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Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes
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We present a theory for the lattice thermal conductivity κL of single-walled boron nitride nanotubes (BNNTs)
and multilayer hexagonal boron nitride (MLBN), which is based on an exact numerical solution of the phonon
Boltzmann equation. Coupling between layers in MLBN and nanotube curvature in BNNTs each break a phonon
scattering selection rule found in single-layer hexagonal boron nitride (SLBN), which reduces κL in these
systems. We show that out-of-plane flexural phonons in MLBN and out-of-tube phonons in BNNTs provide
large contributions to κL, qualitatively similar to multilayer graphene (MLG) and single-walled carbon nanotubes
(SWCNTs). However, we find that the κL’s in BNNTs and MLBN are considerably smaller compared to similar
SWCNTs and MLG structures because of stronger anharmonic phonon scattering in the former. A large and
strongly temperature-dependent isotope effect is found reflecting the interplay between anharmonic and isotope
scattering phonons. Finally, we also demonstrate convergence of BNNTs into SLBN for large-diameter nanotubes
and MLBN to bulk hexagonal boron nitride within a few layers.
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I. INTRODUCTION

Like the more intensely studied graphene and single-walled
carbon nanotubes (SWCNTs), boron nitride can be constructed
into single or layered sp2-bonded hexagonally packed planes
and into nanotubes with alternately bonded boron and nitro-
gen atoms instead of carbon. Despite having similar lattice
constants, unit cell masses, and phonon dispersions,1–7 the
measured lattice thermal conductivity κL of bulk hexagonal
boron nitride (h-BN) is a fifth that of graphite.8,9 Qualitatively
consistent with this, molecular dynamics (MD) simulations of
κL for boron nitride nanoribbons and small-diameter single-
walled boron nitride nanotubes (BNNTs) find significantly
lower values than their carbon-based counterparts.10 On
the other hand, recent measurements of κL for isotopically
enriched multiwalled boron nitride nanotubes show similar
values to multiwalled carbon nanotubes.11

In order to shed light on this issue and develop a more
comprehensive understanding of h-BN systems, we present
a Boltzmann transport equation (BTE) theory for κL of
BNNTs and multilayer hexagonal boron nitride (MLBN),
which includes anharmonic phonon-phonon and isotopic
impurity scattering. We find that intrinsic phonon-phonon
scattering selection rules play important roles in determining
κL, similar to the case of SWCNTs and multilayer graphene
(MLG).12–14 In particular, we show that out-of-plane vibrations
in MLBN and out-of-tube vibrations in BNNTs provide large
contributions to κL, and the interaction between layers in
MLBN and nanotube curvature in BNNTs violate a 2D
selection rule in SLBN, leading to a substantial reduction
in κL. However, we find stronger anharmonic three-phonon
scattering in MLBN and BNNTs, which is responsible for the
lower κL compared to MLG and SWCNTs. This finding is also
supported by previous results found for SLBN and h-BN.15

Calculated enhancements to κL are found to be relatively
strong for isotopically pure BNNTs (20–30%) around room
temperature, although somewhat less than those reported for
multiwalled BNNTs in Ref. 11 (∼50%). We also find a strong
temperature dependence to the isotope effect reflecting the

interplay between anharmonic and isotope scattering. We
show that with increasing diameter κBNNT → κSLBN and with
increasing layer number, N , κMLBN → κhBN.

Sec. II provides an overview of the phonon properties and
three-phonon selection rules relevant in BNNTs, SLBN, and
MLBN. In Sec. III, we discuss the lattice thermal conductivi-
ties of different h-BN systems. Our results for the lattice ther-
mal conductivities and subsequent discussion are presented in
Sec. IV. We also discuss other recent theoretical predictions in
relation to this work in Sec. IV. In Sec. V, we give a summary
of this work and our conclusions. Appendix A provides a
detailed account of the phonon-phonon scattering selection
rules, while Appendix B outlines the details of the relevant
scattering mechanisms and the Boltzmann transport equation.

II. PHONONS AND SCATTERING SELECTION RULES

An accurate representation of the interactions between
atoms is required to effectively model the thermal transport
in h-BN systems. Phonon frequencies ωλ and acoustic phonon
velocities νλα = dωλ/dqα are determined from the harmonic
interatomic force constants (IFCs), while anharmonic IFCs are
essential for describing intrinsic phonon-phonon scattering.16

Here, λ = (�q,j ) designates a phonon with wave vector �q
in branch j , and α is a Cartesian component. For h-BN,
�q is a 3D wave vector, and j = 1, . . . ,12,14,15 for SLBN
and MLBN, �q is a 2D wave vector in the plane of the
layers with j = 1, . . . ,6N .14,15,17 In BNNTs, �q = (q,l) where
q is a continuous wave vector along the nanotube axis, l

is an angular quantum number, and j = 1, . . . ,6.12,13 The
phonon frequencies are determined by diagonalization of the
dynamical matrix:

Dκκ ′
αβ (�q) = 1√

mκmκ ′

∑
�′δ



0κ,�′κ ′
αδ S�′

δβei �q �R�′ (1)

for a given �q in the Brillouin zone of an h-BN system. Here, � κ

designates the κth atom in the �th unit cell, mκ is the mass of the
κth atom, and α, β, and δ are Cartesian components. Here, �R�

035436-11098-0121/2012/85(3)/035436(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.035436


L. LINDSAY AND D. A. BROIDO PHYSICAL REVIEW B 85, 035436 (2012)

is the lattice vector for the �th unit cell in Cartesian components
for SLBN, MLBN, and h-BN. In BNNTs, �R� = (θ�,z�) with θ�

and z� specifying the coordinates around the nanotube axis and
along the axis, respectively.12,13,18 In Eq. (1), S�

δβ is a rotation
matrix for the �th unit cell in BNNTs and the identity matrix for
the other systems. The harmonic IFCs, 


�κ,�′κ ′
αβ = ∂2


∂u�κ
α ∂u�′κ′

β

|0,
with u�κ

α being atomic displacements from equilibrium, are
determined by a given interatomic potential energy, 
.

For the weak interlayer bonding in MLBN, we use a
Lennard–Jones potential VLJ (rij ) = 4ε[(σ/rij )12 − (σ/rij )6]
where ε and σ are adjusted to best fit the interplanar distance
and c-axis phonon dispersion, and rij is the distance between
atoms i and j in adjacent layers. We consider coupling between
nearest planes with AA′ stacking consistent with ab initio
calculations.19 For the in-plane covalent bonding, we employ
a Tersoff empirical interatomic potential20,21 with parameters
optimized to best fit harmonic phonon properties of h-BN.15

The Tersoff potential has been successfully used to model
thermal transport properties of graphene, SWCNTs, SLBN,
and BNNTs.10,12–15,17,22–25

For SLBN and MLBN, the Tersoff parameters presented
in Ref. 15 accurately represent the quadratic out-of-plane
acoustic (ZA1) phonon branch and give velocities for the
linear transverse and longitudinal acoustic (TA1 and LA1)
branches within 5% of experiment.7 These branches provide
the dominant contributions to κL so their accurate description
is most important. There is not as good agreement with the
higher-frequency optical modes, in part due to our neglect
of the slightly ionic bonding of B and N atoms. However,
we find that around room temperature, the optic branches
in h-BN and graphene systems play only a small role in
thermal transport, justifying this approximation. The effect
on the acoustic branches due to ionicity has been shown to be
negligible.26 Recently, a similar Tersoff parameterization used
for MD calculations of SLBN and BNNTs also demonstrates
good agreement with the experimental in-plane h-BN phonon
dispersion.10

For MLBN, the weak interlayer coupling produces N -1
low-lying optic phonon branches (one for h-BN) for each
acoustic branch, labeled ZAi>1, TAi>1, and LAi>1.14 The
flexural branches ZAi>1 significantly deviate from the ZA1,
while the TAi>1 and LAi>1 branches are degenerate with the
TA1 and LA1 except very near the � point, (see Fig. 1 in
Ref. 14). Multilayer hexagonal boron nitride has 3N optic
branches little affected by the weak interlayer coupling, which
are degenerate with the six optical branches of h-BN. In
BNNTs, there are four acoustic branches, linear torsional and
longitudinal acoustic branches (l = 0, j = 2 and 3) and two
quadratic flexure branches (l =±1, j = 1), as well as numerous
optic branches.12,13 For a given l, the j = 1 phonon branches
correspond to low-frequency out-of-tube vibrations, the radial
breathing mode (l = 0, j = 1) being one. The j = 2 and 3
branches correspond to low-frequency in-tube vibrations.

Intrinsic phonon-phonon scattering is the dominant cause
for thermal resistance to heat flow in semiconductors, such as
h-BN systems, around and above room temperature.16 In this
paper, we consider three-phonon scattering processes and scat-
tering selection rules which play critical roles in understanding
κL of BNNTs, SLBN, and MLBN. The phase space for
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FIG. 1. (Color online) Calculated κL for MLBN vs layer number
(solid black circles). Also shown are the per-branch contributions
for ZA (red triangles), TA (green squares), and LA (blue diamonds)
branches. The corresponding estimated h-BN values are shown by
the horizontal dashed lines. The calculated κL for isotopically pure
MLBN is also shown (hollow black circles). For all cases, L = 10 μm
and T = 300 K.

three-phonon scattering is defined from all processes satisfying
the conservation of energy and momentum: ωj (�q) ± ωj ′ (�q ′) =
ωj ′′ (�q ′′) and �q ± �q ′ = �q ′′ + �K, where �K is a reciprocal lattice
vector, which is zero for normal processes and nonzero for
Umklapp processes, and the ± signs correspond to the two
types of possible three-phonon processes.16

In BNNTs where �q = (q,l), conservation of crystal mo-
mentum in a three-phonon scattering process not only restricts
the translational wave vectors q, but also imposes a restriction
on the azimuthal quantum numbers l, which is discussed in
Appendix A and in Refs. 12 and 13. This azimuthal selection
rule severely limits the number of three-phonon scattering
processes allowed and has permitted rigorous calculations of
large diameter chiral and achiral BNNTs.13

We have shown previously that reflection symmetry in a 2D
crystal, such as SLBN, leads to a selection rule that forbids
any n-phonon scattering process involving an odd number
of out-of-plane phonons17,22 (Appendix A). This selection
rule leads to significantly less scattering, especially for ZA
phonons, and to higher κL. Interlayer coupling and nanotube
curvature violate this 2D selection rule causing MLBN and
larger-diameter BNNTs to have lower κL than SLBN.

III. THERMAL CONDUCTIVITY

We calculate κL for BNNTs and MLBN using an exact
numerical solution to the phonon Boltzmann transport equa-
tion (BTE), previously described elsewhere for SWCNTs,12,13
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SLBN,15 graphene,17,22 and MLG and graphite.14 Here, we
outline this theory. Full details of the phonon BTE and relevant
scattering mechanisms can be found in the given references
and Appendix B.

The κL for each system is given by:

κL = 1

D

∑
j

∫ (
∂n0

λ/∂T
)
h̄ωλv

2
λατλd �q, (2)

where n0
λ is the Bose distribution function, α is the Cartesian

component in the transport direction, and D is a system-
dependent prefactor. For h-BN, Eq. (2) is a 3D integral with
D = (2π )3. For SLBN and MLBN, Eq. (2) is a 2D integral
with D = (2π )2Nδ, where δ = 0.333 nm is the interlayer
spacing for h-BN.3 Since l is quantized for a BNNT wave
vector �q = (q,l), Eq. (2) becomes a 1D integral for q and sum
over j and l, while D = (2π ) πdδ, where d is the nanotube
diameter. For an infinite 2D hexagonal lattice, the in-plane
transport is isotropic and can be represented by a single value,
as in Eq. (2). In principle, finite systems display directional
anisotropy; though, for the system sizes considered here, this
anisotropy is small (<5%) and thus not considered.

In this paper, the phonon lifetimes τλ for mode λ are limited
by three-phonon, boundary and isotopic impurity scattering.
The boundary scattering time, τ bs

λ = L/2|vλα|, with L being
the length between crystallite or sample boundaries, gives the
correct limiting values of κL in the ballistic (L → 0) and
diffusive (L → ∞) limits for nanotubes and nanoribbons.27,28

Note, we do not explicitly introduce diffuse scattering from
sample sides perpendicular to the transport direction. Such
scattering where transport is restricted to 2D layers has
recently been shown to be considerably weaker than for the
corresponding case of bulk (3D) systems.29 In any case, for
2D layers, the empirical boundary scattering employed here
is closely related to the conventional relation L/νλ, where
vλ =

√
v2

x + v2
y.

15

The isotopic scattering time τ iso
λ is limited by the large

concentration of 10B (19.9%) atoms in the more abundant 11B
(80.1%) atoms in naturally occurring boron samples (the nitro-
gen isotope impurity concentration is negligible). The boron
isotopic mass differences are treated as a perturbation to the
harmonic Hamiltonian, and the scattering rates are calculated
using Fermi’s golden rule.30 For three-phonon interactions, the
first anharmonic term in the expansion of the crystal potential
is treated as a perturbation to the harmonic phonons. Fermi’s
golden rule is again used to calculate millions of three-phonon
scattering rates, which enter the phonon BTE. The τλ are given
by the solution of the linearized BTE, which is exactly deter-
mined using an iteration process, which accounts for the fact
that phonon-phonon scattering couples phonons of different
modes. Details of the isotope scattering, three-phonon scatter-
ing, and the BTE calculation can be found in Appendix B.

IV. RESULTS AND DISCUSSION

For MLBN, we take the coupled 2D sheets to lie in the
x-y plane connecting thermal reservoirs at slightly different
temperatures, and we consider thermal transport in the � → M

direction. We consider boundaries of length L in this transport
direction. For BNNTs, we consider zigzag (n,0), armchair

(n,n), and chiral (n1,n2) BNNTs with diameter d and length
L connecting thermal reservoirs. The chiral indices, n1 and
n2, uniquely identify each BNNT considered. The phase space
for three-phonon scattering grows very large with increasing
layer number and nanotube diameter in MLBN and BNNTs,
respectively. We have been able to calculate the κL for MLBN
up to N = 5 and BNNTs up to d = 11 nm. Fully converged κL

for h-BN was not possible due to the enormous phase space
for three-phonon scattering; however, we estimate values to be
within 10% of fully converged results.14 Chiral BNNTs (and
zigzag to a lesser extent) have large translational unit cells, and
thus large scattering phase spaces, even for relatively small d

compared to armchair BNNTs, so calculations of these κL are
more limited.

Scaled κL vs layer number N for MLBN (solid black
circles) is shown in Fig. 1 along with the corresponding scaled
per branch-type contributions, κZA, κTA, and κLA, (red/dark
gray triangles, green/gray squares, and blue/medium gray
diamonds) given by κZA = ∑N

i=1 κZAi
, etc. Each system is

taken to have length L = 10 μm at temperature T = 300 K
and is scaled by the calculated κSLBN = 810 Wm−1 K−1. The
dashed black line (highest) in Fig. 1 represents the approximate
κL for h-BN. The dashed red/dark gray, green/gray, and
blue/medium gray lines (higher, lower, and lowest) correspond
to the per-branch-type values in h-BN. Also shown in Fig. 1
is the calculated κL vs N for isotopically pure MLBN (open
circles).

Similar to recently published results for MLG,14 κL for
MLBN decreases monotonically from a maximum for κSLBN

converging to κhBN within only a few layers with the largest
decrease from SLBN to bilayer BN, κbilayer = 0.6κSLBN.
The reduction in κL for MLBN comes in part from the
violation of the 2D selection rule present in SLBN, in part
due to lowered density of states of the ZAi>1 phonons. As
seen in Fig. 1, κZA provides the greatest contribution to κL

for MLBN and drops ∼60% from N = 1 to N = 5, while
κTA and κLA change little with increasing N . The coupling
between layers especially affects the ZA modes, which vibrate
perpendicular to the planes. Convergence to κhBN within only a
few layers is a consequence of the limited range of the van der
Waals forces. The κL for isotopically pure MLBN follows
the same trend as κL for naturally occurring MLBN with
enhancements of 36 and 29% for SLBN and h-BN at room
temperature, respectively. In SLBN (and to a lesser extent
in MLBN), the isotopic enhancement is sensitive to system
size and shows peaks at lower temperature where anharmonic
scattering is weaker compared to the boundary and isotope
scattering.15

To highlight the importance of three-phonon scattering
relative to the phonon-isotope scattering in determining κL for
MLBN around room temperature, we have calculated the ratio
κ iso

L /κ
pure
L , where κ iso

L is the κL determined with only boundary
and impurity scattering (natural isotopic composition) and
κ

pure
L is the κL determined with only boundary and three-

phonon scattering. We find κ iso
L /κ

pure
L ∼ 4−10 depending on

the system (BNNT, SLBN, or MLBN) and system length
(L = 3−10 μm). The isotopic scattering is weak compared to
three-phonon scattering at T = 300 K in h-BN systems, even
with high impurity concentrations. This leads to the relatively
large values for κ iso

L /κ
pure
L .
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Furthermore, the κL for h-BN systems are significantly
lower than for carbon systems.14,15,17 We demonstrate
this by calculating ratios for isotopically pure systems:
κgraphene/κSLBN ≈ 3.2 and κMLG/κMLBN ≈ 3.9 for similar layer
number. The small difference in the ratios may come from
stronger anharmonic scattering in MLBN due to slightly
smaller interlayer spacing and different stacking orientation
compared to MLG. To gain further insights into the reduced
κL of h-BN systems compared to carbon systems, we have
developed hypothetical models which mix different aspects
(frequencies, velocities, anharmonic IFCs, etc.) of isotopically
pure MLG and MLBN in the BTE calculations. This was
recently done with MD simulations of SLBN;10 however,
anharmonic effects on the phonon scattering times of the
different systems were not considered. We find that the main
cause for the reduction of κL in SLBN and MLBN compared
to graphene and MLG comes from stronger three-phonon
scattering rates due to the somewhat lower phonon frequencies
in the h-BN systems. The scattering rates, Eq. (B4), are
strongly dependent on these frequencies since they enter
inversely directly and through the Bose factors. Thus, the
reduced frequencies substantially increase the scattering rates
and lower κL.

We now consider the nanotubes. Figure 2 shows the scaled
κL vs diameter d for a series of naturally occurring isotopic
composition armchair (black circles), zigzag (black triangles),
and chiral (black squares) BNNTs with length L = 3 μm at
temperature T = 300 K. The κL are scaled by the calculated
κSLBN = 650 Wm−1 K−1 [indicated by the black line (highest)].
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FIG. 2. (Color online) Here, κL and branch contributions to κL

summed over l for each j vs d for a variety of zigzag (triangles),
armchair (circles), and chiral (squares) BNNTs. j = 1, 2, 3 and
total correspond to red/dark gray (higher), green/gray (lower),
blue/medium gray (lowest), and black shapes (highest), respectively.
The horizontal lines show the associated contributions to κSLBN for the
ZA, TA, and LA modes as well as the total. For all cases, L = 3 μm
and T = 300 K.

In Fig. 2, the contributions κj to κL of BNNTs for each branch
j = 1,2, and 3 (obtained by summing over all of the l values)
are given by the colored symbols [red/dark gray (higher), j =
1; green/gray (lower), j = 2; and blue/medium gray (lowest),
j = 3] along with the corresponding colored lines for the
per-branch contributions to κSLBN [red/dark gray (higher), ZA;
green/gray (lower), TA; blue/medium gray (lowest), LA]. The
κj for large d nanotubes converge to their corresponding κSLBN

counterparts: κ1 → κZA, κ2 → κTA, and κ3 → κLA.
The nonmonotonic behavior of the κL vs d curve is a

consequence of the competition between the onset of the 2D
scattering selection rule for large d BNNTs and the loss of
optic scattering channels for small d BNNTs. For large d,
where the nanotube curvature is small, the 2D selection rule
is well approximated and κL ≈ κSLBN. As d decreases, the
nanotube curvature increasingly violates the 2D selection rule,
leading to stronger scattering of the out-of-tube phonons and
reduction of κ1 and κL. Note that κ2 and κ3 change very little
for the larger-diameter nanotubes because the in-tube modes,
which correspond to the TA and LA modes in SLBN, are little
affected by the 2D selection rule. The κL has a minimum for
d ∼ 3 nm where quantization effects in the nanotubes begin
to play a more significant role. As d decreases, the number
of optic phonon modes decreases and are pushed to higher
frequencies. Thus, the optic phonons become less efficient
scatterers of the lower-lying acoustic phonons, especially for
j = 1 and 2, which leads to increased κL.

Figure 3 shows the κL vs T for a (10,10) BNNT (black;
lower) and a (10,10) SWCNT (red/dark gray; upper) with
L = 3 μm. The dashed curves correspond to isotopically pure
11B and 12C, and the solid curves correspond to naturally
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FIG. 3. (Color online) Calculated κL vs T for a (10,10) SWCNT
(red/dark gray; upper) and a (10,10) BNNT (black; lower) with
isotopically pure (dashed) and naturally occurring (solid) carbon
and boron abundances. For all cases, L = 3 μm. The inset shows
κSWCNT/κBNNT vs d for similar isotopically pure armchair nanotubes
with T = 300 K.
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occurring boron and carbon abundances [10B (19.9%) and 13C
(1.1%)]. For temperatures above about 100 K, the behavior
of κL is governed by phonon-phonon scattering and phonon-
isotope scattering. In this temperature range, the κL for both
naturally occurring and isotopically enriched BNNTs lie well
below those for the SWCNTs. This reflects the stronger
phonon-phonon scattering rates in the former. This is further
demonstrated by the lower temperatures of the peaks in κL

for the BNNTs (T ∼ 100 K) compared to the SWCNTS
(T ∼ 150 K). For T below the peak temperature, κL decreases
as boundary scattering provides the dominant resistance. For
low T , only low-frequency phonons are thermally populated
and can contribute to thermal transport and resistance. The out-
of-tube (j = 1) phonon branch contributions to κL dominate
in this temperature regime because of the high density of
phonon modes at low frequencies. For T above the peak
temperature, κL drops with increasing T , which is a signature
that phonon-phonon scattering is stronger than the phonon-
isotope scattering and boundary scattering. At T = 300 K, we
find that the ratio of κL for a natural isotopic composition
(10,10) SWCNT and an isotopically pure (10,10) BNNT is
κSWCNT/κBNNT = 2.3. The inset to Fig. 3 shows the ratio
κSWCNT/κBNNT vs d for similar isotopically pure armchair
SWCNTs and BNNTs with L = 3 μm and T = 300 K.
For small d, κSWCNT/κBNNT ≈ 1.5. This ratio increases with
diameter and saturates to ∼3 for the larger nanotubes, where
optic modes provide a significant amount of scattering and the
2D selection rule plays a role.

Figure 4 plots the percent enhancement to κL, P =
(κpure

L /κnat
L − 1) × 100%, from isotopic enrichment as a func-

tion of temperature for the (10,10) BNNTs (black solid curve)
and (10,10) SWCNTs (red/dark gray dashed curve) with L = 3
μm. For T decreasing from room temperature, P increases in
both systems, reflecting the weakening of the phonon-phonon
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FIG. 4. (Color online) Isotope enhancement factor P as a function
of temperature for BNNTs (black solid curve) and SWCNTs (red
dashed curve).

scattering due to freeze-out of Umklapp processes. At T =
300 K, P = 23% for BNNTs and P = 9% for SWCNTs, while
at the temperatures giving the peaks in κL, P = 89 and 20%,
respectively. Since phonon-phonon scattering is stronger in
BNNTs, a much larger P enhancement for BNNTs is evident.
The overall larger P for BNNTs is a consequence of the larger
isotope scattering resulting from the much higher isotope
concentration. Given the small (∼1%) 13C concentration in
naturally occurring SWCNTs, the relatively large isotope
effect arises because of the comparably weak phonon-phonon
scattering. Finally, we note that the peak value increases rather
strongly with increasing nanotube length, as has been noted
previously for SLBN.15

To summarize these results, for all of the nanotubes consid-
ered here κSWCNT > κBNNT, which is largely due to the stronger
anharmonic phonon scattering in the BNNTs rather than the
stronger isotope scattering. This is qualitatively similar to
SLBN and MLBN systems discussed above. Furthermore, we
find a strong temperature dependence to the enhancement fac-
tor P , a feature that has been commonly observed previously in
bulk semiconductors.31–33 Recent measurements11 have found
room temperature isotopic enhancement in κL of P ∼ 50%,
which is somewhat larger than our calculated value. Since
scattering of phonons by isotopes is well represented within
the BTE approach,34 then accepting the experimental number
would suggest that our anharmonic scattering rates are too
large. On the other hand, the measured isotopic enhancement
in Ref. 11 is roughly temperature independent, which suggests
such weak anharmonic scattering that the κL for bulk h-BN
would be far higher than measured.8 Finally, we note that
the room temperature κL for multiwalled carbon nanotubes
(κL = 320 Wm−1 K−1) reported in Ref. 11 are below those
found previously (κL = 2000–3000 Wm−1 K−1),35,36 although
Ref. 11 points out a known error in these earlier measurements
associated with lack of transmission electron microscopy
characterization. Perhaps more importantly, the value quoted
in Ref. 11 is seven times lower than that of bulk pyrolytic
graphite.9 Ultimately, further research on the κL for naturally
occurring and isotopically enriched carbon and boron nitride
nanotubes are needed to address this issue.

Here, we will compare our phonon BTE results for the κL

of BNNTs with those of recent theoretical work. Reference 37
was able to match the temperature independence of the
isotopic enhancment of κL for multiwalled BNNTs measured
in Ref. 11, but this required assuming a very weak phonon-
phonon scattering so that the phonon-isotope scattering is
dominant. In contrast, around room temperature, we find three-
phonon scattering is stronger than isotopic impurity scattering,
a characteristic seen in bulk h-BN where κL decreases with
temperature around 300 K, a sign that anharmonic scattering
is dominant, as in most semiconductors.

In Ref. 10 (MD simulation) and Ref. 38 (kinetic theory),
isotopic impurity scattering is ignored, while the focus is on
phonon-phonon scattering in limiting κL for small-diameter
BNNTs (d ∼ 0.4–1.4 nm). Like these works, we find lower κL

for BNNTs than for SWCNTs (though for a more expansive
range of diameters), which we attribute to stronger anharmonic
three-phonon scattering, especially for moderate to large
diameter BNNTs. As in Ref. 38, we find strong contributions
from the quadratic (l = ±1, j = 1) acoustic modes for small
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diameter BNNTs. In larger BNNTs, we demonstrate that all
of the j = 1 modes for different l’s (out-of-tube vibrations)
combine to make a strong contribution to κL, which we
connect to the approximation of a 2D selection rule in a flat
SLBN sheet. Finally, here, we have presented a theory and
results for the full solution of the phonon BTE without use of
the single-mode relaxation time approximation (RTA) that is
used in Ref. 38, which misses important aspects of thermal
transport in h-BN systems. For example, while the proper
azimuthal symmetries are taken into account in Ref. 38, normal
scattering is incorrectly treated as independently resistive.
Also, extending this RTA to larger BNNTs with smaller tube
curvature will fail due to the role of the 2D selection rule.

Finally, we highlight the importance of implementing a full
solution of the BTE that includes both normal and resistive
Umklapp scattering processes. Low-frequency, zone-center
phonons participate very little in Umklapp scattering but
have very strong normal scattering channels, which are not
themselves resistant to a thermal current. However, the normal
scattering processes are important for redistributing these
low-frequency phonons to higher frequencies away from the
Brillouin zone center, where they can undergo Umklapp
scattering and thus encounter thermal resistance. We find
this born out in the iterative solution to the BTE, similar
to SWCNTs.12 Let us consider an isotopically pure (10,10)
BNNT with L = 3 μm and T = 300 K which has κL =
769 Wm−1 K−1. Neglecting Umklapp scattering processes,
the zeroth-order BTE solution (relaxation time approximation)
gives κL = 426 Wm−1 K−1, which is qualitatively wrong
because normal processes alone cannot provide resistance.
However, upon iteration, the phonon lifetimes diverge, which
leads to divergent κL. Neglecting normal scattering processes
leads to a converged κL = 4937 Wm−1 K−1, which is
significantly higher than the full solution, demonstrating
the importance of both normal and Umklapp processes in
determining κL.

V. SUMMARY AND CONCLUSIONS

The κL of BNNTs and MLBN have been calculated,
using an exact numerical solution of the phonon BTE. This
theoretical approach highlights the large contributions from
out-of-tube vibrations in BNNTs and out-of-plane vibrations
in MLBN. Such contributions are shown to be smaller in

larger-diameter BNNTs and in MLBN than in SLBN due to
the breaking of a 2D selection rule from nanotube curvature
and interlayer coupling, respectively. The κL for MLBN
decreases monotonically from SLBN with increasing number
of layers and converges to κL for h-BN within a few layers.
For differing chirality BNNTs, κL exhibits a nonmonotonic
diameter dependence and converges to the κL of SLBN for
large d nanotubes due to vanishing curvature and recovery of
the 2D selection rule in SLBN. We also show that, around room
temperature, anharmonic phonon scattering is the dominant
mechanism limiting κL and is responsible for the lower κL

in BNNTs and MLBN compared to SWCNTs and MLG
despite large isotopic impurity scattering. We have shown
that BNNTs have a temperature-dependent isotope effect with
large enhancements to κL for isotopically pure BNNTs despite
stronger phonon-phonon scattering.
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APPENDIX A

1. Azimuthal selection rule for BNNTs

There are two momentum selection rules for BNNTs with
chiral indices (n1,n2):12,13,18

q ± q ′ = q ′′ + K, l ± l′ = (l′′ + lK ) mod [g], (A1)

where q is the wave vector along the nanotube axis, −π/a <

q < π/a, a is the length of the unit cell, l is the angular
quantum number which takes on the integer values l =
0,±1, . . . + g/2, and K is a reciprocal lattice vector. Here,
g = 2(n2

1 + n1n2 + n2
2)/ngcdχ is the number of two-atom unit

cells in the translational unit cell of each BNNT where ngcd

is the greatest common divisor of n1 and n2, and χ = 3 if
(n1 − n2)/3ngcd is an integer; otherwise, χ = 1.39–41 Note that
g reduces to 2n for armchair (n,n) and zigzag (n,0) BNNTs.
In, Eq. (A1), the mod function keeps l′′ + lK between −g/2 +
1 and g/2. For normal scattering processes, K = lK = 0. For
Umklapp scattering processes, K = ±2π/a and the integer
lK = ±p, where p is given by:13,39–41

p = g Fr

[
ngcdχ

g(2n1 + n2)

{
g

(
n1 + 2n2

ngcdχ

)φ[(2n1+n2)/ngcdχ]−1

− n2

}]
, (A2)

where Fr[x] is the fractional part of the rational number x, and
φ [y] is the Euler function. For armchair and zigzag BNNTs
p = n.

2. 2D selection rule for SLBN

For strictly 2D systems, such as SLBN, a selection rule on
phonon-phonon scattering arises from reflection symmetry of
the lattice potential energy 
 with respect to its equilibrium

value:17,22


(. . . �r�iκi
. . .)=

∞∑
n=2

1

n

∑
�1κ1,...,�nκn

∑
α1,...,αn


α1...αn
(�1κ1; . . . ; �nκn)

× uα1 (�1κ1) . . . uαn
(�nκn). (A3)

Here, �r�κ = �R�κ + �u�κ specifies the instantaneous loca-
tion of the κth atom in the �th unit cell, �R�κ and
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�u�κ give the equilibrium position and the displacement
from equilibrium, and αi are Cartesian components. The
nth order interatomic force constants (IFCs) are given
by: 
α1...αn

(�1κ1; . . . �nκn) = ∂n

∂u1(�1κ1)...∂un(�nκn) |0, where the

derivative is evaluated at the equilibrium lattice positions. In
Eq. (A3), the n = 2 term gives the harmonic potential energy,
while the n = 3 term leads to three-phonon scattering.

The potential energy must be invariant under the symmetry
operations of the lattice.42 Equating like terms in the expanded
potential before and after the z-axis reflection operation on
a 2D lattice lying in the x-y plane leads to the following
condition:17,22


α1...αn
(�1κ1; . . . ; �nκn) = 0, m odd, (A4)

where m is the number of z components in the string, α1 . . . αn.
This condition constrains the IFCs for all orders; in particular,
third-order IFCs such as 
zzz(�1κ1; �2κ2; l3κ3) must vanish.
In SLBN, only even numbers of out-of-plane (z component)
phonons can be involved in a three-phonon scattering process,
which leads to severe phase space limitations and enhanced κL.

APPENDIX B

1. Phonon boltzmann transport equation

The BTE is a set of coupled equations for the phonon
lifetimes τλ:12–15,17

τλ = τ 0
λ (1 + �λ), (B1)

where τ0 are phonon lifetimes within the relaxation time
approximation, given by:

1/τ 0
λ ≡

∑
λ′,λ′′

(+)�
(+)
λλ′λ′′ + 1/2

∑
λ′,λ′′

(−)�
(−)
λλ′λ′′ + 1/τbs

λ + 1/τ iso
λ ,

(B2)

where the sums are over the scattering phase space for
processes that satisfy the conservation conditions and the
± corresponds to the two possible types of three-phonon
processes.16 Here, τ bs

λ = L/2|vλα| is the boundary scattering
time and τ iso

λ is the scattering time due to isotopic impurities
given by:30

1/τ iso
λ = π

2

�

(2π )x
ω2

λ

∑
j ′κ

gκ

∫
d �q ′|eκλe

∗
κλ′ |2δ(ωλ − ωλ′),

(B3)

where � is the unit cell volume and eκλ is the eigenvector
for the κth atom in mode λ. The integral is 1D, 2D, or 3D

with x = 1, 2, or 3 for BNNTs, SLBN and MLBN, and
h-BN, respectively. In Eq. (B3), gκ = 1

m̄2
κ

∑
i fiκ (miκ − m̄κ )2,

is a mass variance parameter with fiκ and miκ being the
concentration and the mass of the ith isotope of the κth
atom, and m̄κ being the average mass. For boron atoms
gB = 1.366 × 10−3, and we take gN = 0 for nitrogen atoms.
The isotope scattering is treated here in the relaxation time
approximation. In principle, this scattering can also enter the
iteration process.43,44 However, we find that this does not
change the resulting κL.

The �
(±)
λλ′λ′′ in Eq. (B2) are intrinsic anharmonic scattering

rates determined via Fermi’s golden rule for three-phonon
scattering:12–15,17

�
(±)
λλ′λ′′ = h̄π

4N0ωλωλ′ωλ′′

{
n0

λ′ − n0
λ′′

n0
λ′ + n0

λ′′ + 1

}
|
(±)

λ,±λ′,−λ′′ |2δ(ωλ

±ωλ′ − ωλ′′ ) (B4)

with matrix elements:


λλ′λ′′ =
∑

κ

∑
l′κ ′

∑
l′′κ ′′

∑
αβγ


αβγ (0κ,l′κ ′,l′′κ ′′)

× eλ
ακe

λ′
βκ ′e

λ′′
γ κ ′′√

mκmκ ′mκ ′′
ei �q ′ �Rl′ ei �q ′′ �Rl′′ , (B5)

where 
αβγ (0κ ,l′κ ′,l′′κ ′′) are third-order anharmonic IFCs,
the eλ

ακ are phonon eigenvectors, N0 is the number of unit
cells in the crystal, and −λ ⇒ (−�q,j ). In Eq. (B1), �λ is an
inelastic mode coupling term given by:

�λ =
∑
λ′λ′′

(+)�
(+)
λλ′λ′′(ξλλ′′τλ′′ − ξλλ′τλ′ )

+ 1

2

∑
λ′λ′′

(−)�
(−)
λλ′λ′′ (ξλλ′′τλ′′ + ξλλ′τλ′), (B6)

where ξλλ′ = vλ′ωλ′/vλωλ.

A grid of points is defined throughout the Brillouin zone
and for each λ on the grid, the phase space of λ′, λ′′ is found
numerically using a root-finding algorithm. The boundary,
isotopic impurity, and anharmonic scattering rates are calcu-
lated from Eqs. (B3) and (B4), which allows determination
of τ 0

λ (RTA) from Eq. (B2), �λ = 0. The full solution to the
BTE with �λ �= 0 is found using an iterative scheme where
τ

(0)
λ = τ 0

λ is the zeroth iteration. Plugging this into Eqs. (B1)
and (B6) yields τ

(1)
λ . The iteration scheme is continued until

the calculated κL from Eq. (2) differs negligibly on successive
iterations.
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