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Trions in semiconducting single-walled carbon nanotubes
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We study trions (charged excitons), a complex of an electron-hole pair and an additional electron or hole,
in semiconducting single-walled carbon nanotubes (s-SWCNT), by means of the exact diagonalization of the
realistic Hamiltonian based on the k · p scheme and on the screened Hartree-Fock approximation. By comparing
different classes of models that partially or fully include the band nonparabolicity, the form factors in the density
operators, the screening effects on interaction, and the self-energy correction in the energy bands, we succeed in
capturing the essential features of s-SWCNT. It turns out that the trion binding energy is significantly suppressed
by the form factor as well as by the screening effect. Further, an unconventional feature of s-SWCNT is found: the
trion has a larger binding energy than the biexciton, since the biexcitons are more strongly affected by screening
than trions. We also consider the effects of the short-range part of the Coulomb interaction, and clarify the fine
structures in the trion energy levels. It is shown that the bright (optically allowed) trion with the lowest energy
can be interpreted as a bound state of a dark (optically forbidden) exciton and an extra electron or hole.
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I. INTRODUCTION

Optical properties of semiconductors are often dominated
by electron-hole complexes, such as excitons, negative trions
(negatively charged excitons), positive trions (positively
charged excitons) and biexcitons, which consist of an
electron-hole pair, an electron-hole pair with an additional
electron, an electron-hole pair with an additional hole, and
two electron-hole pairs, respectively. A notable character
of quasi-one-dimensional semiconductor systems is strong
enhancement of the binding energies of the electron-hole
complexes by the spatial confinement effect.1–14 Among
various quasi-one-dimensional systems, the semiconducting
single-walled carbon nanotube (s-SWCNT), a rolled
monolayer graphite (graphene) with proper chiral vectors,15,16

has recently attracted particular attention; a huge exciton
binding energy is theoretically predicted,17–20 which is
confirmed in experiments.21,22 The fine structures in the
exciton energy levels are also studied both theoretically23–29

and experimentally.30–39 Further, a carrier doping of s-SWCNT
is realized in two ways: one is the formation of the p-n junction
by the attachment of a pair of split-gate electrodes,40–44 and
the other is the intercalation of the “doner” or “acceptor”
molecules.45–49 It is natural to expect that such doping leads
to an emergence of trions with large binding energies. Indeed,
quite recently, novel peaks were found in the photolumines-
cence (PL) measurement in hole-doped s-SWCNT, regardless
of the dopant spices.50 Optical trion generation with the aid
of the Auger process is also reported.51 They are located at
100–200 meV below the bright (optically allowed) exciton
peak, and are considered to be the ones from positive trions.

There have been some variational calculations on the
trion binding energies in s-SWCNT based on a simplified
phenomenological model.52,53 Still, the theory is lacking an
account of the characteristic features of s-SWCNT, namely the
band nonparabolicity, the form factors in the density operator,
the screening of interaction, and the self-energy correction
to the band energies. Note that these features are essential
even in a qualitative estimation of the binding energies. In
fact, the authors previously reported that the biexciton binding

energies are strongly suppressed by the form factors and by
the screening of interaction.54

In the present paper, the method used to treat excitons17,18

and biexcitons54 is applied to trions. All the above features
of s-SWCNT, which were missing in the phenomenological
models, are taken into account. We also consider the fine
structure of the trion energy level, which is induced by the
short-range part of the Coulomb interaction. This is required
to understand the relative ordering of the bright (optically
allowed) and dark (optically forbidden) trion energy levels.

II. FORMULATION

A. a/L → 0 limit

The conduction and valence bands of monolayer graphite
(graphene) consist of π orbitals and show a band contact at the
K and K′ points, two nonequivalent corners of the hexagonal
Brillouin zone. Within the first-order k · p perturbation theory
in the vicinity of these two Fermi points, one can express the
envelope function of a single electron as a two-component
spinor F(r) obeying a Weyl (massless Dirac) equation. In
s-SWCNT, the wave number of the envelope function in the
circumference direction is discretized by the periodic boundary
condition, characterized by the chiral index ν = ±1.16 Then,
the energies and the envelope functions are given by

ελ
snk = sελ

nk = sγ

√(
κλ

n

)2 + k2, (1)

Fλ
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AL
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[
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where we choose the x and y axes as the circumference and the
axial direction of the nanotube, γ /h̄ denotes the Fermi velocity
of the monolayer graphene, and ζλ is set to +1 and −1 for the
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two valleys λ = K and K′, respectively. The circumference
and the axial length of the nanotube are denoted by L and
A, respectively, and the conduction and valence bands are
distinguished by s = +1 and −1, respectively. The integer n

is the subband index, k is the axial wave number, and σ = ±1
denotes the electron spin. Note that the wave vector (κn,k)
is defined for the envelope functions in the vicinity of the
valley: the Bloch wave vector of the electron is given by (Kλ

x +
κn,K

λ
y + k) with the wave vector K λ at the λ = K and K′

points. In fact, Eq. (3) is derived from the periodic boundary
condition exp[i(κn + Kλ

x )L] = exp(iκnL + 2πiζλν/3) = 1.
The above effective-mass description of the electron holds

in the limit of a/L → 0, where a is the lattice constant. Now,
let us proceed to the many-body problem in this limit. Simple
dimensional analysis shows that all physical quantities become
universal if the length and energy are scaled by L and 2πγ/L,
respectively.17 In fact, this limit is specified only by a single
dimensionless Coulomb coupling constant,

vc =
(

e2

εbL

)(
2πγ

L

)−1

= e2

2πγ εb

∼ 0.3545

εb

, (5)

where e is the elementary charge, and we use γ = 6.46 eV Å.
The background dielectric constant εb denotes the all con-
tributions except those from the valence electrons in the
vicinity of the Fermi level, and is affected by the environment
where s-SWCNT is placed. Hereafter, we treat vc � 0.25 as a
parameter, assuming that the background dielectric constant is
not far from that of graphite, εb ∼ 2.4.55 In fact, the previous
calculation56 succeeded in evaluating the exciton energies
semiquantitatively using εb = 2. The ratio of the Coulomb
energy to the band gap is roughly given by vc, and is of the
order of 0.1, which is a characteristic feature of s-SWCNT.
In contrast, in conventional semiconductors, the electron-hole
Coulomb interaction is negligibly small compared to the
band-gap energy.

Thus, vc is not negligible, and we have to consider
the many-body effects. For this purpose, we introduce here
(quasi)electrons and (quasi)holes renormalized in their ener-
gies and interactions. The interaction renormalization, namely
the screening effect, is considered by the dielectric function
based on the random phase approximation (RPA),17

εm,q = 1 + um,q
m,q, (6)

where the Fourier component of the Coulomb interaction, um,q ,
and the polarization function 
m,q are given by

umq = 2e2

Aεb

I|m|

(
L|q|
2π

)
K|m|

(
L|q|
2π

)
, (7)
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(
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with the abbreviated index α = (n,k) and the modified Bessel
functions of the first and second kind, Im(q) and Km(q).
The cutoff function is given by g0(ε) = εαc

c /(|ε|αc + εαc
c ),

with εc = 10 × (2πγ/L) and αc = 20.18,26 The screened

FIG. 1. (Color online) Effective screening strength um,q
m,q/vc.

interaction satisfies um,q/εm,q = u|m|,|q|/ε|m|,|q|, reflecting the
identity 
m,q = 
|m|,|q|.

Figure 1 shows the evaluated effective screening strength
um,q
m,q/vc. The screening almost vanishes at m = 0 and
|q|L � 1; otherwise it has considerable magnitude. This
(m,q) dependence of the screening is a characteristic feature
of s-SWCNT, which was originally reported in Ref. 17.
Indirect evidence of q-dependent screening was also observed
experimentally.57

The energy of a quasielectron or quasihole is also evaluated
as

ξλ
n,k = ελ

n,k + 1
2

(
�̃λ

+,n,k − �̃λ
−,n,k

)
, (9)

with the (static) screened Hartree-Fock self-energy17

�̃λ
s,α = −

∑
α′

un−n′,k−k′

εn−n′,k−k′

∣∣Fλ†
s,α Fλ

−,α′
∣∣2

g0
(
ελ
α′
)
, (10)

where the electron and hole self-energies are averaged to
restore the electron-hole symmetry, which is broken slightly
by the cutoff function.58

We used above a cutoff function g0(ε), which contains two
parameters εc and αc.17,18 These parameters should be chosen
in such a way that only the contributions from the states in
the vicinity of the Fermi level, where the k · p approximation
holds, are taken into account. The result is insensitive to the
choice of αc, as long as the cutoff function decays smoothly but
rapidly enough. The band-gap renormalization, or equivalently
the self-energy correction, shows a logarithmic dependence
on εc. However, the binding energies of the electron-hole
complexes, which will be discussed below, have no such
logarithmic dependence, and do converge unless εc is too
small. We also applied the static approximation to the RPA
dielectric function, since it was shown in Ref. 58 that the
dynamical effect is irrelevant.

Now, let us consider the complexes of Ne electrons and
Nh holes, where (Ne,Nh) is (1,1), (2,1), (1,2), and (2,2)
for excitons, negative trions, positive trions, and biexcitons,
respectively. Hereafter, we consider only the negative trions,
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since they are equivalent to the positively charged ones due to
electron-hole symmetry. The Hamiltonian is explicitly written
as

H = K + U , (11)

K =
∑
αλσ

ξλ
α eλ†

ασ eλ
ασ +

∑
αλσ

ξλ
α hλ†

ασhλ
ασ , (12)

U = 1

2
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:
(
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m,q

)(
ρ(e)

m,q − ρ(h)
m,q

)
: , (13)

with the electron and hole density operators

ρ(e)
mq =

∑
α,α′λσ

δm,n′−nδq,k′−kf
λ
α′,αe

λ†
α′σ eλ

ασ , (14)

ρ(h)
mq =

∑
αα′λσ

δ−m,n′−nδq,k′−kf
λ
α′,αh

λ†
α′σ hλ

ασ , (15)

and the so-called form factor

f λ
α′,α = Fλ†

+,α′ Fλ
+,α, (16)

where e
λ†
nkσ and h

λ†
nkσ create an electron with (n,k,σ,λ) in the

conduction subband (s = +1), and a vacancy of an electron
(i.e., hole) with (n, − k, − σ,λ) in the valence subband (s =
−1), respectively, and two colons denote the normal ordering
of the annihilation and the creation operators inside them.

In the following, we compare the phenomenological,
unscreened, and screened models, which are summarized in
Table. I. The phenomenological model is nothing but the one
used previously in the variational and diffusion Monte Carlo
calculations,52,53,59 where the nonparabolicity of the energy
bands, the form factors, the screening effect, and the self
energy correction are all neglected. This model is reproduced
in our scheme by using parabolic dispersion in Eq. (1) and by
setting f λ

α′,α = 1, 
m,q = 0, and �̃λ
s,n,k = 0, in Eqs. (16), (8),

and (10), respectively. In the unscreened model, the correct
nonparabolic energy dispersion of Eq. (1), the form factor
of Eq. (16), and the self-energies of Eq. (10) are taken into
account, but the screening effect is still neglected. All these
features are included finally in the realistic screened model.

Once the energy dispersion is corrected from a parabolic
to a nonparabolic one, the kinetic energy is reduced and the
energies of the electron-hole complex states are lowered. The
self-energy correction, by contrast, gives rise to mass reduction
and thus raises their energy. Both the form factors and the
screening reduce the binding energies as well, since they
weaken the electron-hole attractive interaction. Therefore, by
comparing these three models, we can understand the compe-

TABLE I. Summary of the phenomenological, unscreened, and
screened models. The effects considered and neglected in these
models are labeled as © and ×, respectively. Enhancement and
suppression of binding energies of electron-hole complexes are
denoted as ↗ and ↘, respectively.

Phenomenological Unscreened Screened

Nonparabolicity ↗ × © ©
Self-energy ↘ × © ©
Form factor ↘ × © ©
Screening ↘ × × ©

tition or cooperation of the effects of the band nonparabolicity,
the self-energy correction, the form factor, and the screening
of interaction.

B. Corrections to a/L → 0 limit

Since a/L is small but finite in realistic s-SWCNT, the
binding energies of the electron-hole complexes, E, should be
expanded as a power series of a/L:

E

(
2πγ

L

)−1

= c0 + c1

( a

L

)
+ c2

( a

L

)2
+ · · · , (17)

where cn denotes the coefficient independent of L. The zeroth-
order term c0 is nothing but the contribution from the limit of
a/L → 0, and thus depends only on the Coulomb coupling
constant vc. The rest of the terms (n � 1) express the “fine
structures,” namely the correction to this limit.

The correction to the interaction term, δU , i.e., the short-
range part of the Coulomb interaction of the lattice length
scale,26 plays a crucial role in determining the relative ordering
of the energy levels of the electron-hole complexes, particu-
larly in thin s-SWCNT. In fact, in nanotubes with diameter
d = L/π ∼ 1 nm, it is expected that the energy splittings in
the exciton energy levels due to this interaction correction
are comparable to the trion or biexciton binding energies. In
the second quantized form, the interaction correction term is
explicitly written as60,61

δU = w1�0

2AL
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∑
m,q

:
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with

Pmq =
∑
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∑
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ασ , (21)
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K†
α′σ hK′
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α′,αhK′
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¯̄P
(K′K)
mq =

∑
αα′σ

δm,n′−nδq,k′+kσ ¯̄gK′K∗
α′,α e

K′†
α′σ h

K†
α−σ , (26)

where w1 and w2 parametrize the strength of the intra- and
inter-valley interactions, respectively, �0 = (

√
3/2)a2 denotes

the area of the unit cell, and we introduce the coefficients

gλ
α′,α = FλT

+,α′ Fλ
−,α, (27)

f̄ λ
α′,α = Fλ†

+,α′ σ̂z Fλ
+,α, ḡλ

α′,α = FλT
+,α′ σ̂z Fλ

−,α, (28)
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α′ bλ
α

1

)
, ¯̄gλ′λ

α′,α = 1

2

(
bλ′

α′bλ
α

−1

)
, (29)

using the z component of the Pauli matrix, σ̂z. A simple
dimensional analysis shows that the nth order correction of
δU to the binding energy in Eq. (17) has the form

cn

( a

L

)n

= ψn

(
w1

w2
,vc

) (
w2�0

2πγL

)n

(30)

for n � 1, where ψn is a two-variable function.
Now, let us discuss briefly the fine structure that stems from

the correction to the kinetic energy, δK. It has two origins:27

one is the higher-order correction in the k · p expansion,
e.g., the trigonal warping of the energy band. The other is
the curvature of the nanotube, regarded as lattice distortion,
which induces effective magnetic flux. It gives rise to the so-
called family pattern in the binding energies of electron-hole
complexes, which is already studied and is understood in detail
in the case of excitons.27 As expected from the calculations in
the phenomenological models,52,53,59 these two effects can be
taken into account through the renormalization of the exciton
binding energy BX, and the ratios of the trion and the biexciton
binding energies to the exciton one, BX±/BX and BXX/BX, are
only weakly affected by them. Therefore, we do not discuss
this type of correction any more in the following.

C. Symmetry classification

In our model, x and y components of the total Bloch wave
vector of the electrons and the holes,

K tot
x ≡

Ne∑
i=1

(
Kλi

x + κni

) +
Nh∑
j=1

( − K
λj

x − κnj

)
, (31)

K tot
y ≡

Ne∑
i=1

(
Kλi

y + ki

) +
Nh∑
j=1

( − K
λj

y + kj

)
, (32)

are conserved, where 1 � i � Ne and 1 � j � Nh are the
indices of the electrons and the holes. Since |k|,|κn| � |K λ|,
we can see that

NK
c = NK

e − NK
h , (33)

ntot =
Ne∑
i=1

ni −
Nh∑
i=1

nj , (34)

ktot =
Ne∑
i=1

ki +
Nh∑
i=1

kj (35)

are conserved, where the electron and the hole number in
the K valley are denoted by NK

e and NK
h , respectively.

In the following, we discuss the electron-hole complexes
characterized by

ntot = ktot = 0, (36)

at which they show the lowest energies. The electron-hole
complexes characterized by K tot

y = 0, i.e., by NK
c = ktot = 0,

can be further classified by their parities P = ±1, which are
defined for the spatial inversion in the axial direction. The
total spin S of the electrons and the holes is also a conserved
quantity.

In the limit of a/L → 0, we can expect higher symmetry
due to the absence of intervalley scattering and electron-hole
exchange processes. In fact, the electron and hole numbers in
the K valley, N (K)

e and N
(K)
h , and the total electron and total

hole spins, Se and Sh, are independently conserved.
Let us mention here briefly the optical selection rules for

trions and biexcitons. Absorption of a single photon linearly
polarized along the axial direction creates an electron-hole pair
with NK

c = 0, S = 0, and P = +1.17 The bright (optically
allowed) trion is characterized by NK

c = 0,1 and S = 1/2,
since the trions are created by the photoexcitation of an
electron-hole pair in the single-electron system. The two-
photon absorption creates a biexciton with NK

c = 0, S = 0,
and P = +1.

III. RESULTS

A. a/L → 0 limit

First, let us discuss our results in the limit of a/L → 0.
The trion energies and the wave functions are determined
numerically as the ground state of the Hamiltonian (11)
for (Ne,Nh) = (2,1) and for the fixed quantum numbers by
means of the Lanczos method. In the phenomenological and
unscreened models, we choose the cutoff for the wave number
to be kc ∼ 2 × 2π/aB, roughly estimating the exciton radius
to be aB = h̄/

√
2(mb/2)BX from the exciton binding energy

BX and from the lowest-subband mass mb = 2πh̄2/3γL.
Meanwhile, in the screened one, we use kc = 2 × 2π/L for
aB < L, considering that the screening suppresses the short-
wavelength components of the interaction. The grid spacing of
the wave number is set to �k = 2π/A = kc/50. The subband
cutoffs, nc = 0,1,2, are also introduced to restrict the electron
and hole subbands within |n| � nc.

Throughout this subsection, we focus only the trions with
Se = 0 in the K valley, (NK

e ,NK
h ) = (2,1), because their

energies are the lowest among the trions with various spin
and valley configurations. Whereas, as shown in the inset
of Fig. 2(a), the trion energy levels are almost degenerate
regarding the valley configurations. The trion binding energies
are defined as

BX± ≡ ξK
00 + EX − EX± , (37)

where EX and EX± are the energy levels of the exciton and the
trion in the K valley, respectively.

Figure 2(a) shows the trion binding energies in the
phenomenological, unscreened, and screened models—B

(ph)
X± ,

B
(un)
X± , and B

(sc)
X± —as functions of vc for several choices of the

subband cutoff nc. All are monotonously increasing functions
of vc, and they show the ascending order from screened, to

035416-4



TRIONS IN SEMICONDUCTING SINGLE-WALLED CARBON . . . PHYSICAL REVIEW B 85, 035416 (2012)

FIG. 2. (Color online) (a) Binding energies BX± of the trion,
consisting of two electrons and a hole in the K valley, as functions
of the Coulomb coupling constant vc = e2/2πγ εb, where γ /h̄ is the
Fermi velocity of graphene and εb denotes the background dielectric
constant. They are calculated in phenomenological, screened, and
unscreened models for different subband cutoffs nc = 0,1,2. The
result by the variational method in the phenomenological model52,53

is also shown. Inset: binding energies of trions with different valley
configurations, where λ1λ2-λ3 (λi = K,K′) indicates two electrons
and a hole at λ1, λ2, and λ3 valleys, respectively. (b) Binding energy
ratio of trion to exciton.

unscreened, to phenomenological models. With increasing
degree of intersubband mixing, the trion binding energies
become enhanced. At vc � 0.05, discrepancies among the
three models are negligible, which is no longer the case at
vc � 0.05. It should be noted that our evaluation of B

(ph)
X± by

exact diagonalization is slightly larger and thus more accurate
than the previous calculation by the variational method.52,53

The trion binding energy is always smaller in the un-
screened model than in the phenomenological model, and their
difference B

(ph)
X± − B

(un)
X± grows as vc increases. This is mainly

because the electron-hole interaction is suppressed by the form

factor in the unscreened model. The one in the screened model,
B

(sc)
X± , is further reduced from B

(un)
X± , due to the suppression of

electron-hole interaction by the screening. B
(sc)
X± saturates at

large vc, reflecting the saturation of the the screened interaction
um,q/(1 + um,q
m,q) at um,q ∼ vc � 1.

Next, one finds that B(sc)
X± is almost insensitive to the subband

cutoff nc, whereas B
(ph)
X± and B

(un)
X± without the screening effect

increase significantly as nc varies from 0 to 2. This behavior
stems from the (m,q) dependence of the dielectric function of
Eq. (6) shown in Fig. 1: the screening effect is almost absent in
the case of m = 0 and |q|L � 1, while it is relevant for m = 0
or |q|L � 1. The suppression of the intersubband interaction
(m = 0) results in the nc insensitivity of B

(sc)
X± .

In Fig. 2(b), we plot the binding-energy ratio of the trion
to the exciton, BX±/BX. At vc � 0.07, B

(ph)
X± /BX increases

monotonously and B
(un)
X± /BX is almost unchanged, as functions

of vc. In contrast, B
(sc)
X± /BX monotonously decreases. This

behavior is again explained by the (m,q) dependence of the
dielectric function. Trions have wave functions with more
complicate spatial structures, i.e., with more short-wavelength
components than excitons. As mentioned above, the screening
effect is relevant for the short-wavelength interaction compo-
nents (|q|L � 1). Therefore, trions are more sensitive to the
screening effect than excitons.

Figures 3 show the electron-electron and electron-hole pair
distribution functions, which are defined as

g(ee)(x,y) = 1

AL

∑
q,m

g̃(ee)
m,q exp

[
i

(
2πm

L
x + qy

)]
, (38)

g(eh)(x,y) = 1

AL

∑
q,m

g̃(eh)
m,q exp

[
i

(
2πm

L
x + qy

)]
, (39)

with the wave function of the trion, |�〉, and

g̃(ee)
m,q = 1

Ne(Ne − 1)
〈�| : ρ(e)†

m,qρ
(e)
m,q : |�〉, (40)

g̃(eh)
m,q = 1

2NeNh

〈�|( : ρ(e)†
m,qρ

(h)
m,q : + : ρ(h)†

m,q ρ(e)
m,q :

)|�〉, (41)

where x and y denote the coordinates in the circumference and
axial directions, respectively. They describe the probability
distribution of electrons and holes around the hole at the
origin. Note that the hole-hole pair-distribution function g(hh)

is equivalent to g(ee) due to electron-hole symmetry.
Figures 3(a) and 3(b) show the y and x dependences of

the the electron-hole pair distribution function, respectively. It
decreases monotonously as a function of y, indicating that
the electrons concentrate around the hole. The degree of
concentration is enhanced with increasing vc. On the other
hand, the electrons distribute uniformly along x if we consider
only the lowest subband (nc = 0). The inclusion of the excited
subbands allows the electrons to concentrate near x = 0,
whereas its x dependence is too weak to affect the binding
energy, as is seen in the small nc dependence of B

(sc)
X± in

Fig. 2(a).
The y and x dependences of electron-electron pair distribu-

tion function are also shown in Figs. 3(c) and 3(d), respectively.
The y dependence exhibits a dip at the origin, since the two
electrons avoid each other. We can also see that the spatial
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FIG. 3. (Color online) Electron-hole and
electron-electron pair distribution functions
g(eh)(x,y) and g(ee)(x,y), where x and y

axes are chosen in the circumferential and
axial directions, respectively. (a) g(eh)(x =
0,y). (b) g(eh)(x,y = 0). (c) g(ee)(x = 0,y). (d)
g(ee)(x,y = 0).

size of the trion shrinks as vc is increased. The distribution is
almost unchanged and uniform in the x direction, even when
we take into account the excited subbands.

Figure 4 shows the vc dependence of the binding energy
difference between the trion and the biexciton, � ≡ BX± −
BXX, evaluated in the phenomenological, unscreened, and
screened models with nc = 2. Here, we use the value of the
biexciton binding energy evaluated by the authors,54 which is
defined as

BXX ≡ 2EX − EXX, (42)

FIG. 4. (Color online) Differences between the trion and biex-
citon binding energies, BX± − BXX, as functions of the Coulomb
coupling constant vc, which are obtained in the phenomenological,
screened, and unscreened models with nc = 2.

where EXX denotes the energy level of the biexciton with the
quantum numbers (NK

e ,NK
h ) = (2,2) and (Se,Sh) = (0,0). The

ones in the phenomenological and the unscreened models,
�(ph) and �(un), both monotonously decrease with vc, and
are always negative. However, the one in the unscreened
model, �(sc), increases except at small vc, and becomes
positive at vc � 0.05. This implies that the trion peak is
located at the lower energy side of the biexciton one in
the photoluminescence spectra, which can be explained in
terms of the screening effect. As mentioned above, the trion
is more sensitive to the screening effects than the exciton.
Similarly, the biexciton binding energy is more influenced
by screening than the trion one, because of the complicated
structure of the biexciton wave function. This is indeed a
notable unconventional feature of s-SWCNT. In contrast, it
is known theoretically7–9 and experimentally11–14 that the
binding energies of negative or positive trions are smaller
than those of biexcitons in typical quasi-one-dimensional
semiconductor systems, e.g., GaAs/AlGaAs quantum wires.

B. Fine structures

Next, let us discuss the fine structures of the trion energy
levels caused by the short-range part of the Coulomb interac-
tion, δU . We do not use the perturbation theory but diagonalize
the full Hamiltonian Hfull = K + U + δU numerically by the
Lanczos method. The subband cutoff is set to nc = 0, since the
higher subband mixing effects are negligible in the screened
model, as already discussed in the previous subsection.

Here, one should notice that not only the trions but also the
excitons are affected by this perturbation, δU . Then, the trion
binding energies are redefined as

BX± ≡ ξK
00 + E

(0,1,+)
X − EX± , (43)

where EX± denotes the lowest energy level of the trion with
a given quantum number, and E

(0,1,+)
X is the lowest energy
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FIG. 5. (Color online) Trion binding energies as function of w1/w2, where w1 and w2 denote the strength of intra- and inter-valley scattering
due to the short-range part of Coulomb interaction, respectively. Trions are classified by their charge number in the K valley, NK

c , and total spin
S, and the results at w2�0/2πγL = 0.02 and 0.04 are shown in closed and open symbols, respectively. The Coulomb coupling constant vc is
(a) 0.10 and (b) 0.20.

level of the dark (optically forbidden) exciton with quantum
numbers NK

c = 0, S = 1, and P = +1, which is the true
ground state of the electron-hole system of (Ne,Nh) = (1,1). In
Fig. 5, the calculated binding energies are shown as functions
of w1/w2 for the fixed two choices of w2�0/2πγL = 0.02
and 0.04. The trions are classified by their quantum num-
bers, (NK

c ,S) = ((0,1),1/2), ((0,1),3/2), ((−1,2),1/2), and
((−1,2),3/2), where we use the parentheses in NK

c = (n,m)
to indicate that NK

c = n and m are equivalent due to inversion
symmetry.

We can see that only the bright (optically allowed) trion
with (NK

c ,S) = ((0,1),1/2) or the dark one with (NK
c ,S) =

((0,1),3/2) can be the true ground state. In the rest of this
subsection, we focus on these two candidates. They always
have positive binding energies, and thus can be interpreted as
the bound state of the dark exction with NK

c = 0, S = 1, and
P = +1, and an electron with spin 1/2. In fact, the composite
of spin 1 and 1/2 gives a total spin 1/2 and 3/2. It is interesting
to see that the bright trion is a composite of the dark exciton
and an electron. This, however, is natural, since electron-hole
recombination is allowed between the additional electron and
hole in the dark exciton.

As w1/w2 increases, the binding energy of the bright trion
is suppressed, while that of the dark one is almost unchanged.
Such a difference is caused by the electron-hole exchange
process, which raises only the energy level of the bright trion.
Actually, this process works between the singlet electron-hole
pair, and thus is allowed in the bright trion but is forbidden in
the dark one. As a result, the relative ordering of the energy
levels between the bright and dark trion is reversed as w1/w2

increases. In fact, the bright trion has the lowest energy at small
w1/w2, while the dark one is the lowest at large w1/w2. Similar
behavior is also reported for the bright and dark excitons,
which are classified by (NK

c ,S,P ) = (0,0, + 1) and (0,1, + 1),
respectively.26

With increasing w2�0/2πγL, the binding energies of both
the bright and dark trions are suppressed. This is presumably
attributed to the enhancement of the short-range electron-
electron interaction, which works in trions but not in excitons.

IV. SUMMARY AND DISCUSSIONS

In summary, we evaluated theoretically the binding energy
and wave function of trions in a semiconducting single-walled
carbon nanotube (s-SWCNT) by using a realistic model
that properly includes the four different essential features
of s-SWCNT: the nonparabolicity in the energy bands, the
form factors in the density operator, the screening effects of
interaction, and the self-energy correction to the energy bands.
By comparing the results of several different classes of models
which partially or fully include the above essential features, we
succeeded in understanding their role regarding the stability
of trions and their optical properties. We showed that the trion
binding energy is significantly suppressed by the form factor
and by the screening effects, which is the common feature of
biexcitons.54 In particular, we found an unconventional aspect
of s-SWCNT: the trion binding energy can exceed the biexciton
one, because biexcitons are more sensitive to the screening
effect than trions.

The experiment50 reports that the dependence on the
nanotube diameter d = π/L on the trion binding energy
is given by BX± ∼ C/d + O(d−2), with C ∼ 60 meV nm, if
the family pattern effects are not considered. Our numerical
evaluation in the limit of a/L → 0 gives C = 26 – 52 meV nm
for the the Coulomb coupling constant 0.1 � vc � 0.2. The
experimentally measured value is comparable to, but larger
than, our evaluation. A possible explanation for this is that
the positive trion is loosely bounded around the negatively
charged “acceptor” molecule, which leads to the binding
energy enhancement in the experiment.
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We also investigated the fine structure in the trion energy
levels, which is caused by the weak short-range part of the
Coulomb interaction. The trions are classified by their charge
number in the K valley, by the total spin, and by parity.
The bright (optically allowed) trion with the charge number
in the K valley of NK

c = 0,1 and the total spin S = 1/2,
and the dark (optically forbidden) one with NK

c = 0,1 and
S = 3/2, can always be interpreted as the bound states of
the dark exciton and an extra electron or hole. This relative
ordering of the bright trion and the dark exciton is confirmed
in the experiment.50 As the relative strength of the intravalley
scattering to the intervalley one, w1/w2, increases, the binding
energy of the bright trion is taken over by that of the dark
one. The qualitative understanding of fine structures is still a

controversial problem both theoretically and experimentally
even for the excitons, and it is hard at present to estimate
the explicit values of w1 and w2 from the experimental data
or first-principles calculations. More quantitative study of the
fine structures is left as our future problem.
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