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Electron-phonon scattering in topological insulator thin films
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We present a theoretical study of electron-phonon scattering effects in thin films made of a strong topological
insulator. The phonons are modeled by isotropic elastic continuum theory with stress-free boundary conditions,
and the interaction with the helical surface Dirac fermions is mediated by the deformation potential. We
determine the temperature-dependent electrical resistivity ρ(T ) and the quasiparticle decay rate �(T ) observable
in photoemission. The low- and high-temperature power laws for both quantities are obtained analytically.
Detailed estimates covering the full temperature range are provided for Bi2Se3.
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I. INTRODUCTION

The recently discovered state of matter called the “topolog-
ical insulator” (TI) currently represents one of the most active
areas in condensed matter physics.1,2 TIs are characterized by
an insulating gap in the bulk but at the same time have gapless
surface modes protected against all time-reversal-invariant
(and sufficiently weak) perturbations.3,4 In a three-dimensional
(3D) TI, these surface modes correspond to massless two-
dimensional (2D) Dirac fermions, where the spin direction
is in the surface plane and perpendicular to the momentum
(“spin-momentum locking”). A typical reference material is
Bi2Se3 with a bulk gap �b ≈ 0.3 eV. The helical Dirac electron
property of the TI surface state has been experimentally
confirmed by spin- and angle-resolved photoemission spec-
troscopy (ARPES).1,5 Transport experiments are more difficult
in that respect since the surface contribution is often masked
by the residual conductivity due to impurities or defects in
the bulk.6–8 In thin films made of TI materials, however, the
bulk contribution is greatly suppressed relative to the surface
contribution, rendering the latter easier to observe.

In this paper, we provide a detailed theoretical analysis
of both the temperature-dependent resistivity ρ(T ) and the
quasiparticle lifetime �(T ) [observable in ARPES (Refs. 9
and 10)] for a thin TI film. The approach taken here generalizes
previous work for the semi-infinite geometry (with only one
surface) by two of us11 to the film geometry. This brings
about several important changes compared to Ref. 11. In
particular, the temperature dependence of both ρ(T ) and �(T )
is different in the film geometry at low temperatures, and
a pronounced and interesting dependence on the film width
is found. Due to the transverse quantization, the finite-width
theory is more complex yet remains analytically tractable. We
model the electronic part by retaining only the Dirac surface
states obtained from the low-energy band structure,12 and our
theory always assumes that the Fermi level is located inside
the bulk gap. We note in passing that more accurate parameter
estimates are provided in Ref. 12 than in the earlier paper by
the same authors,13 and we here adopt the new parameters
in our calculations using Bi2Se3 as example. A similar
parameter set has been published in Ref. 14. In sufficiently thin
films, the hybridization of the two surface states eventually
causes insulating behavior, as has recently been observed
experimentally from ARPES for Bi2Se3 films.15,16 For Bi2Se3,
several calculations predicted14,17,18 a gap �(L) with (as a

function of the width L) oscillations superimposed on an
exponential decay. Similar calculations, however, found no
oscillations, with a well-established TI phase already for
L � 3 quintuple layers (QLs).19,20 Using the parameter set
of Ref. 12, we also find no evidence for oscillations in �(L);
see Sec. II A below. For large width, one then has (upper and
lower) massless Dirac fermion surfaces.21

Our working assumption below is that electron-phonon
scattering is the dominant source of quasiparticle decay and
backscattering. Electron-electron interactions are indeed ex-
pected to give only subleading corrections to the resistivity as
long as T � 1 mK.22 Disorder effects are more likely to com-
pete with phonon-induced backscattering effects. However, for
elevated temperatures, T � 100 K, phonon effects dominate
even for present-day samples, and, with higher-purity films
anticipated in the future, this crossover temperature may
be lowered significantly. ARPES setups allowing tests of
our predictions for the quasiparticle decay rate are basically
available.5,23–25 Other surface scattering techniques have also
been applied to extract the phonon dispersions.26 We here
follow Ref. 11 and model the phonons using elastic continuum
theory.27 Since even at room temperature one effectively
probes low-energy scales, we keep only long-wavelength
acoustic phonon modes. For these, previous work on related
materials has shown28,29 that isotropic elastic continuum
theory provides a reasonable approximation. The phonon
eigenmodes in the thin film geometry and their coupling
to electronic modes have previously been determined in the
context of semiconductor quantum well structures.30 (Note
that the semi-infinite case has been treated in Ref. 31.) We
basically reproduce the phonon eigenmodes of Ref. 30, but
the coupling to the helical electronic eigenstates in a TI film
is different from that in the semiconductor case. Note that
piezoelectric couplings are suppressed by symmetry here,29

and spin-phonon-type couplings32 are also expected to be
subdominant to the deformation potential taken into account
below.

Most TI experiments have so far addressed only op-
tical phonons33 (cf. also the corresponding situation for
Bi surfaces34), but very recently ARPES studies reported
phonon-induced broadening of the line shape in TIs.23–25 The
observed Bi2Se3 electron-phonon coupling strength,24 which
has been extracted from the prefactor in the high-temperature
quasiparticle decay rate � ∝ T , is in good agreement with
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our theoretical estimates. This indicates that the low-energy
approach indeed provides a reasonable starting point. To the
best of our knowledge, no detailed measurements of the
temperature dependence of the TI film resistivity have been
reported so far. We mention in passing that for the related
case of a 2D graphene monolayer, a similar comparison of
theory35,36 to experiment37 has turned out to be successful.
Remarkably, the electron-phonon coupling observed in Ref. 24
and independently estimated by us11 turns out to be quite large.
Under room-temperature conditions, the resulting lifetime of
helical quasiparticles is therefore short, and the resistivity is
rather large. This behavior is substantially different from what
is found in graphene. We suspect that this is (partially) due to
the different Debye temperatures in the two materials.

The structure of the remainder of this paper is as follows.
In Sec. II we discuss the model for the surface states in the
thin film and their coupling to the quantized phonon modes.
We then turn to the calculation of the electrical resistivity
in Sec. III, followed by that of the lifetime broadening in
Sec. IV. The paper concludes with a brief discussion in Sec. V.
Technical details of our calculations can be found in various
appendixes. Note that we use units with h̄ = 1.

II. MODEL

In this section we describe the model employed in our
study of electron-phonon scattering in a TI film. The model
parameters below are chosen for Bi2Se3 as a concrete example.
The film has infinite extension in the xy plane and the width
L, where |z| < L/2. We start by reviewing the construction
of the effective surface Hamiltonian describing the (upper and
lower) electronic surface states of a TI film.

A. Electronic surface states

Keeping all terms up to second order in the momentum
around the � point (kx,ky,kz), the low-energy physics of 3D TI
materials like Bi2Se3 or Bi2Te3 is well described by an effective
four-band model.1 Using the basis states {|P1+

z , ↑〉,|P 2−
z ,

↑〉,|P 1+
z , ↓〉,|P 2−

z , ↓〉}, the low-energy bulk Hamiltonian
reads12–14

H =

⎛
⎜⎜⎜⎝

ε0 + M −iA1kz 0 A2k−
iA1kz ε0 − M A2k− 0

0 A2k+ ε0 + M −iA1kz

A2k+ 0 iA1kz ε0 − M

⎞
⎟⎟⎟⎠ (1)

with ε0 = C + D1k
2
z + D2(k2

x + k2
y), M = M0 − B1k

2
z −

B2(k2
x + k2

y), and k± = kx ± iky . The model parameters for
Bi2Se3 have been determined from first principles,12

M0 = 0.28 eV, C = −0.0083 eV,

A1 = 2.26 eV Å, A2 = 3.33 eV Å,
(2)

B1 = 6.86 eV Å
2
, B2 = 44.5 eV Å

2
,

D1 = 5.74 eV Å, D2 = 30.4 eV Å
2
.

We may write the Hamiltonian (1) in the form H = H0 + H ′,
where H0 = ( h0(kz) 0

0 h0(kz) ) is the 2 × 2 block matrix obtained
for kx = ky = 0, with

h0(kz) =
(

ε0(kz) + M0 − B1k
2
z −iA1kz

iA1kz ε0(kz) − M0 + B1k
2
z

)
.

(3)

Note that eigenstates of H0 have conserved spin.
In order to find the surface states in the film geometry, we

follow the usual strategy12–14 and first look for general bispinor
eigenstates of h0,

h0(kz → −i∂z)�(z) = E0�(z). (4)

The general solution to Eq. (4) reads (j = ±,s = ±)

�(z) =
∑
js

cjse
−sηj z

(
E0 − C + M0 + (D1 + B1)η2

j

−sA1ηj

)
(5)

with arbitrary cjs and the inverse length scales

η± = [(−B̃ ±
√

B̃2 − 4ÃC̃)/(2Ã)]1/2,

where Ã = D2
1 − B2

1 ,B̃ = A2
1 − 2[M0B1 + D1(C − E0)],

and C̃ = (E0 − C)2 − M2
0 . The Dirichlet boundary conditions

defining the film geometry, �(z = ±L/2) = 0, then imply
the transcendental equation

[E0 − C + M0 + (D1 + B1)η2
+]η−

[E0 − C + M0 + (D1 + B1)η2−]η+
= tanh(η−L/2)

tanh(η+L/2)
,

or the same condition with η+ ↔ η− on the right-hand side.
Numerical solution of these equations yields the � point
energies E

(±)
0 . The corresponding eigenstates �±(z) follow

from Eq. (5),

�±(z) = N±

(
(D1 + B1)	±F±

∓ (z)

A1F
±
± (z)

)
, (6)

where the N± are normalization constants and

	± =
[

η2
+ − η2

−
η+ coth±(η+L/2) − η− coth±(η−L/2)

]
E

(±)
0

with coth+(y) = coth(y) and coth−(y) = tanh(y). Finally, the
F functions are

F±
+ (z) =

[
cosh(η+z)

cosh(η+L/2)
− cosh(η−z)

cosh(η−L/2)

]
E

(±)
0

,

where F±
− follows with cosh → sinh. Note that the eigenstates

�±(z) describe both spin directions (σ =↑ and σ =↓).
We now project the full Hamiltonian H to the basis

spanned by the surface states (6). We define Pauli matrices
τα=x,y,z switching between the two solutions �τ=±(z) and
Pauli matrices σα in spin space, and use τ0 and σ0 as identities.
With the energy scales

E0 = E
(+)
0 + E

(−)
0

2
, � = E

(+)
0 − E

(−)
0 , (7)
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the low-energy (“surface”) Hamiltonian resulting from this
projection reads

Heff = E0τ0σ0 + �

2
τzσ0 − A2Wτx(kxσx + kyσy) + O(k2),

(8)

where W = 〈�+|�−〉. The parameter �(L) is precisely the
surface state gap described in the Introduction. For the
parameters (2), η− is always real. However, η+ is real for
large L but purely imaginary for small L. In any case, we find
that W is always real and positive.

Since Heff commutes with τzσz, it can readily be diago-
nalized by the unitary transformation U (k) = diag(U+,U−),
where k = (kx,ky) and the Uυ=±(k) are 2 × 2 matrices in
spin space, with υ denoting the eigenvalue of τzσz. With
tan α = 2A2W |k|/� and tan θ = ky/kx , we find

Uυ=+ =
(

e−iθ/2 cos(α/2) e−iθ/2 sin(α/2)

−eiθ/2 sin(α/2) eiθ/2 cos(α/2)

)
,

(9)

Uυ=− =
(

−e−iθ/2 sin(α/2) e−iθ/2 cos(α/2)

eiθ/2 cos(α/2) eiθ/2 sin(α/2)

)
.

Switching to second-quantized notation, the eigenstates of Heff

correspond to helical fermions with annihilation operator

ck,υs =
∑

σ

[Uυ(k)]∗σsdk,τ=υσ,σ , (10)

where dk,τσ annihilates a spin-σ electron with in-plane
momentum k in the transverse state �τ (z). The low-energy
electronic Hamiltonian (including the chemical potential μ)
then takes the final form

Hel =
∑

k;υ,s=±
εk,sc

†
k,υsck,υs, (11)

where the dispersion relation is

εk,± = E0 − E∞
0 − μ ± �

2

√
1 + (2A2W/�)2k2. (12)

We here choose the zero of energy by setting E∞
0 = C +

D1M0/B1 = limL→∞ E
(±)
0 . For the parameters (2), we find

E∞
0 � 0.22 eV. Moreover, for L → ∞, the length scales η−1

±
are given by η−1

+ � 12.3 Å and η−1
− � 1.9 Å. For kL � 1, the

dispersion relation (12) is linear, with Fermi velocity vF �
2.77 × 105 m/s. Note that the index s = ± in Eq. (11) does
not correspond to spin anymore.

Similarly, the particle density operator n̂(r,z) with r =
(x,y) is written in terms of the dk,τσ operators,

n̂(r,z) =
∑

k,q,τ,σ

e−iq·rρτ (z)d†
k+q,τσ dk,τσ . (13)

Using Eq. (10), the density operator (13) can be transformed
to the helical basis. We show the single-particle densities for
the surface states [Eq. (6)],

ρτ (z) = [�†
τ · �τ ](z), (14)

in Fig. 1 for a film thickness of L = 4 QL, where 1 QL � 9.5 Å
for Bi2Se3.38 This demonstrates that already for quite thin
films Eq. (6) describes surface states. Note that ρτ (z) is an
even function of z. The inset of Fig. 1 shows the numerically
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(Å

−
1
)

z (QL)

1

10

100

1000

0 2 4 6 8

Δ
(m

eV
)

L (QL)

τ = +
τ = −

FIG. 1. (Color online) Electronic eigenstates for Bi2Se3 from
Eqs. (1) and (2). Main panel: Densities ρτ (z) in Eq. (14) for L = 4 QL.
Inset: Gap � vs thickness L. Note the semilogarithmic scale.

obtained gap �(L), demonstrating the absence of oscillatory
behavior for the parameters (2) as well as the exponential
decay of �(L) due to the exponentially vanishing overlap of
both surface states. We note in passing that, for the parameters
in Ref. 13, Eq. (7) instead predicts an oscillatory decay of
�(L).

B. Phonon model

We now discuss the long-wavelength acoustic phonon
modes in the TI film. We employ isotropic elastic continuum
theory, where the longitudinal (cl) and transverse (ct ) sound
velocities correspond to the two Lamé constants.27 In Bi2Se3,
they are given39,40 by cl � 2900 m/s and ct � 1700 m/s, re-
spectively. Moreover, the mass density is ρM = 7680 kg/m3.41

In order to model the film geometry, we impose stress-free
boundary conditions27 at z = ±L/2. The quantized phonon
eigenmodes for this problem have been determined in Ref. 30.
For convenience, we briefly summarize the results next.

Different phonon modes are labeled by a set of quantum
numbers 	 = (q,λ,n), where q = (qx,qy) is the surface
momentum, λ ∈ (H,S,A) denotes the mode type, and n ∈ N is
a branch index corresponding to the quantization of transverse
momentum. The horizontal shear mode (λ = H ) decouples
from all other modes and does not generate a deformation
potential,30 and we do not discuss this mode further. We
are left with transversally symmetric (dilatational, λ = S)
and antisymmetric (flexural, λ = A) phonons. Denoting the
dispersion relation of a given phonon mode 	 by �	 (see
below) and the surface area by A, the displacement field
operator is

U(r,z,t) =
∑
	

ei(q·r−�	t)

√
2ρMA�	

u	(z) b	 + H.c., (15)

where b	 is a bosonic annihilation operator and the noninter-
acting phonon Hamiltonian is

Hph =
∑
	

�	(b†	b	 + 1/2). (16)
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The orthonormal eigenmodes u	(z) in Eq. (15) describe linear
combinations of e±ikl,t z waves, where

kl,t =
√

(�	/cl,t )2 − q2; (17)

kl,t = iκl,t with κl,t = √
q2 − (�	/cl,t )2 for �	 < cl,t q. Writ-

ing u	(z) in the form

u(z) =
(

iqφl − dφt

dz

)
êq +

(
dφl

dz
+ iqφt

)
êz, (18)

where êq = q/q and

φl,t = al,t cos(kl,t z) + bl,t sin(kl,t z), (19)

the stress-free boundary conditions at z = ±L/2 yield

2iq
dφl

dz
− (

q2 − k2
t

)
φt = 0,

(20)

2iq
dφt

dz
+ (

q2 − k2
t

)
φl = 0.

Since both equations have to be fulfilled at z = ±L/2, we
have four linear equations for the four unknown parameters
(al,t ,bl,t ). Setting the corresponding determinant to zero, we
obtain the following two possibilities. First, for symmetric
modes (λ = S), we have the condition(

q2 − k2
t

)2
cos(klL/2) sin(ktL/2)

+ 4q2klkt sin(klL/2) cos(ktL/2) = 0. (21)

Numerical solution of this transcendental equation gives the
quantized set of dilatational phonon frequencies �	=(q,S,n).
The corresponding eigenvector u	(z) follows from Eqs. (18)
and (19) with at = bl = 0 and

al = 2NSq

cos(klL/2)
, bt = iNS

(
q2 − k2

t

)
kt cos(ktL/2)

. (22)

Second, for antisymmetric modes (λ = A), we arrive again at
the condition in Eq. (21) but with the exchange cos ↔ sin.
Solving that equation yields the set �	=(q,A,n) of quantized
flexural phonon modes. The eigenvector u	(z) follows again
from Eqs. (18) and (19), where now al = bt = 0 and

bl = 2NAq

sin(klL/2)
, at = −iNA

(
q2 − k2

t

)
kt sin(ktL/2)

. (23)

The normalization factors Nλ=S,A appearing in Eqs. (22) and
(23) are given in Appendix A.

Numerical solution of Eq. (21) yields the spectrum �	 for
the symmetric mode (λ = S). The result is shown in Fig. 2. We
distinguish three different regions, namely, a case where both
kl and kt are purely imaginary (region I), a case where only kl

is purely imaginary but kt is real (region II), and finally a case
where both kl and kt are real (region III). We observe from
Fig. 2 that the n = 1 mode is the finite-width analog of the
well-known Rayleigh surface mode.27,31 For the semi-infinite
geometry, the Rayleigh mode is the lowest-lying phonon.42 It
has the dispersion relation

� = cRq, cR � 0.92ct . (24)

0
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Ω
Λ
=

(q
,S

,n
)
L

/
c l

qL

I

II

III

FIG. 2. (Color online) Phonon dispersion relation �	 vs q for the
symmetric (λ = S) mode (red solid curves). Shown are the ten lowest
branches corresponding to the index n. Dashed lines separate regions
I, II, and III (see text). The dash-dotted line gives the dispersion
relation in Eq. (24); note that the n = 1 mode coincides with the
Rayleigh mode for qL � 1.

In fact, for qL � 1, both Eq. (21) and the corresponding
equation for λ = A reduce to(

q2 + κ2
t

)2 = 4q2κtκl.

As discussed in Ref. 27, this equation readily yields the sound
velocity cR of the Rayleigh mode.

C. Electron-phonon coupling

The dominant coupling of the above phonon modes to
the electronic surface states comes from the deformation
potential,11 which couples the local electronic density n̂(r,z)
[Eq. (13)] to the divergence of the displacement vector,
∇ · U(r,z); see Eq. (15). Since the surface state density ρτ (z)
in Eq. (14) is even in z, the antisymmetric phonon mode
(λ = A) does not couple to the surface states. We therefore
keep only the symmetric phonon mode from now on (and omit
the index λ = S). Transforming Eq. (13) to the helical basis
[see Eq. (10)], the second-quantized electron-phonon coupling
Hamiltonian reads

He-ph = α√
A

∑
q,k,n;υ,s,s ′

M
(υ,s,s ′)
k,q,n bq,nc

†
k+q,υsck,υs ′ + H.c.,

(25)

where the M matrix elements involve the unitary matrices
[Uυ(k)]sσ in Eq. (9),

M
(υ,s,s ′)
k,q,n = − 1√

2ρM�q,n

(
�q,n

cl

)2

×
∑

σ

[Uυ(k + q)]∗sσ [Uυ(k)]σs ′

×
∫ L/2

−L/2
dz ρτ=υσ (z)φl(z), (26)
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with the phonon dispersion �q,n in Fig. 2; φl is given by
Eqs. (19) and (22). The deformation potential strength α in
Eq. (25) can be estimated as follows. The high-temperature
behavior of the on-shell imaginary part of the electronic self-
energy is (see Sec. IV)

Im �(k,T ) = −πλkkBT , (27)

which allows experimental extraction of the dimensionless
effective electron-phonon coupling constant λk . The relation
(27) has been observed for Bi2Se3 in ARPES experiments,24

and λ = 0.25 ± 0.05 has been measured. In these experiments,
the Fermi level was near the bottom of the conduction band,
μ � 0.28 eV, and k in Eq. (27) corresponds to energies ≈50
to 100 meV above the Dirac point. With λk computed within
our model (see Sec. IV), the observed value for λ corresponds
to α = (30 ± 8) eV. We employ the value α = 30 eV below.

The total Hamiltonian employed in the following sections
is then given by H = Hel + Hph + He-ph; see Eqs. (11), (16),
and (25). We first address the phonon-induced resistivity ρ in
Sec. III and then turn to the quasiparticle lifetime in Sec. IV.

III. RESISTIVITY

Here we discuss the T -dependent phonon contribution to
the electrical resistivity ρ in the TI film, using the Hamiltonian
described in Sec. II. As explained in Sec. II C, only symmetric
(dilatational) phonon modes can cause a finite resistivity
for the low-energy surface states within the bulk gap. We
compute ρ within the framework of the linearized Boltzmann
equation,43 which has also been employed previously for
the related graphene case.35,36 The resulting quasiclassical
estimate for ρ is valid35 as long as ρ is small compared to
the resistance quantum, ρ � h/e2 � 25.8 k�. We sketch the
standard derivation30,35,36,44 for ρ in Appendix B. The result
takes the form

1

ρ
= e2

2

∑
υ,s=±

∫
dk

(2π )2
v2

k,sτυ(εk,s)[−∂εnF (εk,s)], (28)

where the dispersion relation for helical fermions [Eq. (12)]
defines the group velocity vk,s = êk · ∇kεk,s . Moreover, nF (ε)
is the Fermi function, and the energy-dependent electron-
phonon transport scattering rate (inverse time) is

1

τυ(εk,s)
=

∑
q,s ′

(
1 − vk+q,s ′

vk,s

cos θk,q

)

× 1 − nF (εk+q,s ′ )

1 − nF (εk,s)
W(k,υs)→(k+q,υs ′), (29)

where θk,q is the angle between k and k + q, and the transition
probabilities are obtained from Fermi’s golden rule. Using
Eq. (25), we find

W(k,υs)→(k+q,υs ′) = 2πα2

A
∑

n;ν=±
νnB (ν�q,n)

∣∣M (s ′,s)
k,q,n

∣∣2

× δ(εk,s + ν�q,n − εk+q,s ′ ), (30)

where nB (ε) is the Bose function. While the M matrix elements
(26) depend on the index υ = ±, we note that |M|2 and
therefore the transition probabilities W are υ independent.
This also implies that τυ does actually not depend on υ.

With the polar angle θ between k and q, such that

cos θk,q = k + q cos θ√
k2 + q2 + 2kq cos θ

, (31)

the angular integration in Eq. (29) can be encapsulated in the
“transport Eliashberg function” (see also Ref. 11)

F (ν)
k,n,s(q) =

∑
s ′

∫ π

−π

dθ

2π

[
1 − vk+q,s ′

vk,s

cos θk,q

]∣∣M (s ′,s)
k,q,n

∣∣2

× δ(εk,s + ν�q,n − εk+q,s ′ ). (32)

This allows us to write the momentum relaxation rate (29) in
the form

1

τ (εk,s)
= α2

∑
n,ν

∫ ∞

0
q dq F (ν)

k,n,s(q) νnB (ν�q,n)

× 1 − nF (εks + ν�q,n)

1 − nF (εks)
. (33)

The θ integration in Eq. (32) can then be carried out analyti-
cally. We quote the (lengthy) result, which is useful when com-
puting F numerically, in Appendix C. For low temperatures,
the quasielastic approximation �q,n �

√
(�/2)2 + (A2Wk)2

is applicable and allows us to simplify the full result for F to
the ν-independent form

Fk,n,s(q) = �(2k − q)
1

π
√

(2k/q)2 − 1

×
√

(�/2)2 + (A2Wk)2

(A2Wk)2

∣∣M (s,s)
k,q,n

∣∣2
∣∣∣∣
θ0

, (34)

where θ = θ0 (see Appendix C) determines the polar angle
between k and q appearing in the matrix element M , and the
Heaviside function is denoted by �(y). Note that there is no
contribution from interband transitions at low temperatures.

The crossover temperature from the low- to the high-
temperature behavior in this system is set11,35 by the Bloch-
Grüneisen temperature

TBG = 2kF cR/kB, (35)

with the Rayleigh velocity cR in Eq. (24). kF (L) is defined by
εkF ,s=+ = 0 with the dispersion relation (12). For T � TBG,
theF function can be approximated by the quasielastic expres-
sion [Eq. (34)]. It receives the dominant contribution from the
n = 1 branch corresponding to the Rayleigh surface phonon.
For small q, we find �q,n=1 = csq with cs = 2754 m/s (which
is slightly below cl); see also Fig. 2. In addition, we have
φl(z) = 2(ct/cs)2/(q

√
L) and cs � min(|vkF

|,A2W ), leading
to

FkF ,1,±(q) = (ct/cl)4

πρM |vkF
|csk

2
F

q2

L
.

This allows us to perform all remaining integrations and yields
a T 4 law for the resistivity at low temperatures,

ρ(T � TBG) = h

e2
A

(
T

TBG

)4

, (36)
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where the dimensionless prefactor A is

A = 8γ kF α2

πρMv2
kF

cs

(
ctcR

clcs

)4 1

L
,

(37)

γ =
[ ∫ ∞

−∞
dx

2ex

[(π2 + x2)(ex + 1)]2

]−1

� 68.4295.

For L → ∞, A obviously vanishes. This suggests that for
elevated temperatures (but still T < TBG) and finite L, the
T 4 law is replaced by the L-independent ρ ∝ T 5 law found
in Ref. 11. We can estimate the crossover temperature Tc as
follows. For T < TBG, we expect an expansion of the form

(e2/h)ρ = A(T/TBG)4 + B

4
(T/TBG)5,

with A ∝ 1/L in Eq. (36) and the L-independent constant B

given in Ref. 11. The crossover from the T 4 law (for T � Tc) to
the T 5 law (for Tc � T < TBG) thus happens around the tem-
perature Tc = (4A/B)TBG. This gives Tc � 0.14TBG/(kF L),
which is independent of the chemical potential since TBG ∝
kF . For L = 4 QL, we obtain Tc ≈ 0.9 K. The T 4 law can thus
only be observed for very thin and clean TI films.

In the opposite high-temperature limit, essentially all
phonon branches indexed by n contribute to the transport
Eliashberg function (32); see Appendix C. Then the relaxation
rate τ−1(εk,s) in Eq. (33) is basically a linear function of
the energy. Since the linear term does not contribute to ρ

after integration in Eq. (28), we obtain the approximation
1/ρ � (e2/h)vkF

kF τ (ε = 0), where Eq. (33) yields the linear
high-temperature law

ρ(T � TBG) = h

e2
C

T

TBG
(38)

with the dimensionless prefactor

C = 2α2cR

vkF

∑
n,ν=±

∫ ∞

0
q dq

F (ν)
kF ,n,+(q)

�q,n

. (39)

Next we show the full temperature dependence of ρ

obtained numerically for a fixed width L = 4 QL and several
values of the chemical potential μ; see Fig. 3. In that case,
when measured relative to E∞

0 , we have E+
0 � 16 meV and

�/2 � 13 meV. For the lowest μ in Fig. 3, the Fermi level is
thus located inside the surface gap and one has a very large
resistivity, where the quasiclassical approach is not reliable
in any case. For low temperatures T < TBG, the analytical
result (36) with ρ ∝ T 4 is nicely reproduced by numerics.
In this temperature regime, only the Rayleigh mode (n = 1)
is relevant, similar to what one finds in the semi-infinite
geometry.11 In the high-temperature limit, both the ρ ∝ T

scaling and the prefactor C in Eq. (39) are also consistent
with our numerical findings.

Finally, Fig. 4 shows the width (L) dependence of ρ at
fixed chemical potential and for several T . Two noteworthy
observations can be drawn from Fig. 4: First, for low tempera-
tures we observe a “dip” in Fig. 4, where ρ(L) < ρ(L → ∞)
for intermediate values of L. Second, for L → ∞, ρ(L)
approaches 1/4 of the single-surface value ρ∞(T ) obtained
for the semi-infinite geometry.11 Naively, we would expect
ρ(L → ∞) = ρ∞/2 because of the presence of two surfaces in

0.0001

0.01

1

100

10000

0.1 1 10 100

ρ
(Ω

)

T (K)

∼ T 4

∼ T

μ = 0.2 eV
μ = 0.05 eV
μ = 0.02 eV
μ = 0.01 eV

FIG. 3. (Color online) Phonon contribution to the resistivity ρ vs
temperature T for a TI film of width L = 4 QL and several values of
the chemical potential μ. Dashed straight lines indicate the analytical
results for low [Eq. (36)] and high [Eq. (38)] temperatures. Note the
double-logarithmic scale.

the film geometry. This discrepancy indicates that the L → ∞
limit is singular, and it is not possible to really decouple both
surfaces in such an interacting system; see also Ref. 21 for a
related discussion.

IV. LIFETIME BROADENING

Next we discuss the quasiparticle lifetime (inverse decay
rate) for the surface fermions in the TI film due to their coupling
to phonons [see He-ph in Eq. (25)], which implies a finite
linewidth of ARPES spectral features. The decay rate �k(T ) =
−2 Im � follows from the imaginary part of the on-shell

0.01

1

100

10000

5 10 15             2 0

ρ
(Ω

)

L (QL)

T = 1 K

T = 3 K

T = 10 K

T = 300 K

FIG. 4. (Color online) Width (L) dependence of the phonon
contribution to the resistivity ρ for μ = 0.2 eV and several
temperatures. The dashed horizontal line indicates one-quarter of
the resistivity ρ∞(T ) in the semi-infinite geometry with otherwise
identical parameters (Ref. 11).
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k = 0.5kF

k = kF

∼ T 2

∼ T

0

5

10

01                           2k/kF

×10

μ = 0.2 eV
μ = 0.05 eV
μ = 0.02 eV

FIG. 5. (Color online) Main panel: T dependence of the decay
rate � of a TI film of width L = 4 QL for k = kF and k = 0.5kF .
For k = 0.5kF , only the μ = 0.2 eV result is displayed. Dashed lines
indicate the low- and high-temperature laws (� ∝ T 2 and � ∝ T ),
respectively. Inset: k dependence of � for μ = 0.2 eV and two
different temperatures: T = 3 K (solid line) and T = 300 K (dashed
line; the shown result has to be multiplied by 10).

self-energy �s=+(k,ω = εk,s=+) (see Fig. 5).45 Expanding up
to second order in He-ph, the “rainbow” diagram yields the
self-energy

�s(k,ω) = α2
∑
n,s ′

∫
dq

(2π )2

∣∣M (s ′,s)
k,q,n

∣∣2

×
∑
ν=±

ν
nB(ν�q,n) + nF (εk+q,s ′)

ω + i0+ + ν�q,n − εk+q,s ′
. (40)

Introducing the Eliashberg function F
(ν)
k,n,s(q) exactly as the

transport Eliashberg function F in Eq. (32) but without the
factor [1 − (vk+q,s ′/vk,s) cos θk,q], the quasiparticle decay rate
follows as

�k(T ) = α2
∑
n,ν

∫ ∞

0
q dq F

(ν)
k,n,+(q)

× [nB(�q,n) + nF (�q,n + νεk,+)]. (41)

Expanding this result for high temperatures T � TBG, as in
Sec. III, yields [see also Eq. (27)] a linear T dependence,

�k(T � TBG) = 2πλkkBT ,
(42)

λk = α2

2π

∑
n,ν

∫ ∞

0
q dq

F
(ν)
k,n,+(q)

�q,n

.

The L dependence of λk is shown for k = kF in Fig. 6. We
observe an oscillatory dependence, with a saturation at one-
half of the corresponding semi-infinite result.

0.40

0.42

0.44

0.46

0.48

5 10 15              20

λ
k

F

L (QL)

FIG. 6. (Color online) Width (L) dependence of the effective
electron-phonon coupling constant at the Fermi level λkF

for μ =
0.2 eV. The dashed horizontal line indicates one-half of the effective
coupling constant in the semi-infinite geometry with otherwise
identical parameters (Ref. 11).

For low temperatures and k = kF , the decay rate is
dominated by the n = 1 phonon mode with q → 0. After some
algebra, we find that this implies a T 2 law,

�kF
(T � TBG) = 4π (ct/cl)4(kF cRα)2

ρM |vkF
|c3

s

1

L

(
T

TBG

)2

. (43)

Again, when T � Tc, the T 2 law (which scales ∝1/L)
competes with the L-independent T 3 law found in Ref. 11; see
Sec. III. Finally, when k �= kF and T � TBG, the quasiparticle
decay rate saturates at the finite value

�k �=kF
= α2

∑
n

∫ ∞

0
q dq �(|εk+| − �q,n) F

(ν)
k,n,+(q) (44)

with ν = sgn(kF − k).
Figure 6 shows that the L → ∞ limit of the decay rate

always tends to �∞(T )/2, where �∞ is the corresponding
decay rate for the semi-infinite geometry.11 This discrepancy
with the naive expectation �(L → ∞) = �∞ has the same
origin as the anomalous factor 1/2 appearing in the large-L
behavior of the resistivity discussed in Sec. III.

V. CONCLUSIONS

In this paper we have studied the effects of long-wavelength
acoustic phonons on the topologically protected surface
fermions in topological insulator films. Our model employs
the established low-energy electronic Hamiltonian and an
isotropic elastic continuum approach for the phonons, with
the deformation coupling providing the dominant interaction
mechanism. The full crossover from thin to thick films has been
studied, taking into account transverse quantization effects.
The electron-phonon coupling turns out to be surprisingly
strong, in accordance with recent ARPES results.24

Using a quasiclassical approach, we have computed the
temperature-dependent resistivity of the film due to phonon
backscattering, and found a linear T dependence above the
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Bloch-Grüneisen temperature. In this temperature regime, the
phonon-induced resistivity can overcome the disorder-induced
(T -independent) contribution and should be observable with
present samples. Similarly, the linear T dependence of the
quasiparticle decay rate found here is observable24 in ARPES
experiments. The low-temperature behaviors of the resistivity
and of the quasiparticle decay rate are probably more difficult
to observe.

An interesting extension of our work would be to include the
effects of a magnetic field. Magnetotransport measurements in
thin films were recently performed46 and found clear evidence
for Landau level formation associated with the massless Dirac
fermions forming on both surfaces. The observed broadening
of the Landau levels was assigned to disorder and/or interaction

effects, but at elevated temperatures, our analysis indicates that
electron-phonon interactions may be relevant as well.
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APPENDIX A: NORMALIZATION CONSTANTS

Here we provide the normalization constants NS,A appear-
ing in Eqs. (22) and (23) in Sec. II B. Specifically, we get these
constants after some algebra from

N−2
S = �2

	

2c2
t

[
c2
t

c2
l

4q2L

cos2(klL/2)

(
1 + sin(klL)

klL

)
+

(
q2 − k2

t

)2
L

k2
t cos2(ktL/2)

(
1 − sin(ktL)

ktL

)
− 8

(
q2 − k2

t

) tan(ktL/2)

kt

]
,

N−2
A = �2

	

2c2
t

[
c2
t

c2
l

4q2L

sin2(klL/2)

(
1 − sin(klL)

klL

)
+

(
q2 − k2

t

)2
L

k2
t sin2(ktL/2)

(
1 + sin(ktL)

ktL

)
+ 8

(
q2 − k2

t

)cot(ktL/2)

kt

]
.

APPENDIX B: LINEARIZED BOLTZMANN EQUATION

The linearized Boltzmann equation has been derived for
closely related problems before,30,35,36,44 and we here follow
those works and briefly sketch the derivation of Eq. (28). In
the quasiclassical approximation, the quasiparticle distribution
function f (r,k,t) (for simplicity, we here omit the υ and s

indices) obeys the well-known Boltzmann equation. In the
absence of a force F = −eE due to the external electric field,
f reduces to a Fermi function, f = nF (εk), and the collision
integral vanishes. In the presence of the force, f is expanded
in terms of Legendre polynomials Pn(cos α), where α is the
angle between k and F. Keeping only terms linear in F, we
have f (k) = nF (εk) + cos(α)f1(εk). Using detailed balance,
for given transition matrix elements Wk→k′ , we obtain the
linearized Boltzmann equation (LBE),

F · vk ∂εnF (εk) =
∑

k′
Wk→k′

[
nF (εk)

nF (εk′)
cos(α′)f1(εk′)

− 1 − nF (εk′)

1 − nF (εk)
cos(α)f1(εk)

]
.

Using the ansatz f1(εk) = −τ (εk)vkF∂εnF (εk), after some
algebra the LBE leads to the linear integral equation

1

τ (εk)
=

∑
k′

Wk→k′

[
1 − vk′

vk

τ (εk′)

τ (εk)
cos(ϑ)

]
1 − nF (εk′)

1 − nF (εk)
,

where ϑ is the angle between k and k′. The solution for τ (εk)
determines the electron momentum relaxation time. When
the scattering of quasiparticles from long-wavelength acoustic
phonons is quasielastic, �q,n � |μ|, we can set τ (εk′) = τ (εk)
for the right-hand side of the above integral equation; this is
equivalent to the “test particle approximation.”30 The current
density j = −(e/A)

∑
k vkf (k) points parallel to the electric

field direction and has the magnitude

j = e2E

A
∑

k

v2
k cos2(α) τ (εk)[−∂εnF (εk)].

Using vk = vk and performing the angular integration, we
arrive at the phonon contribution to the resistivity quoted in
Eqs. (28) and (29).

APPENDIX C: TRANSPORT ELIASHBERG FUNCTION

We here give the analytical result for the full transport Eliashberg function F defined in Eq. (32). Some straightforward yet
tedious algebra allows one to perform the θ integration. We find the (lengthy) result

F (ν)
k,n,s(q) = 2

∣∣A(ν)
k,q,n,s

∣∣
π (A2W )2

�
(
Q

(ν)
k,q,n,s + k − q

)
�

(
q − ∣∣Q(ν)

k,q,n,s − k
∣∣)[(

q2 − (
Q

(ν)
k,q,n,s − k

)2)((
Q

(ν)
k,q,n,s + k

)2 − q2
)]1/2 �

(∣∣A(ν)
k,q,n,s

∣∣ − �/2
)

×
∑
s ′

�
(
s ′A(ν)

k,q,n,s

)[
1 −

(
1 − ν�q,n

A
(ν)
k,q,n,s

)(
Q

(ν)
k,q,n,s

)2 + k2 − q2

2k2

]∣∣Ms ′,s
k,q,n

∣∣2
∣∣∣∣
θ0

,
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where we use the notations

A
(ν)
k,q,n,s = s

√
(�/2)2 + (A2Wk)2 + ν�q,n, Q

(ν)
k,q,n,s =

√(
A

(ν)
k,q,n,s

)2 − (�/2)2

A2W
,

and the polar angle θ = θ0 ∈ [0,π ] follows from√
k2 + q2 + 2kq cos θ0 = Q

(ν)
k,q,n,s ,

fixing the polar angle between k and q in the matrix element M .
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t . This implies C � 0.78 instead of the quoted value

C � 1.20 in Ref. 11. Fortunately, this mistake has no consequences
for the conclusions reached in Ref. 11.
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