile of the effect. If
λ � L, then sinh (x/λ) can decay too close to the boundaries
to be experimentally observed. Conversely, if λ � L, then
sinh (x/λ) will appear to be linear in x, which may explain the
linear signal observed by Refs. 3 and 4. It is therefore likely
that the longer of λps and λmp is the decay length observed

for �Vy . Moreover, because the results are independent of
�d , we expect that the longer of the two characteristic mode
lengths λlong � �d and the shorter characteristic mode length
λshort � �d .

When both magnon-phonon equilibration (internal to the
ferromagnetic sample, and not present for a nonmagnetic
sample) and sample-substrate equilibration (not present for a
sample with no substrate, as considered by Ref. 8) are present,
the coupling between these two modes further separates their
characteristic lengths. That is, λlong and λshort are respectively
greater and less than both λps and λmp. Although we find that
coupling increases the longer mode length, we do not otherwise
intend to explain the very long experimental decay length λexpt.
Rather, we show how the applied longitudinal temperature
difference leads, via transverse out-of-plane thermal gradients
and spin currents, to the transverse in-plane voltage difference.
A theoretical estimation of λmp on the order of λexpt remains
to be made.

Since we show that the length enhancement from mode
coupling is not enough for the λmp estimated by Ref. 7 to
match λexpt (for permalloy), the present work highlights the
need for revisiting that theory. For example, it has recently been
proposed10,11 that electron-phonon drag and magnon-phonon
drag processes are important in explaining Refs. 2–4. (The
kinetic theory of electron-phonon drag is found, for example,
in Refs. 12, 13, and 14.) Neither Ref. 7 nor the present work
considers such effects.

As argued above (and in Ref. 6), the fluxes and thermody-
namic gradients along z (rather than along x) are responsible
for �Vy . Thus we analyze a 2D system, with heat flow along
both x and z and translational symmetry along y. In contrast
to the 1D model, in 2D when one accounts for two thermal
subsystems (p and m) sharing a volume and the third (s)
sharing a surface with the other two, one finds an infinite
number of modes and their associated lengths. All but the
modes with the two longest lengths are due to the system
geometry, and the temperatures and thermal gradients along
z vary as sinh (x/λ). By the SSE, these thermal gradients
generate up- and down-spin carrier currents that also vary
as sinh (x/λ). Then, due to the ISHE, the spin current along z

(of spins pointing along x due to the applied magnetic field)
produces the voltage �Vy that also varies as sinh (x/λ).

Within the context of the present work, whose physical
basis is the suggested mechanisms of Ref. 3, �Vy can only
be associated with an exponential form; there will be no spin
current along z due to a truly linear temperature profile. If this
set of mechanisms explains the data, then the linear profile
observed by Refs. 3 and 4 must be due to a decay length much
larger than the sample length, that is, λ � L. (Further, smaller
mode lengths must be shorter than the distance between the
input and output leads and the nearest voltage probe.)

The rest of the paper is organized as follows. Section II
employs irreversible thermodynamics to find the energy
transferred between two systems at different temperatures,
specifically considering systems that share a surface (e.g., the
sample and substrate) and systems that share a volume (e.g.,
magnons and phonons in the ferromagnet). Section III finds
the characteristic lengths of the thermal equilibration modes
for the 1D model, and finds the spatial profiles of the phonon
and magnon temperatures and heat fluxes. For 2D heat flow,
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Sec. IV finds the shape of the spatial profile of temperatures
and heat fluxes, and numerically solves for the characteristic
lengths and z dependence of the phonon and magnon heat
flux magnitudes. Section V compares estimates of the thermal
equilibration lengths7 to the observed decay length of �Vy .
Section VI discusses the connection between the thermal
gradients found in Sec. IV and the magnetoelectrochemical
potentials (which involves the spin-Seebeck effect) and the
subsequent connection to �Vy (which involves the inverse
spin Hall effect). Section VII provides a brief summary
and conclusion. The Appendix gives details of the bulk and
boundary conditions associated with heat flux along both x

and z, used in the numerical calculations in Sec. IV.

II. THERMODYNAMICS

Flow described by thermodynamics is properly given by
the methods of irreversible thermodynamics. We present here
a derivation of a result central to Ref. 8, which is the basis of
Ref. 7, but which is simply written in Ref. 15.

A. General equilibration of two systems

We consider any two systems through which heat and
entropy (but not matter, quasi-momentum, or momentum)
flow. We later specifically consider energy equilibration
between the phonon-magnon subsystems in a ferromagnet (as
in Refs. 7 and 8) as well as energy equilibration between the
respective phonon systems of a ferromagnet and a nonmagnetic
insulator in contact.

In two such systems, designated α and β, the energy
differentials may be written as

dEα = TαdSα, dEβ = TβdSβ, (2)

where T is the temperature and S is the entropy. By energy
conservation dEα = −dEβ , so

dSα = dEα

Tα

, dSβ = −dEα

Tβ

. (3)

Since the entropy change must be non-negative,16 we have

0 � Ṡα + Ṡβ =
(

1

Tα

− 1

Tβ

)
Ėα =

(
Tβ − Tα

TαTβ

)
Ėα. (4)

For Ṡα + Ṡβ � 0 to hold, we must have

Ėα = ζ (Tβ − Tα), (5)

where ζ > 0. That is, by irreversible thermodynamics, the
energy flux is driven by a difference in intensive thermody-
namic quantities. The proportionality coefficient ζ has units
of a specific heat divided by time, and as noted below depends
either on a boundary conductance (for systems that share a
common surface) or a relaxation time (for systems that share
the same volume).

Specific heats per unit volume (C) are defined via

ε̇α = CαṪα, ε̇β = CβṪβ, (6)

where ε = E/V and V is the volume of the system. Use of
Eqs. (5) and (6) and Ėβ = −Ėα , yields

Ṫα = Tβ − Tα

τα

, Ṫβ = Tα − Tβ

τβ

, (7)

where τα ≡ CαVα/ζ and τβ ≡ CβVβ/ζ have units of time.
Then

�Ṫαβ ≡ Ṫβ − Ṫα = −Tβ − Tα

ταβ

, (8)

where we define

ταβ ≡ τατβ

τα + τβ

. (9)

Equation (8) justifies Eq. (1) of Ref. 8.

B. Two systems occupying the same volume

Energy conservation in two systems that occupy the same
volume V (e.g., the phonon and magnon systems within a
ferromagnet) gives ε̇α = −ε̇β , so that substitution of Eqs. (7)
and (5) into Eq. (6) yields

Cα

τα

= Cβ

τβ

= ζ

V
. (10)

Then, with τβ = (Cβ/Cα)τα , Eq. (9) gives

Cα

τα

= Cβ

τβ

=
(

CαCβ

Cα + Cβ

)
τ−1
αβ . (11)

This is the case studied by Ref. 8.

C. Two systems with a contact surface

For two systems in thermal contact over a surface of area
A (e.g., the ferromagnet and substrate’s respective phonon
systems in Fig. 1), we write ζ = hKA,17,18 so that

Ėα = −Ėβ = hKA(Tβ − Tα). (12)

Here, hK is the thermal boundary conductance. Substitution
of Eqs. (12) and (7) into Eq. (6) gives

τα = dαCα

hK

, τβ = dβCβ

hK

, (13)

where d is the thickness of the material in the direction normal
to the contact surface. Equation (9) then gives

ταβ = 1

hK

(
dαCαdβCβ

dαCα + dβCβ

)
. (14)

III. MODEL FOR HEAT FLOW IN 1D

The experiments have a ferromagnet/substrate system
where a thermal gradient is applied by a heater at x = −L/2
and a heat sink at x = L/2 (see Fig. 2). For sample isolation,
we take them to be in contact only with the substrate. This
affects the relative amplitudes of temperature and thermal flux
in each mode, but does not change the mode lengths.

We now consider a model in which heat flows only along
the length of the materials (the x direction in Figs. 1 and 2), i.e.,
heat flow in each system is uniform in the yz plane (Sec. IV
considers flow along x and z). Conservation of energy, with
an energy source, is given by

ε̇ + ∂xj
ε
x = Sε, (15)

where jε is the energy (and heat) flux, and Sε represents
the rate of heat transfer per unit volume from one system
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FIG. 2. An xz-plane cross section of the system under consider-
ation (see Fig. 1). The heater and heat sink, represented by squares
at x < −L/2 and x > L/2, maintain temperatures TH and TC , where
TH > TC . For sample isolation, we take them to be in contact only
with the substrate (s, dark gray), and not with the ferromagnetic
sample (F, light gray); this affects the relative amplitudes of the
modes, but not the mode lengths. The total heat flux input by the heater
at x = −L/2 is j0, and a similar heat flux must exit the substrate at
x = L/2. In Sec. III, we further take all heat fluxes to be uniform in
the yz plane; this restriction is lifted in Sec. IV.

or subsystem to another. We consider steady-state solutions,
so that ε̇ = 0. Further, we take the magnon system (m) in
the ferromagnet to only transfer energy to/from the phonon
system (p) in the ferromagnet. Similarly we take the substrate
(s) to only transfer energy to/from the phonon system (p) in
the ferromagnet, thereby neglecting direct magnon-substrate
coupling.

The rate of energy transfer per volume (V = Ad) between
substrate phonons and sample phonons (an energy source S)
is found from Eq. (12) as

Sε
s→p = hK

dF

(Ts − Tp), Sε
p→s = hK

ds

(Tp − Ts). (16)

Here, Sε
A→B is the volume rate of energy transfer from system

A to system B. This energy transfer is in the form of a source
only because here we take the heat flux to be only along
x; this is a (nonphysical) consequence of making such a 1D
model. When we include heat flow also along z in Sec. IV, the
substrate-sample phonon energy transfer is properly treated as
a heat flux along z.

The volume rate of energy transfer between the magnons
and phonons in the sample is found by substitution of Eqs. (7)
and (10) into Eq. (6), which gives

Sε
m→p = −Sε

p→m = Cm

τm

(Tm − Tp). (17)

Here, we have used Eq. (10) to replace Cp/τp with Cm/τm.
Applied in turn to the substrate, magnons, and phonons,
Eq. (15) gives

∂xj
εs

x = hK

ds

(Tp − Ts), (18)

∂xj
εm

x = −Cm

τm

(Tm − Tp), (19)

∂xj
εp

x = hK

dF

(Ts − Tp) + Cm

τm

(Tm − Tp). (20)

As usual, for each subsystem we take the heat flux to be
proportional to the gradient of temperature,1,16,19 so

jε
i = −κ∂iT . (21)

Here, κ > 0, i.e., heat flows from hot to cold. We have
neglected cross terms in Eq. (21), where gradients of other
intensive thermodynamic quantities also cause a flux; we dis-
cuss these cross terms in further detail in Sec. VI. Substitution
of Eqs. (18), (19), and (20) into the linearized gradient of
Eq. (21) in turn gives

−
(

dsκs

hK

)
∂2
xTs = Tp − Ts, (22)

−
(

κmτm

Cm

)
∂2
xTm = Tp − Tm, (23)

−κp∂2
xTp = −hK

dF

(Tp − Ts) − Cm

τm

(Tp − Tm). (24)

A. Characteristic lengths

We denote the inhomogeneous parts of Ts , Tp, and Tm with
primes. They all vary as e±qx , so the characteristic length is
λ = q−1. Then, solving Eqs. (22) and (23) for T ′

s and T ′
m yields

T ′
s = T ′

p

1 − (
dsκs

hK

)
q2

, T ′
m = T ′

p

1 − (
κmτm

Cm

)
q2

. (25)

Substitution of Eq. (25) into Eq. (24) gives

−κpq2 = hK

dF

(
dsκs

hK
q2

1 − dsκs

hK
q2

)
+ Cm

τm

(
κmτm

Cm
q2

1 − κmτm

Cm
q2

)
. (26)

This is cubic in q2. One solution is q2 = λ−2 = 0, corre-
sponding to the usual linear temperature profile, for which
T ′

s = T ′
p = T ′

m.
We define the inverse lengths qmp = λ−1

mp and qps = λ−1
ps , the

former associated with magnon-phonon equilibration within
the ferromagnet and the latter associated with substrate-sample
phonon equilibration. They satisfy

q2
mp ≡ Cm

τm

(
κm + κp

κmκp

)
, q2

ps ≡ hK

(
dF κp + dsκs

dF κpdsκs

)
. (27)

They are the inverse lengths of the modes when the magnon-
phonon system and the substrate-sample phonon system do
not interact. We also define the dimensionless ratios

�mp ≡
(

κm

κm + κp

)
, �ps ≡

(
dsκs

dF κp + dsκs

)
, (28)

and let � = �mp�ps. Then for q2 �= 0, Eq. (26) can be written
as

0 = q4 − q2
(
q2

mp + q2
ps

) + (
q2

mpq
2
ps − q2

mpq
2
ps�

)
. (29)

The solutions are

q2
(long,short) = q2

mp + q2
ps

2
±

√(
q2

mp − q2
ps

2

)2

+ q2
mpq

2
ps�,

(30)

where qlong is associated with the minus sign, so that qlong <

qshort and λlong > λshort.
We now consider two extreme cases. If there is no substrate

(or if hK → 0), then

|q| → qmp =
√

Cm

τm

(
κp + κm

κpκm

)
, (31)
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FIG. 3. The effect of mode coupling on the characteristic lengths
associated with thermal equilibration in the spin-Seebeck system.
The two characteristic lengths λlong and λshort, normalized here by
λmp = q−1

mp , are shown as functions of the coupling factor � � 1, for
(a) qmp = qps, which corresponds to equivalent pure mode lengths
λmp = λps, (b) qmp = 3qps, which corresponds to λps = 3λmp, and
(c) qmp = 10qps, which corresponds to λps = 10λmp. For qps � qmp,
the plots are the same when λlong and λshort are normalized by λps

rather than λmp. By definition, � � 1.

which on use of Eq. (11) reproduces the result of Ref. 8 (which
employs A for q). If there is a substrate but no magnons (or
τm → ∞), then

|q| → qps =
√

hK

(
dsκs + dF κp

dsκsdF κp

)
. (32)

The coupling factor (� � 1) between these modes further
splits the two solutions; for � �= 0, the (shorter) characteristic
length λshort = 1/qshort decreases and the (longer) length
λlong = 1/qlong increases. For three values of qmp/qps � 1,
Fig. 3 shows the characteristic lengths λlong and λshort, nor-
malized by the pure mode phonon-magnon relaxation length

(λmp = 1/qmp), versus �. For qps � qmp, the plots are the same
when λlong and λshort are normalized by qps rather than qmp.

B. Thermal profile and fluxes along x

To simplify the notation, let us use 1 ≡ long and 2 ≡ short.
We then write the phonon temperature in the ferromagnet as

Tp = T0 + αx +
2∑

γ=1

[
T a

γ sinh (qγ x) + T b
γ cosh (qγ x)

]
, (33)

where T0, T a
1 , T a

2 , T b
1 , and T b

2 are temperatures, and α is a
temperature gradient. The temperatures T a

(1,2) and T b
(1,2) are

found by application of the boundary conditions on the heat
currents, which are proportional to ∂xT(p,m,s), with T b

1 = 0 =
T b

2 if the heat fluxes have symmetric boundary conditions.
Recall that T = T0 + αx for an isolated system under an

applied temperature gradient.
Using Eq. (27), substitution of Eq. (33) into Eq. (25) [which

applies only to the inhomogeneous parts of T(s,p,m)] gives, with
no new parameters,

Ts = T0 + αx +
2∑

γ=1

⎡
⎣ q2

ps

q2
ps − ( dsκs+dF κp

dF κp

)
q2

γ

⎤
⎦

×[
T a

γ sinh (qγ x) + T b
γ cosh (qγ x)

]
, (34)

Tm = T0 + αx +
2∑

γ=1

[
q2

mp

q2
mp − ( κm+κp

κp

)
q2

γ

]

×[
T a

γ sinh (qγ x) + T b
γ cosh (qγ x)

]
. (35)

Substituting Eqs. (33)–(35) into Eq. (21) in turn gives the heat
current in each subsystem:

j
εp

x = −κpα − κp

2∑
γ=1

qγ

[
T a

γ cosh (qγ x) + T b
γ sinh (qγ x)

]
,

(36)

jεs

x = −κsα − κs

2∑
γ=1

qγ

[
T a

γ cosh (qγ x)

+ T b
γ sinh (qγ x)

] ⎡
⎣ q2

ps

q2
ps − ( dsκs+dF κp

dF κp

)
q2

γ

⎤
⎦ , (37)

jεm

x = −κmα − κm

2∑
γ=1

qγ

[
T a

γ cosh (qγ x)

+ T b
γ sinh (qγ x)

] [
q2

mp

q2
mp − ( κm+κp

κp

)
q2

γ

]
. (38)

The total heat flux in the ferromagnet jεF
x ≡ j

εp

x + jεm
x is

jεF

x = −(κp + κm)α −
2∑

γ=1

qγ

[
(κm + κp)

(
q2

mp − q2
γ

)
q2

mp − ( κm+κp

κp

)
q2

γ

]

×[
T a

γ cosh (qγ x) + T b
γ sinh (qγ x)

]
. (39)
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The boundary conditions on j
ε(s,p,m)
x at x = −L/2 and L/2 give

α, T a
(1,2) and T b

(1,2).
Because heat flux is continuous, the total heat flux (inte-

grated over all subsystems) due to each surface mode must
be zero. This condition is satisfied by Eqs. (36)–(38) on
substitution from Eqs. (27) and (30).

There are five unknowns in Eqs. (36)–(38) (α, T a
1 , T a

2 , T b
1 ,

and T b
2 ), and seemingly six boundary conditions (for each

of the three fluxes, one at x = −L/2 and one at x = L/2).
However, because the total energy flux is conserved (i.e., no
losses at the top of the ferromagnet dF or at the bottom of
the substrate −ds in Fig. 1), there are only five independent
conditions.

For comparison to the theory of Ref. 8, we now consider the
bulk system if the heaters contact the sample and there is no
substrate (so that q2

2 = q2
mp and q2

1 = 0 = q2
ps). Then jεF

x →
−(κp + κm)α, which reproduces the homogeneous result of
Ref. 8 (where Q ≡ jεF

x ), and satisfies the condition of zero
total heat flux due to the surface mode. If the heaters directly
transfer energy only to and from phonons (so that heat flow
in the magnon system vanishes at x = L/2 and x = −L/2),
then T a

2 → κmα/[qmpκp cosh (qmpL/2)] and T b
2 → 0, which

reproduces the inhomogeneous solution of Ref. 8. As noted
above, because T b

(1,2) are associated with a term proportional to
sinh (q(1,2)x) in the heat flux, then T b

1 = 0 = T b
2 for symmetric

boundary conditions on the heat fluxes (i.e., the same heat
current is injected into each system at the “hot” side as is
withdrawn from each system at the “cold” side).

IV. HEAT FLOW IN 2D

We now consider heat flux along z, to explicitly permit heat
transfer between the substrate and the sample. We first detail
the analytic theory, then present its numerical solution.

A. Analytic Results

To completely describe the z dependence of the tempera-
tures and heat fluxes in the system, the z dependence of the
heat flux input by the heater at x = −L/2 must be considered.
In principle, it may have any functional form, and therefore
properly requires a Fourier series in sin (kz) and cos (kz) that
includes an infinite number of lengths k−1 associated with the
z direction. However, if the thickness (along z) of the substrate
is much smaller than its length (along x), then k−1 should be
very small compared to λ(long,short) = q−1

(long,short) of Eq. (30).
The contributions from this z dependence should decay along
x over a distance on the order of the nonuniformity along z,
and therefore we do not explicitly include them in the analytic
theory. The cost of neglecting these high k values is that we
cannot specify a heat input with a complicated variation along
the thickness.

We thus generalize Eqs. (33)–(35) to take the form

T(s,p,m)(x,z) = T0(s,p,m)+α(s,p,m)x+
N∑

n=1

[
T a

(s,p,m)n (z) sinh (qnx)

+ T b
(s,p,m)n (z) cosh (qnx)

]
. (40)

We permit there to be N surface modes; for heat flow along
only x, the one-dimensional heat equations guarantee that N =

2, but the two-dimensional equations are nonlinear so that any
N is allowed.

We take symmetric boundary conditions on heat flux along
x so that T b

(s,p,m)n
(z) = 0. Then, substitution of Eq. (40) into

Eq. (21) gives the heat fluxes along x and z to be

j
ε(s,p,m)
x = −κ(s,p,m)α(s,p,m)

−κ(s,p,m)

N∑
n=1

qnT
a

(s,p,m)n (z) cosh (qnx), (41)

j
ε(s,p,m)
z = −κ(s,p,m)

N∑
n=1

∂zT
a

(s,p,m)n (z) sinh (qnx). (42)

This section derives the functional forms of T a
(s,p,m)n

(z) and
finds their amplitudes for example material parameters. It
also discusses the bulk and boundary conditions that permit
determination of their amplitudes, with the details of these
conditions given by the Appendix.

On properly treating the heat transfer between sample
phonons and substrate phonons as z-directional currents,
employing Eqs. (21) and (15) gives

∂2
i Ts = 0, (43)

−κp∂2
i Tp = Cm

τm

(Tm − Tp), (44)

−κm∂2
i Tm = −Cm

τm

(Tm − Tp). (45)

These equations give

T0m
= T0p

≡ T0, αm = αp ≡ α, (46)

but they do not explicitly impose any conditions on T0s
or αs .

For steady-state flow, however, we must take

T0s
= T0, αs = α. (47)

This relation guarantees that for any two of κ(s,p,m) to go
continuously to zero, we recover the expected jε

x = −κα.
We now find T a

(s,p,m)n
(z) by substituting Eq. (40) into

Eq. (43) and the decoupled forms of Eqs. (44) and (45).
Substitution of Eq. (40) into Eq. (43) gives

∂2
z T a

sn
(z) = −q2

nT
a
sn

(z), (48)

so that T a
sn

(z) is sinusoidal:

T a
sn

(z) = A(1)
sn

cos (qnz) + A(2)
sn

sin (qnz). (49)

Here, A(1)
sn

and A(2)
sn

are constants determined by conditions on
heat flux (see the Appendix).

Decoupled equations for Tp and Tm, and thus for T a
pn

(z)
and T a

mn
(z), are found by combination of Eqs. (44) and (45).

Addition and subtraction gives

−κp∂2
i Tp − κm∂2

i Tm = 0, (50)

−κp∂2
i Tp + κm∂2

i Tm = 2
Cm

τm

(Tm − Tp). (51)

Combination of Eqs. (50) and (51) gives

∂2
i ∂2

j Tp − q2
mp∂

2
i Tp = 0, (52)

∂2
i ∂2

j Tm − q2
mp∂

2
i Tm = 0, (53)
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where we have employed Eq. (27). Use of Eq. (40) in Eqs. (52)
and (53) gives, for each mode n,

∂4
z T a

(p,m)n (z) + q4
nT

a
(p,m)n (z) + 2q2

n∂
2
z T a

(p,m)n (z)

− q2
mp∂

2
z T a

(p,m)n (z) − q2
mpq

2
nT

a
(p,m)n (z) = 0. (54)

The solution of Eq. (54) is

T a
(p,m)n (z) = A

(1)
(p,m)n

e
√

q2
mp−q2

nz + A
(2)
(p,m)n

e
−
√

q2
mp−q2

nz

+A
(3)
(p,m)n

cos (qnz) + A
(4)
(p,m)n

sin (qnz). (55)

Here, A(1,2,3,4)
(p,m)n

are constants determined by conditions on heat
flux (see the Appendix).

Due to the mode splitting discussed in Sec. III, the 1D
inverse lengths straddle qmp, that is, qshort � qmp � qlong.
Therefore, for � �= 0, the exponential terms in Eq. (55) are, in
fact, oscillating terms for each mode that has qn � qshort.

B. Bulk and boundary conditions

Although T0, α, A(1,2)
sn

, and A
(1,2,3,4)
(p,m)n

are 2 + 10N unknowns
associated with the temperatures and heat fluxes, they are
not free parameters. As shown in the Appendix, bulk energy
conservation gives 4N conditions; energy conservation at the
boundaries z = −ds and z = dF , where we assume no heat loss
to the vacuum, gives 3N conditions; there are 2N conditions
on heat flux at the substrate-sample interface z = 0; and there
are 2 + N conditions on temperature and heat flux near the
boundaries x = ±L/2. With these conditions, the present
theory has no fitting parameters.

Specifically, the 3N boundary conditions at z = −ds and
z = dF are given by

jεm

z (x,z = dF ) = 0, (56)

j
εp

z (x,z = dF ) = 0, (57)

jεs

z (x,z = −ds) = 0. (58)

As discussed in Refs. 17–19, heat currents are driven across
an interface by the temperature difference across the interface,
so that

jεs

z (x,z = 0) = −hK [Tp(x,z = 0) − Ts(x,z = 0)], (59)

which gives N conditions. At the interface, we take heat to
be transferred only between substrate and sample phonon
systems, so that

j
εp

z (x,z = 0) = jεs

z (x,z = 0) (60)

or equivalently

jεm

z (x,z = 0) = 0, (61)

giving another N conditions. One imposes any two of
Eqs. (59)–(61), with the third being implicitly guaranteed by
energy conservation.

Only the remaining conditions, associated with the bound-
aries x = −L/2 and L/2, can be varied: the average temper-
ature T0, the temperature gradient α, and one condition for
each of the N modes, associated with the relative amount of
heat carried by each subsystem close to the heater. All of these
2 + N conditions are set by experiment, the first two of which
are, respectively, proportional to the sum and difference of

the heater and heat sink temperatures. The other N conditions
are not obvious, but the Appendix argues that they may be
approximated by assuming that, near the heater, the heat flux
carried along x by the substrate phonons dominates that carried
by either the sample phonons or sample magnons.

C. Numerical solution

One can not assume that the inverse lengths for a 1D model
for heat flow, given by Eq. (30) and now called q

(1D)
long and

q
(1D)
short, are equivalent to the inverse lengths associated with 2D

flow. Indeed, numerical solution with either of q
(1D)
long or q

(1D)
short

is inconsistent with energy conservation. Since the 2D heat
flow equations are nonlinear, analytic solution is not possible
in general. However, an iterative approach can be used to
find consistent values for q: solve the appropriate boundary
conditions for the mode amplitude coefficients [i.e., the
coefficients A

(k)
(s,p,m)n

in Eqs. (49) and (55)] using qinit = q
(1D)
long

or qinit = q
(1D)
short; using these values for the coefficients, find the

qnew that guarantees energy conservation; and begin the loop
again using an appropriately chosen q ′

init in between qinit and
qnew. One must iterate until qnew and qinit converge. [Care must
be taken in determining a new initial value for the next iteration.
For qinit far from a consistent value (that is, a value that satisfies
energy conservation), qinit and qnew will differ significantly.
Naively choosing q ′

init = qinit + 1
2 (qnew − qinit) can result in a

nonconverging series. Hence, we include the factor 1/C in
place of 1/2 to define q ′

init; depending on the initial choice of
qinit, convergence can require C ∼ 105 or greater.]

For our numerical calculations, we use the material param-
eters given in Table I. Note that Ref. 7 estimates λmp to be
at least an order of magnitude too small to be the unusually
large decay length of the observed voltage difference �Vy , and
the present theory does not explain such a large discrepancy,
because as shown in Fig. 3, we do not predict mode coupling
to amplify the larger length by a full order of magnitude. This
matter is discussed further below. For the numerical solution,
we therefore estimate λmp = 2 mm from the observed voltage
decay length in Fig. 2 of Ref. 2. We now present the results of
this method, calculated using MATHEMATICA v. 8.0.

Following Table I, Eq. (30) gives

q
(1D)
long = 476.73m−1, q

(1D)
short = 1.0000 × 106m−1. (62)

Using these as trial values for the numerical solution of 2D
heat flow boundary conditions, we find 2D inverse lengths
consistent with energy conservation to be

q
(2D)
1 = 476.73 m−1, q

(2D)
2 = 1.0015 × 106 m−1. (63)

Although q
(1D)
long and q

(2D)
1 match to one part in 108 (not shown to

this precision above), only q
(2D)
1 satisfies energy conservation.

The subsystem contributions to heat flow along z and
along x for the two modes associated with q

(2D)
1 and q

(2D)
2

are respectively shown in Figs. 4 and 5. Figure 5 explains the
significant difference between q

(1D)
short and q

(2D)
2 ; the 1D solutions

q
(1D)
long and q

(1D)
short should apply for heat flux along x uniform in

z. This holds for the q
(2D)
1 mode in Fig. 5(a), whereas the q

(2D)
2

displays significant curvature in Fig. 5(b).
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TABLE I. Parameters used in numerical calculations, results of
which are shown in Fig. 6.

Parameter Value Units

κs 500a W/m K
κp 100b W/m K
κm/κp 1/10c

dF 1 × 10−7 m
ds 5 × 10−4 m
qmp 5 × 102d m−1

hK 1 × 107e W/m2 K
L 15.5×10−3 m

aTaken from Fig. 3 of Ref. 11.
bTo our knowledge, this has not been measured, so we make an order
of magnitude estimation.
cValue unknown; κm/κp is likely to be lower at high temperature.
dEstimate from Fig. 2 of Ref. 2 for the decay length of the observed
spin-Seebeck voltage signal.
eEstimate for Rh:Fe on Al2O3 from Fig. 34 of Ref. 17.

D. Infinite number of inverse lengths

Other consistent solutions, q
(2D)
n�3 > q

(2D)
2 > q

(2D)
1 , can be

found numerically. We are here searching for the normal modes
associated with heat flow with the largest decay lengths, the
larger q (and therefore smaller λ) solutions are irrelevant to

(a)

(b)

FIG. 4. The phonon and magnon heat fluxes (in arbitrary units)
along z, for a given x, as a function of z, i.e., −κ(s,p,m)∂zT

a
(s,p,m)n (z),

in the thermal equilibration modes with the two largest characteristic
lengths. The substrate occupies z < 0 and the sample, with thickness
magnified by 103, occupies z > 0. In the sample, the magnon heat
flux is nearly parabolic and the phonon heat flux is nearly linear. In
(a), where n = 1, the heat flux in the substrate is nearly linear. In (b),
where n = 2, the heat flux in the substrate has many oscillations
because λ

(2D)
2 � ds . For both modes, the sample is too thin for

magnons to build up significant heat flux along z; in both (a) and
(b) the magnon heat fluxes are magnified by 2 × 1010.

(a)

(b)

FIG. 5. The phonon and magnon heat fluxes (in arbitrary units)
along x, for a given x, as a function of z, i.e., −κ(s,p,m)T

a
(s,p,m)n (z),

in the thermal equilibration modes with the two largest characteristic
lengths. The substrate occupies z < 0 and the sample, with thickness
magnified by 103, occupies z > 0. In (a), where n = 1, the magnon
heat flux is multiplied by 10−3. For the parameters of Table I, (a) shows
that along x the heat flow for n = 1 is carried by all three subsystems,
with magnon heat flux opposing sample and substrate phonon heat
flow, and (b) shows that along x the heat flux for n = 2 is carried
mostly by the phonon subsystems, which oppose one another at the
interface. In (b), where n = 2, the heat flux in the substrate has many
oscillations because λ

(2D)
2 � ds . Although it is not obvious at this

scale, each heat flux has some curvature.

the current discussion. We do, however, discuss the nature of
these solutions.

Figure 7 shows the magnitude of the seven smallest wave
vectors (except q1) versus the number of the solution n

[numbered by magnitude with q
(2D)
n+1 > q(2D)

n ]. As n grows, the

FIG. 6. The relative magnitudes of phonon and magnon heat flux
along z as a function of x and z, i.e., j

ε(s,p,m)
z in arbitrary units. The

substrate (only part of which is pictured) is at z < 0 and the sample
is at z > 0. The sample magnon heat flux is magnified here by the
factor 3 × 1011; for the parameter values of Table I, the sample is too
thin for magnons to build up much heat flux along z. The profile of
each subsystem’s heat flux along z varies as sinh (qnx).

035446-8



THERMAL EQUILIBRATION AND THERMALLY INDUCED . . . PHYSICAL REVIEW B 85, 035446 (2012)

FIG. 7. The inverse lengths qn for n = 2 to 7 where the modes
are numbered in order of increasing q (or, equivalently, decreasing
λ = 1/q). The inverse length q1, which is not shown, is three orders
of magnitude smaller than q2. The difference δq between the inverse
lengths of successive modes quickly approaches a value near π/ds ≈
π/(ds + dF ), suggesting that the additional modes are associated with
the physical geometry of the system.

difference δq between the inverse lengths of successive modes
approaches either π/ds or π/(ds + dF ); since ds � dF , it is
difficult to distinguish which is the limiting quantity. Thus
the higher solutions are associated with the geometry of the
system. We do not discuss them further.

Note that this numerical method, which searches for
consistent values of q by using trial values, might not obtain
all solutions, no matter how exhaustive the list of trial values.
However, any missed modes are expected to have large q and
small λ, and thus are irrelevant to the current discussion.

V. ON THE MEASURED EXPONENTIAL LENGTH

For the calculated maximum λmp of Ref. 7, the present
theory cannot account for the anomalously large length (on
the order of 1 mm) observed in the spin-Seebeck experiments.
On one hand, for the sample-substrate length λps to be on the
order of 1 mm, with κs ≈ κp ∼ 102 W/m K, ds ∼ 100 nm,
and dF ∼ 10 nm, Eq. (27) gives an abnormally small thermal
boundary conductance hK ∼ 1 W/m2-K. Although hK is not
known for the particular combinations of materials used in
Refs. 2–4, Fig. 34 of Ref. 17 gives hK ≈ 107 W/m2 K (for
Rh:Fe on Al2O3 at T = 50 K). We do not expect that thermal
matching between substrate and sample in the spin-Seebeck
experiments to be considerably worse. On the other hand, for
the magnon-phonon length λmp to be on the order of 1 mm,
the mode coupling term given by �mp�ps in Eq. (30) would
have to account for a large increase of λmp (at least three-fold
in the case of permalloy7). Because spin-Seebeck experiments
are carried out near room temperature3,4 or at T � 40 K,2 it
is unlikely that the magnons carry a significant amount of the
heat flux in the ferromagnet, i.e., it is likely that κm � κp.
Since the mode coupling term �mp is proportional to κm/κp,
mode coupling is likely a weak effect.

However, phonon-magnon drag, as proposed in Refs. 10
and 11, or some other mechanism may explain a much longer
λmp than previously calculated, and λmp is further enhanced
by the mode coupling found in Sec. III. Hence, for numerical

calculations, we have taken λmp from experimental results,2

rather than from the theoretical estimate of Ref. 7 (see Table
I). The results above show that, for such a large λmp, in the
spin-Seebeck system we expect a thermal gradient along z that
varies as sinh (x/λ), resembling the �Vy measured by Ref. 2
(see its Fig. 2).

VI. RELATING LONGITUDINAL THERMAL GRADIENTS
TO TRANSVERSE VOLTAGE DIFFERENCES

The relation between the applied longitudinal temperature
gradient and the transverse voltage difference is complicated,
and worth discussing. So far, we have shown that the
applied longitudinal temperature gradient leads to a transverse
(along z) temperature gradient in the sample—the first of

the three steps in Eq. (1), �Tx

Equil−→∂zT . In Sec. VI A, we
show how to go from this tranverse temperature gradient
to the accompanying transverse gradients of the magneto-
electrochemical potentials—the second of the three steps in

Eq. (1), ∂zT
SSE−→∂zμ̄↑,↓—which are defined below. Finally, in

Sec. VI B, we show how to go from these transverse gradients
(along z) of the magnetoelectrochemical potentials, via the up-
and down-spin Hall conductivities, to the measured transverse
(along y) voltage difference �Vy—the third of the three steps

in Eq. (1), ∂zμ̄↑,↓
ISHE−→�Vy .

We do not consider the use of platinum bars, which
introduces a very complex geometry and is beyond the scope
of the present work (and, as noted above, the effect has been
observed with point contacts).

A. On magnetoelectrochemical potential, temperature,
and spin current

By irreversible thermodynamics, the total spin flux (defined
below as the difference of the number fluxes of up- and
down-spin carriers), is driven both by gradients of temperature
and of magnetoelectrochemical potentials.1,19 The magneto-
electrochemical potentials20 are defined by19,21

μ̄↑,↓ = μ↑,↓ − eφ ± gμB

2
�H ∗ · M̂. (64)

Here, μ↑ and μ↓ are the chemical potentials of up- and
down-spin electrons, e is the electron charge, φ is electrical
potential, g is the electron g factor, μB is the Bohr magneton,
�H ∗ is the effective magnetic field, and M̂ is the direction of

magnetization. The field �H ∗ is the difference between external
magnetic fields and the internal fields, including the exchange
and dipole contributions, and is defined so that �H ∗ = 0 in
equilibrium. A more detailed discussion of �H ∗ is given in
Ref. 21.

The up- and down-spin fluxes are primarily driven by
the respective gradients μ̄↑ and μ̄↓, but each has cross
terms1,19,21 associated with the other potential as well as with
the temperature. We thus write

j
↑
i = −L↑ε∂iTm − σ↑

e2
∂iμ̄↑ − L↑↓∂iμ̄↓, (65)

j
↓
i = −L↓ε∂iTm − L↓↑∂iμ̄↑ − σ↓

e2
∂iμ̄↓. (66)
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Here, σ↑ and σ↓ are the respective bulk conductivities of
up- and down-spins (generally not equal in a ferromagnet),
and L↑ε and L↓ε (with units of m/K s) are cross-term
coefficients associating thermal gradients and individual spin-
carrier currents (thus associated with both the electrical and
spin currents). By an Onsager relation,22 L↑↓ = L↓↑ (with
units of m/J-s) are cross-term coefficients associating up and
down spin currents with down and up magnetoelectrochemical
gradients. Typically, L↑↓ = L↓↑ are taken to be small, so that
the terms L↑↓∂iμ̄↓ and L↓↑∂iμ̄↑ are negligible.

To calculate j
↑
i and j

↓
i everywhere, we employ their

boundary conditions (that they have zero normal component at
each sample boundary, which assumes no surface scattering)
and their bulk equations, given for steady state by

∂ij
↑
i = S↑↓, ∂ij

↓
i = S↓↑. (67)

For charge conservation, the up- and down-spin source terms
S↑↓ and S↓↑ (which are proportional to (μ̄↑ − μ̄↓)/τsf , where
τsf is a characteristic spin-flip time19,21) are equal and opposite.
Substitution from Eqs. (65) and (66) into Eq. (67) gives
two equations for two unknowns, μ̄↑ and μ̄↓. Because the
temperatures are shown above to vary as sinh (x/λ), then μ̄↑
and μ̄↓ also vary as sinh (x/λ).

B. On the spin Hall effect

We now discuss how to go from ∂zμ̄↑ and ∂zμ̄↓ to the
measured voltage difference along y, i.e., �Vy . We work by
analogy to the Hall effect, which occurs when an electric flux
�J is driven through a conductor in the presence of a magnetic

field �B ′ that is perpendicular to the current.
Consider a conductor of width w along y. Let the electric

current be driven along z by an applied electric field Ez,
so that charge carriers have a velocity vz. With an applied
magnetic field (B ′

x,0,0), a Lorentz force then drives the charge
carriers along y, so that charges of opposite signs accumulate
at the edges. The Lorentz-force-induced current is given by
J ′

y = σvzB
′
x . In the steady state, there is no flow along y, so

an electric field Ey develops to oppose the Lorentz-induced
current along y. The total charge flux along y is given by

Jy = 0 = σ (Ey + vzB
′
x). (68)

The so-called Hall field Ey thus is given by

Ey = −vzB
′
x = JzB

′
x

ne
, (69)

where we have used �J = −ne�v, and n and −e are the
respective concentration and the charge of the charge carriers.
The Hall voltage is �Vy = Eyw.

Thus the Hall effect relates an applied electric current to a
measured transverse electrical potential difference. In contrast,
the SHE relates an applied electric current to transverse
differences in the magnetoelectrochemical potentials, and the
ISHE relates an applied spin current to a transverse difference
in electrical potential (see, for example, Refs. 23–28). For
the SHE and ISHE, there are fluxes of charge carriers with
both up and down spin. Instead of the action of Lorentz force
in the Hall effect, for the SHE, there are forces due to the
spin-orbit interaction, whose effect enters via nonzero up- and

down-spin Hall conductivities σsH↑ and σsH↓ . (Thus the effect
of the spin-orbit interaction is taken to be a perturbation.)
Instead of the electric field Ey = −∂yφ, the spin-orbit force is
associated with −∂yμ̄↑ and −∂yμ̄↓. We take the contributions
to the number fluxes along y of the up- and down-spin carriers
by this spin-orbit force29 to be

j sH↑
y = σsH↑

e
∂zμ̄↑, j sH↓

y = σsH↓

e
∂zμ̄↓, (70)

The total number fluxes along y of the up- and down-spin
carriers are thus written as

j↑
y = −σ↑

e
∂yμ̄↑ + σsH↑

e
∂zμ̄↑, (71)

j↓
y = −σ↓

e
∂yμ̄↓ + σsH↓

e
∂zμ̄↓. (72)

For no charge current along y, the sum j
↑
y + j

↓
y = 0. We

also assume no bulk spin current along y, so j
↑
y − j

↓
y = 0.

Thus we take j
↑
y = 0 and j

↓
y = 0, so that Eqs. (71) and (72)

give

∂yμ̄↑ = σsH↑

σ↑
∂zμ̄↑, ∂yμ̄↓ = σsH↓

σ↓
∂zμ̄↓. (73)

The known sources ∂zμ̄↑ and ∂zμ̄↓ on the right-hand sides
(RHS) of Eq. (73) are uniform in y.

To write the magnetoelectrochemical potential in terms
of the concentrations of up and down spins and the electric
potential, we linearize the chemical potentials and the effective
magnetic field term as

δμ↑,↓ = ∂μ↑,↓
∂n↑,↓

δn↑,↓, δ �H ∗ · M̂ = μ0μB

χ
(δn↑ − δn↓),

(74)

where δ denotes deviations from equilibrium, μ0 is the
permeability of free space, and χ is the magnetic susceptibility.
Then Eq. (64) gives

δμ̄↑,↓ = ∂μ↑,↓
∂n↑,↓

δn↑,↓ − eδφ ± gμ0μ
2
B

2χ
(δn↑ − δn↓). (75)

With ∂μ↑,↓/∂n↑,↓ uniform in y, substitution of Eq. (75)
into the left-hand sides (LHS) of Eq. (73) gives

∂μ↑
∂n↑

∂yδn↑ − e∂yδφ + gμ0μ
2
B

2χ
(∂yδn↑ − ∂yδn↓) = σsH↑

σ↑
∂zμ̄↑,

(76)

∂μ↓
∂n↓

∂yδn↓ − e∂yδφ − gμ0μ
2
B

2χ
(∂yδn↑ − ∂yδn↓) = σsH↓

σ↓
∂zμ̄↓.

(77)

Since the RHS of Eqs. (76) and (77) are known, they provide
two equations for the three unknowns δn↑, δn↓, and δφ. A
third relation is provided by Gauss law:

∂2
y δφ = − e

ε0ε
(δn↑ + δn↓), (78)

where ε0 and ε are the permittivity of free space and the relative
permittivity. Solving Eqs. (76)–(78) gives δn↑, δn↓, and δφ,
the last of which is related to the measured voltage by �Vy =∫ w/2
−w/2 dy(∂yδφ). We now discuss the solution.
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It is consistent to take δn↑ = −δn↓, i.e., local
electroneutrality;20 Eqs. (76)–(78) then give that ∂yδφ and
∂yδn↑ are uniform in y. Equations (76) and (77) can then be
solved for ∂yδn↑ and ∂yδφ. Defining the dimensionless ratio

η ≡
∂μ↑
∂n↑

− ∂μ↓
∂n↓

∂μ↑
∂n↑

+ ∂μ↓
∂n↓

+ 2gμ0μ
2
B

χ

, (79)

we have

∂yδn↑ = η

(
∂μ↑
∂n↑

− ∂μ↓
∂n↓

)−1 (
σsH↑

σ↑
∂zμ̄↑ − σsH↓

σ↓
∂zμ̄↓

)
.

(80)

∂yδφ = −
(

1 − η

2e

)
σsH↑

σ↑
∂zμ̄↑ −

(
1 + η

2e

)
σsH↓

σ↓
∂zμ̄↓.

(81)

With �Vy = ∫ w/2
−w/2 dy(∂yδφ), integration of Eq. (81) over y

across the width of the sample then gives

�Vy = w

2e

[
(η − 1)

σsH↑

σ↑
∂zμ̄↑ − (η + 1)

σsH↓

σ↓
∂zμ̄↓

]
, (82)

where we have employed the uniformity of ∂zμ̄↑ and ∂zμ̄↓
along y. As discussed above, μ̄↑ and μ̄↓ vary as sinh (x/λ),
thus Eq. (82) predicts �Vy ∼ sinh (x/λ).

We emphasize that the �Vy predicted in the present work
is entirely due to exponential modes generated at surfaces. If
λ � L, then sinh (x/λ) ≈ (x/λ). Therefore the present work
is consistent with Refs. 3 and 4, which observe a linear �Vy , if
in these works the largest exponential length satisfies λ � L.30

To test this hypothesis, longer samples should be studied; the
present work does not suggest how much longer.

Reference 31 analyzes the spin Hall effect in a spirit similar
to that of the present work; it too neglects surface scattering.
Surface scattering would make the present analysis more
complex; see Landauer and Swanson32 for the effect of surface
recombination on the ordinary Hall effect in semiconductors.

The present work shows that the relation between �Vy and
�Tx is very complicated, and suggests that a direct relation
�Vy ∼ SS�Tx (see, e.g., Ref. 3) is correct, but may not be
quantitatively useful. However, the present work does support
such a qualitative analysis, where the applied thermal gradient
along x leads, via the spin-Seebeck effect, to spin carrier fluxes
along z, which in turn produce the measured voltage difference
�Vy along y.

VII. SUMMARY AND CONCLUSION

The present work finds the detailed temperature profile for
the spin-Seebeck system, including both sample and substrate,
when a temperature difference �Tx is applied along x. For a 1D
heat flow (only along x), we find that the temperature contains
a part varying as sinh (x/λ), for each of two characteristic
lengths (λps and λmp), one of which may correspond to
the observed decay length of �Vy . Equations (30) and (27)
show that quadrupling the thickness of both the sample and
substrate should approximately double these lengths. Polishing
(roughening) the substrate before depositing the sample should
increase (decrease) hK , and thus decrease (increase) λps. If

λps corresponds to the observed exponential decay length,
measurements on a series of samples with increasingly rough
sample/substrate interfaces should reveal this dependence.
Further, changing the coupling factor between the modes
(by changing κm/κp or dsκs/dF κp) modifies both lengths—
increasing either of these ratios increases the larger length,
which likely corresponds to the measured decay length of �Vy .

For 2D heat flow (along both x and z), we also find that the
temperature and thermal gradients along z in the spin-Seebeck
system vary as sinh (x/λ), and find a complicated sinusoidal
and exponential profile along z for the thermal gradients,
with an infinite number of characteristic lengths, which we
study numerically. The longest of these corresponds to the
longer length of the 1D model. The second longest length is
a geometry-modified version of the shorter length of the 1D
model. Further lengths are largely due to the geometry.

We show how the thermal gradient along x leads to the
measured �Vy . The thermal gradient along x leads to a thermal
gradient along z, which then drives up- and down-spin currents
along z (the spin-Seebeck effect), and is accompanied by
gradients along z of the magnetoelectrochemical potentials.
These magnetoelectrochemical potential gradients along z

then produce the measured �Vy , via the inverse spin Hall
effect (due to a nonzero spin-orbit interaction that leads to
spin-Hall conductivities). As discussed above, the exponential
form of �Vy predicted by the current work is consistent both
with �Vy ∼ sinh (x/λ) as observed by Ref. 2 and, for λ > L,30

with �Vy ∼ x, as observed in Refs. 3 and 4.
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APPENDIX: BULK AND BOUNDARY CONDITIONS FOR
HEAT FLOW ALONG x AND z

With Eqs. (46) and (47) relating the linear terms in
temperature, there are 2 + 10N unknowns in Eqs. (41), (42),
(49), and (55): one T0, one α, and 10N amplitudes given by
A(1,2)

sn
, A(1,2,3,4)

pn
, and A(1,2,3,4)

mn
. This section details the bulk and

boundary conditions on heat flux that give these unknowns.

1. Bulk conditions

By matching coefficients of like terms, substitution of
Eqs. (40) and (55) into Eq. (51) gives

A(1)
mn

= − κp

κm

A(1)
pn

, A(2)
mn

= − κp

κm

A(2)
pn

,

(A1)
A(3)

mn
= A(3)

pn
, A(4)

mn
= A(4)

pn
.

Since each of the above relations is a single condition for each
mode n = 1,2, . . . ,N , then Eq. (A1) gives 4N conditions.

2. Boundary conditions

a. Boundary conditions on heat flux along z

There are additional 5N conditions given by the boundary
conditions on the heat flux along z for the various subsystems
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at z = −ds , z = 0, and z = dF . They are given above as
Eqs. (56)–(58), and any two of Eqs. (59)–(61) with the third
implicitly guaranteed by energy conservation.

b. Boundary conditions on heat flux along x

Two further conditions that constrain the homogeneous
temperature coefficients, T0 and α, come from the temperatures
of the heater and the heat sink. The remaining conditions on
heat flux along x are not obvious.

With the heater and heat sink each in contact only with the
substrate, we take the boundary conditions in the x direction on
each energy flux jε

x to be symmetric [we employ this above in
taking T b

(s,p,m)(z) = 0]. This precludes permitting the heat flux
input by the heater to have a different profile in z than the heat
flux output to the heat sink. However, as stated above, we are
only treating the region far enough away from the heaters that
the details of heat flux entering and leaving at x = ±L/2 are
irrelevant. Only a full solution with an infinite sum over inverse
lengths qn can treat the specifics of the interfacial input, and
it is beyond the scope of this work to solve for infinite inverse
lengths. Thus we can not apply boundary conditions precisely
at x = ±L/2.

We make the following approximation: at x = ±L/2 ∓ �S ,
where �S is just far enough away from the heater/heat sink
that the details of the input heat flux are irrelevant, we take
∂xTp = 0 and ∂xTm = 0. We take the heaters to be in contact
only with the substrate, and assume that a significant amount
of heat does not seep into the sample over the distance �S .
Explicitly,

∂xTm(x = −L/2 + �S) = 0, (A2)

∂xTp(x = −L/2 + �S) = 0. (A3)

Recall that we take heat flux (and therefore ∂xT ) to be
symmetric about x = 0, so that the conditions at x = +L/2 −
�S are not independent. Although it is not obvious, Eqs. (A2)
and (A3) give N conditions, which relate the amplitudes of
each of the N surface modes to the others.

Thus, for the 2 + 10N unknowns in the substrate phonon,
sample phonon, and sample magnon temperatures associated
with heat flow along both x and z, Eqs. (56)–(61) and
(A1)–(A3) give 2 + 10N conditions, and there are no free
parameters.
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