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Quantum quenches and driven dynamics in a single-molecule device
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The nonequilibrium dynamics of molecular devices is studied in the framework of a generic model for
single-molecule transistors: a resonant level coupled by displacement to a single vibrational mode. In the limit
of a broad level and in the vicinity of the resonance, the model can be controllably reduced to a form quadratic
in bosonic operators, which in turn is exactly solvable. The response of the system to a broad class of sudden
quenches and ac drives is thus computed in a nonperturbative manner, providing an asymptotically exact solution
in the limit of weak electron-phonon coupling. From the analytic solution, we are able to (1) explicitly show that
the system thermalizes following a local quantum quench, (2) analyze in detail the time scales involved, (3) show
that the relaxation time in response to a quantum quench depends on the observable in question, and (4) reveal
how the amplitude of long-time oscillations evolves as the frequency of an ac drive is tuned across the resonance
frequency. Explicit analytical expressions are given for all physical quantities and all nonequilibrium scenarios
under study.
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I. INTRODUCTION

The description of strong electronic correlations far from
thermal equilibrium constitutes one of the major open ques-
tions of modern condensed matter physics. Even under the
most favorable conditions of nonequilibrium steady state,
many of the concepts and techniques that have proven so
successful in equilibrium are simply inadequate. Recent
advancements in a broad range of systems, from time-resolved
spectroscopies1,2 to cold atoms3,4 and driven nanostructures,5,6

have opened new and exciting possibilities for studying the
nonequilibrium dynamics in response to quantum quenches
and forcing fields. Depending on the physical context, one is
interested in questions of both basic and practical nature, such
as what are the underlying time scales governing the dynamics,
how long is coherence maintained, and whether and how does
the system equilibrate at long times. Some questions, e.g., the
issue of equilibration, often require nonperturbative treatments
even if the system is tuned to weak coupling.

Recent years have witnessed the development of an array
of powerful numerical techniques aimed at tracking the
real-time dynamics of interacting low-dimensional systems.
In the more specific context of quantum impurity systems,
these methodologies include time-dependent variants of the
density-matrix renormalization group,7,8 the time-dependent
numerical renormalization group,9,10 different continuous-
time Monte Carlo approaches,11–14 and sparse polynomial
space representations.15 Despite notable successes, part of
these methods are subject to finite-size effects and discretiza-
tion errors, while others are confined to rather short time
scales. Analytical efforts in this realm have focused mainly on
suitable adaptations of perturbative renormalization-group16,17

and flow-equation18 ideas, which in turn neglect higher-order
terms. Exact analytical solutions, when available, are thus in-
valuable both for setting a benchmark and for gaining unbiased
understanding of the underlying physics. Unfortunately, such
exact solutions are restricted at present to very special models
whose coupling constants must be carefully tuned.19,20

In this paper, we present an asymptotically exact solu-
tion for the nonequilibrium dynamics of a single-molecule
transistor in response to various quantum quenches and ac
drives. Single-molecule devices have attracted considerable
interest lately due to the technological promise of molecular
electronics.21 From a basic-science perspective, they offer an
outstanding platform to study the electron-phonon coupling at
the nanoscale. In a typical molecular bridge, molecular orbitals
are coupled simultaneously to the lead electrons and to the
vibrational modes of the molecule, with the former degrees of
freedom reduced to a single effective band in the absence of
a bias voltage.22 A minimal model for an unbiased molecular
bridge therefore consists of a single resonant level coupled by
displacement to a single vibrational mode, as described by the
Hamiltonian of Eqs. (1) and (2) below.

The spinless Hamiltonian of Eqs. (1) and (2) has been
extensively used in recent years to model single-molecule
transistors, however, despite its apparent simplicity, it lacks a
complete solution. Conventionally, the model is treated either
using perturbation theory in the electron-phonon coupling
when the coupling is sufficiently weak, or using the Lang-
Firsov transformation23 and the polaronic approximation in
the limit where tunneling is sufficiently small. A particularly
elegant nonperturbative solution of the model was recently
devised by Dóra and Halbritter,24 who noticed that the original
electronic Hamiltonian of Eqs. (1) and (2) can be mapped
onto an exactly solvable bosonic form in the limit where
the electronic level is broad. Building on prior results25,26

for the related single-impurity Holstein model, these authors
proceeded to compute the temperature-dependent conductance
of the device under strict resonance conditions. Since mapping
onto the exactly solvable model is controlled by the smallness
of the electron-phonon coupling g as compared to the level
width �, these results are expected to be asymptotically exact
in the weak-coupling limit, g � �.

In this paper, we take the solution one step further by
extending it to the nonequilibrium dynamics in response to
a broad class of quantum quenches and drives. We explicitly
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show that the system thermalizes following a local quantum
quench and analyze in detail the time scales involved. In
particular, we find that the relaxation time depends on the
observable in question, growing by a factor of two in going
from the phonon occupancy to the phonon displacement and
the electronic occupancy of the level. This is quite surprising
since unlike the Anderson impurity model, where spin and
charge generally relax on different time scales,9 the phonon
occupancy and displacement pertain to the same degrees
of freedom. A related doubling of frequency occurs in the
long-time response of the phonon occupancy to an ac drive.
These results as well as others are obtained in a fully analytic
manner, which is perhaps the most appealing aspect of our
solution.

Before proceeding to actual calculations, two technical
comments are in order. First, some of the scenarios under
consideration in this paper pertain to a level off resonance with
the Fermi energy, which necessitates the incorporation of the
level energy into the bosonic Hamiltonian. A nonzero energy
level breaks particle-hole symmetry, an aspect that is missing
in the treatment of Dóra and Halbritter. Below we correct their
mapping to properly account for this important point. Second,
some of the initial states to be considered will be nonthermal
states that cannot be treated using the Keldysh technique. We
circumvent this complication by explicitly constructing the
single-particle eigenmodes of the bosonic Hamiltonian and
using them to propagate the system in time.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the model and its mapping onto a form
quadratic in bosonic operators. The bosonic Hamiltonian is
solved in turn in Sec. III by explicitly constructing its single-
particle eigenmodes using the scattering-state formalism.
Technical details of the solution are relegated to the Appendix.
The next three sections are devoted to three different quench
scenarios: one, Sec. IV, where the electron-phonon interaction
is suddenly switched on, another, Sec. V, where the phonon
frequency is abruptly shifted from its initial value, and lastly,
Sec VI, the scenario where a sudden change is applied to the
electronic level. The case of driven dynamics is addressed in
Sec. VII, first in its general form before turning to an explicit
discussion of ac drives. Finally, we present our conclusions in
Sec. VIII.

II. THE MODEL AND ITS MAPPING

The Hamiltonian we consider is one of the common models
used to describe a single Coulomb-blockade resonance in
molecular devices. It consists of a single spinless electronic
level d† with energy εd , which is coupled by displacement to
a local vibrational mode b† with frequency ω0. The level is
further coupled to a band of spinless electrons via the hopping
matrix element t , as described by the Hamiltonian27

H = H0 + εd n̂d + ω0b
†b + g(b† + b)

(
n̂d − 1

2

)
, (1)

with n̂d = d†d and

H0 =
∑

k

εkc
†
kck + t

∑
k

(c†kd + d†ck). (2)

Here, the combination Q̂ = (b† + b)/
√

2 can be thought of as
a dimensionless position operator for the local phonon.

The Hamiltonian defined by Eqs. (1) and (2) has a long
history that dates back to the 1970s, when it was proposed as
a model for the electron-phonon coupling in mixed-valence
compounds.28 In the modern context of nanostructures, it is
expected to properly describe the physics of single-molecule
devices away from Coulomb-blockade valleys where a single
unpaired spin resides on the molecule. Typically, the Hamilto-
nian is treated either in the weak-coupling limit using pertur-
bation theory in g, or using the Lang-Firsov transformation23

and the polaronic approximation in the limit where t is small.
We shall take a different route and present a nonperturbative
solution to this model, which is asymptotically exact in the
limit where � � max{g,|εd |,g2/ω0}. Our approach is based
on the fact that the Hamiltonian of Eqs. (1) and (2) can
be controllably reduced in this limit to a form quadratic in
bosonic operators, which is exactly solvable. As discussed in
the introduction, this method was first employed in equilibrium
by Dóra and Halbritter.24 Here, we exploit this property
of the model to calculate the real-time dynamics following
different quantum quenches and also in response to ac drives.
Accordingly, our presentation begins with the conversion of
the Hamiltonian to a form that is quadratic in bosonic operators
whose solution is detailed in turn in Sec. III.

Technically, the construction of the bosonic Hamiltonian
proceeds in two steps (see Ref. 24): (i) the conversion
to a continuum-limit Hamiltonian and (ii) its subsequent
bosonization. Special care is paid to the parametric form of
the coupling constants that enter the bosonic Hamiltonian and
to the role of the energy level εd that breaks particle-hole
symmetry. The latter energy scale is of particular interest
as it can be controlled experimentally using suitable gate
voltages. In this respect, our derivation exceeds that of Dóra
and Halbritter.

A. Conversion to a continuum-limit Hamiltonian

Our first goal is to map the Hamiltonian of Eq. (1) onto a
continuum-limit form, where the resonant-level operator d†

is replaced with a suitable field operator. To this end, we
first diagonalize the Hamiltonian term H0 using scattering
theory to construct its single-particle eigenmodes. These are
conveniently expressed using the Green function of the level

G(z) =
(

z −
∑

k

t2

z − εk

)−1

(3)

and its associated phases

φk = arg[G(εk − iη)], (4)

where the limit η → 0+ is implied. Specifically, introducing
the properly normalized fermionic operators

ψ
†
k = eiφk c

†
k + t |G(εk + iη)|

×
(

d† +
∑
k′

t

εk − εk′ + iη
c
†
k′

)
, (5)
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the Hamiltonian term H0 can be shown to take the diagonal
form

H0 =
∑

k

εkψ
†
kψk, (6)

while d† acquires the mode expansion

d† = t
∑

k

|G(εk + iη)|ψ†
k . (7)

Further converting to the continuous energy-shell operators

ψ̃†
ε = 1√

ρ(ε)

∑
k

δ(ε − εk)ψ†
k , (8)

where ρ(ε) is the conduction-electron density of states,
Eqs. (6) and (7) become

H0 =
∫ D

−D

εψ̃†
ε ψ̃εdε (9)

and

d† =
∫ D

−D

√
ρd (ε)ψ̃†

ε dε. (10)

Here, D is the conduction-electron bandwidth and

ρd (ε) = − 1

π
Im[G(εk + iη)] (11)

is the spectral function associated with the Green function of
Eq. (3).

Our manipulations thus far were exact, independent of
details of the band dispersion εk . To make further progress,
we consider hereafter the wide-band limit, where the spectral
function of Eq. (11) acquires the Lorentzian form πρd (ε) =
�/(ε2

k + �2) with the hybridization width � = πρ(0)t2 [ρ(0)
is the conduction electrons density of states at the Fermi
energy]. Physically, � serves as a new high-energy cutoff for
the integration in Eq. (10). Since d† is the only electronic
degree of freedom that enters the remaining Hamiltonian terms
in Eq. (1), � acts as a new effective bandwidth for the electron-
phonon coupling. We shall next exploit this observation to
further manipulate the Hamiltonian of the system.

The Lorentzian cutoff in Eq. (10) is somewhat inconvenient
to deal with. However, its precise form should not play any role
in the desired limit � � max{g,|εd |,g2/ω0}, allowing one to
adopt a more convenient cutoff scheme. Indeed, it is useful to
replace ρd (ε) in Eq. (10) with a rectangular box profile29 that
has the same height at ε = 0 and shares the same characteristic
width:

ρd (ε) → 1

π�
θ (Dd − |ε|) (12)

with

Dd = π�

2
. (13)

Substituting ρd (ε) with the box profile of Eq. (12), the full
Hamiltonian of Eq. (1) becomes

H =
∫ D

−D

εψ̃†
ε ψ̃εdε + ω0b

†b

+
[

εd

π�
+ g

π�
(b†+b)

] ∫ Dd

−Dd

dε

∫ Dd

−Dd

dε′ : ψ̃†
ε ψ̃ε′ :, (14)

where : ψ̃†
ε ψ̃ε′ := ψ̃†

ε ψ̃ε′ − δ(ε − ε′)θ (−ε) stands for normal
ordering with respect to the filled Fermi sea. Note that
all electronic modes with |ε| > Dd are decoupled from the
phonon in Eq. (14) and can therefore be omitted. This amounts
to setting D → Dd in the integration boundaries of the free
kinetic-energy term.

The conversion to a continuum-limit Hamiltonian is com-
pleted by defining the right-moving field

ψ†(x) = 1√
2aDd

∫ Dd

−Dd

e−iεx/vF ψ̃†
ε dε, (15)

where vF is the Fermi velocity and

a = πvF

Dd

= 2vF

�
(16)

is a new short-distance cutoff corresponding to a lattice
spacing. The new cutoff is connected to the momentum cutoff
kc = vF /Dd through the standard relation kc = π/a. The field
operators so defined obey canonical anticommutation relations
{ψ(x),ψ†(y)} = δ(x − y), subject to the regularization δ(0) =
1/a. Recalling that the local fermion d† has been mapped
in this process onto

√
aψ†(0), this regularization guarantees

that {d,d†} = 1 is preserved. Written in terms of the new
field operators, the Hamiltonian of the system takes the
continuum-limit form

H = −ivF

∫ ∞

−∞
ψ†(x)∂xψ(x)dx + ω0b

†b

+ [ε̃d + λ(b† + b)] : ψ†(0)ψ(0) : (17)

with

λ = ga = 2
vF

�
g, (18)

ε̃d = εda = 2
vF

�
εd. (19)

Hence, the resonance width �, the electron-phonon coupling
g, and the energy level εd have been reduced to two parameters
only, which have the dimension of energy times length.
It should be stressed that the original conduction-electron
bandwidth D has been replaced in Eq. (17) with Dd ∼ �,
which serves as the new high-energy cutoff for the continuum-
limit Hamiltonian.

The Hamiltonian of Eq. (17), first derived in this context
by Dóra and Halbritter,24 is by no means new. It describes the
coupling of a localized phonon mode to a conduction band, and
as such has been applied in different variants to a broad class
of physical systems. For example, Gadzuk considered it as a
general impurity model30 before applying it to the vibrational
line shape of diatomic adsorbates on metallic clusters.31 Yu and
Anderson32 proposed a closely related two-band Hamiltonian
as a model for the anomalous properties of A15 materials,
while Dóra and Gulácsi26 used this Hamiltonian to study the
inelastic scattering from local vibrational modes. Although
the model in its general form lacks a full solution, it can be
conveniently handled in the parameter regime of interest to us
using the methodology of Abelian bosonization.

035411-3



YUVAL VINKLER, AVRAHAM SCHILLER, AND NATAN ANDREI PHYSICAL REVIEW B 85, 035411 (2012)

B. Abelian bosonization

Our next step is to bosonize the continuum-limit Hamilto-
nian defined by Eq. (17). Using the standard prescriptions of
Abelian bosonization,33 the fermionic field operator ψ(x) is
written as

ψ(x) = 1√
2a

e−iφ(x), (20)

where the bosonic field φ(x) has the mode expansion

φ(x) = 2πi
∑
q>0

ξq

q
(aqe

iqx − a†
qe

−iqx) − 2πx

L
: N̂ : + θ̂ .

(21)

Here, aq and a
†
q are canonical bosonic creation and annihilation

operators corresponding to the Fourier components of the
electronic density, N̂ is the total fermionic number operator,
:Ô : stands for normal ordering with respect to the filled Fermi
sea, and θ̂ is a phase operator conjugate to N̂ . The coefficients
ξq have the explicit form

ξq =
√

q

2πL
e−aq/2π , (22)

which includes a suitable ultraviolet momentum cutoff
kc = π/a.

The rules of bosonization enable one to represent fermionic
operators in terms of bosonic ones with an important caveat:
the bosonized form of the interaction term is generally not
known away from weak coupling. This uncertainty is removed
in the limit of interest � � max{g,|εd |,g2/ω0}, when the
standard substitution : ψ†(x)ψ(x) := (−1/2π )∂xφ(x) applies.
Restricting attention to this regime, the bosonized Hamiltonian
is thus recast as34

H =
∑
k>0

εka
†
kak + ω0b

†b + [λ(b† + b) + ε̃d ]
∑
q>0

ξq(aq + a†
q).

(23)

Another important identity pertains to the occupancy of
the localized electronic level n̂d = d†d. Since d† has been
mapped in the continuum limit onto

√
aψ†(0), then n̂d − 1/2

corresponds to a : ψ†(0)ψ(0) :, where we have made use of
the fact that the expectation value of ψ†(0)ψ(0) with respect to
the unperturbed Fermi sea is 1/(2a) [see Eq. (15) with x = 0].
Accordingly, n̂d − 1/2 has the bosonized representation34

n̂d − 1

2
= a

∑
k>0

ξk(a†
k + ak). (24)

This identity will play a key role in our calculations below.

III. EXACT DIAGONALIZATION

The Hamiltonian of Eq. (23) is quadratic in bosonic
operators and as a result is exactly solvable. In the following
section we construct its single-particle eigenmodes using
the scattering-state formalism. Although of similar technical
complexity, it is advantageous to first address the case where
εd = 0, and then extend the discussion to nonzero εd . This
will prove beneficial as we shall be interested, among other
things, in cases where the level energy is shifted abruptly from

εd = 0 to nonzero εd . As we shall see, such a scenario requires
the conversion between the eigenmodes of the Hamiltonian
with and without εd . In contrast to the Keldysh technique,
the expansion in terms of the eigenmodes of the bosonic
Hamiltonian will enable us to address cases of practical interest
where the system is initially prepared in a nonthermal state. For
example, if the phonon initially occupies an excited state. Our
approach is therefore more general than the Keldysh technique.

A. Scattering states for εd = 0

When a free bosonic mode a
†
k impinges upon the local

phonon b†, it is scattered into a linear combination of the free
bosonic modes and the localized phonon. This process can be
described by the scattering states α

†
k , which are eigenmodes of

the bosonic Hamiltonian obeying suitable boundary conditions
of an incoming free particle. The scattering-state operators can
be found by solving the Lippmann-Schwinger equation, which
takes the operator form

[α†
k,H] = −εkα

†
k + iη(a†

k − α
†
k). (25)

The role of η → 0+ in Eq. (25) is to guarantee appropriate
boundary conditions. It does not enter any physical quantities.

A detailed solution of Eq. (25) is presented in the Appendix,
using the methodology developed in Ref. 35. Here, we quote
only the end result. The scattering-state operators are given by

α
†
k = a

†
k + λg(εk + iη)ξk

[
(εk − ω0)b + (εk + ω0)b†

+ 2ω0λ
∑
q>0

ξq

(
a
†
q

εk + iη − εq

+ aq

εk + iη + εq

)]
,

(26)

where

g(z) = 1

z2 − ω2
0 − 2ω0�(z)

(27)

is related to the phononic Green function of Eq. (A20) and

�(z) = λ2
∑
k>0

ξ 2
k

(
1

z − εk

− 1

z + εk

)
(28)

is the corresponding self-energy. Both �(z) and g(z) are
analytic in the upper and lower halves of the complex plane,
have a branch cut along the real axis, and are even functions
of z [i.e., g(z) = g(−z) and likewise for �(z)]. In addition,
g(z∗) = g∗(z) and �(z∗) = �∗(z). These analytical properties
are useful in establishing some of the operator identities that
will be employed in this paper. In particular, it can be explicitly
shown that, in the limit where L → ∞, η → 0+ and yet
Lη → ∞, the Hamiltonian takes the diagonal form

H =
∑
k>0

εkα
†
kαk, (29)

while the scattering-state operators maintain canonical com-
mutation relations:

[αk,α
†
q] = δk,q , (30)

[αk,αq] = 0. (31)
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In fact, the latter commutation relations apply to any finite η,
though only the limit η → 0+ is of interest to us.

One particularly useful identity is the expansion of the local
phonon mode b† in terms of the scattering-state operators:

b† = λ
∑
k>0

ξk[g(εk − iη)(εk + ω0)α†
k

− g(εk + iη)(εk − ω0)αk]. (32)

Combined with the diagonal form of the Hamiltonian of
Eq. (29), one can immediately write down the time evolution
of b†(t) in the Heisenberg representation, which reads

b†(t) = λ
∑
k>0

ξk[g(εk − iη)(εk + ω0)eiεktα
†
k

− g(εk + iη)(εk − ω0)e−iεk tαk]. (33)

A similar identity applies to the occupancy of the localized
electronic level, whose bosonized form has been detailed in
Eq. (24). Expanding the right-hand side of Eq. (24) as

a
∑
k>0

ξk

(
ε2
k − ω2

0

)
[g(εk − iη)α†

k + g(εk + iη)αk], (34)

one has that

n̂d (t) = 1

2
+ a

∑
k>0

ξk

(
ε2
k − ω2

0

)
[g(εk − iη)eiεk tα

†
k

+ g(εk + iη)e−iεk tαk]. (35)

The operator identities listed in Eqs. (33) and (35) are
central to our study as they allow one to track the nonequilib-
rium dynamics of the phonon mode and the level occupancy,
respectively. Accordingly, they will be heavily used throughout
the paper.

B. Extension to nonzero εd

As stated above, the inclusion of a nonzero εd is quite
straightforward and does not add to the complexity of
computing the scattering-state operators. Since εd adds a term
linear in bosonic operators to the Hamiltonian [see Eq. (23)],
the resulting scattering-state operators differ by a simple
k-dependent displacement from their εd = 0 counterparts (see
the Appendix for a detailed derivation). Reserving the notation
α
†
k for the scattering-state operators when εd = 0 and denoting

the new operators by β
†
k , the latter are given by

β
†
k = α

†
k + ε̃dξk

ε2
k − ω2

0

εk + iη
g(εk + iη), (36)

where ε̃d and α
†
k are specified in Eqs. (19) and (26), respec-

tively. The shift in scattering-state operators carries over to
physical observables as well. For example, the local phonon
mode is expanded as

b† = b̃† + ε̃d

λ
ω0g(−iη)�(−iη), (37)

where b̃† is given by the same formal expression of
Eq. (32), but with α

†
k and αk replaced with β

†
k and βk ,

respectively:

b̃† = λ
∑
k>0

ξk[g(εk − iη)(εk + ω0)β†
k

− g(εk + iη)(εk − ω0)βk]. (38)

As discussed below [see Eq. (52) with ξ → 0], the self-energy
�(−iη) takes the particularly compact form −g2/(π�), hence
Eq. (37) can be rewritten as

b† = b̃† + εd

π�

g

ω0

1

1 − 2g2/(πω0�)
, (39)

where we have expressed the constant shift in terms of the
original model parameters that appear in Eq. (1).

An analogous expansion applies to the occupancy of the
localized level, n̂d , which is written as

n̂d = ñd − aε̃d

λ2
ω2

0g(−iη)�(−iη). (40)

Here,

ñd = 1

2
+ a

∑
k>0

ξk

(
ε2
k − ω2

0

)
[g(εk − iη)β†

k + g(εk + iη)βk]

(41)

is the same formal expression of Eq. (35) with the time t set to
zero and with α

†
k and αk replaced by β

†
k and βk , respectively.

As with b†, one can exploit the explicit expression for the
self-energy �(−iη) to recast n̂d in the form

n̂d = ñd − εd

π�

1

1 − 2g2/(πω0�)
. (42)

Note that the displacement of the scattering-state operators
and the associated shifts in the expansions of b† and n̂d have
a simple physical origin: they reflect the breaking of particle-
hole symmetry in the original Hamiltonian of Eq. (1) inflicted
by a nonzero εd . This important aspect of εd is absent in
the mapping of Dóra and Halbritter,24 who accounted for this
energy scale by a simple Lorentzian reduction of the coupling
constant λ. Some of the results presented in this work would
be missed out unless the breaking of particle-hole is properly
treated.

Armed with the single-particle eigenmodes of the full
Hamiltonian and with the expansions of physical operators
in terms of these modes, we are now in position to compute
the real-time dynamics of the system in response to various
quantum quenches and ac drives. Specifically, we shall con-
sider three quench scenarios: one where the electron-phonon
interaction is abruptly switched on, another where the phonon
frequency is suddenly shifted from ω0 to ω0 + δω, and, finally,
a sudden change in the level energy from εd = 0 to nonzero
εd . In addition, we shall consider two ac drives—one applied
to the local phonon and another applied to the electronic level.
Of particular interest are the characteristic time scales that
govern the nonequilibrium dynamics and their dependencies
on the physical parameters of the system. These aspects will
be analyzed in detail below.

IV. SWITCHING ON THE INTERACTION

We begin our discussion with the nonequilibrium dynamics
following an abrupt switching on of the electron-phonon
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interaction g. We consider the following scenario. At time
t < 0, the system is free of interactions (i.e., g = 0), and
occupies a state that is a direct product of the electronic
ground state (the filled Fermi sea) and an arbitrary phononic
state. Typically one is interested in cases where the phonon
has either a well defined occupation number n or resides in
a coherent state, though our discussion is not restricted to
these particular choices. At time t = 0, the electron-phonon
interaction is abruptly switched on and the system evolves
under the full Hamiltonian H. This acts to entangle the
phononic and electronic degrees of freedom, which are no
longer independent. We concentrate our discussion on zero
temperature, yet the derivation presented below can readily be
extended to any finite temperature T of the Fermi sea.

Formally, the time evolution of the expectation value of an
observable Ô is given by the standard expression

O(t) = 〈ψ0|U †(t,0)ÔU (t,0)|ψ0〉, (43)

where |ψ0〉 is the initial state of the system and U (t,0) is
the time-evolution operator. One is therefore interested in
the expectation value of Ô in its Heisenberg representation
Ô(t) = U †(t,0)ÔU (t,0) with respect to the initial state |ψ0〉.
In the scenario under consideration, the initial state has a
simple representation in terms of the eigenmodes of the initial
Hamiltonian with g = 0, whereas the time evolution has a
natural representation in terms of the eigenmodes of the full
(i.e., final) Hamiltonian H. Therefore the general strategy for
calculating O(t) proceeds as follows. First, Ô(t) is represented
in terms of the eigenmodes of the full Hamiltonian where its
time evolution can easily be implemented, next, it is recast in
terms of the eigenmodes of the initial Hamiltonian, and finally,
the expectation value with respect to |ψ0〉 is evaluated. Below
we implement this procedure to track the time evolution of
the phononic occupancy nb(t) = 〈b†(t)b(t)〉 and displacement
Q(t) = 1√

2
〈b†(t) + b(t)〉. Throughout the section, we set εd

equal to zero, corresponding to a level at resonance with the
Fermi energy.

A. Time evolution of phononic operators

Our first goal is to express b†(t) in terms of ak , a
†
k , b and

b†, which are the eigenmodes of the initial Hamiltonian with
g = 0. The expansion of b†(t) in terms of the eigenmodes of
the final Hamiltonian is detailed in Eq. (33). Substituting the
explicit expression for the scattering-state operators, Eq. (26),
into Eq. (33) one obtains

b†(t) = λ
∑
k>0

ξk[F (εk − iη,t)a†
k + F (−εk − iη,t)ak]

+I1(t)b + I2(t)b†, (44)

where we have introduced three auxiliary functions:

I1(t) = λ2
∑
k>0

ξ 2
k |g(εk + iη)|2(ε2

k − ω2
0

)
(eiεk t − e−iεk t ), (45)

I2(t) = λ2
∑
k>0

ξ 2
k |g(εk + iη)|2[(εk + ω0)2eiεk t

− (εk − ω0)2e−iεk t ], (46)

F (z,t) = g(z)(z + ω0)eizt + 2ω0λ
2
∑
k>0

ξ 2
k |g(εk + iη)|2

×
(

εk + ω0

εk − z
eiεk t − εk − ω0

εk + z
e−iεk t

)
. (47)

In general, one must resort to numerical integration to
accurately evaluate the three functions defined above at
arbitrary time t . Results of such numerical calculations will
be presented below for the relevant observables of interest.
However, it is instructive to gain analytical insight first by
analyzing the long-time behaviors of the auxiliary functions.
In the limit L → ∞, one can replace the sums over k with
integrals over energy, resulting in an exponential decay at
long times of all items but the first term on the right-hand
side of Eq. (47). To see this important point consider I1(t),
for example. Converting the sum over k into integration over
energy, one is left with the integral

I1(t) = (ρ0λ)2
∫ ∞

0
dε|g(ε + iη)|2(ε2 − ω2

0

)
× ε(eiεt − e−iεt )e−ε/Dd , (48)

where ρ0 = 1/(2πvF ) is the density of states per unit length.
Focusing on t � 1/Dd , one may (i) omit the exponential cutoff
e−ε/Dd in Eq. (48) and (ii) interchange ε → −ε in the second
term in the parenthesis to obtain

I1(t) � (ρ0λ)2
∫ ∞

−∞
dε|g(ε + iη)|2ε (

ε2 − ω2
0

)
eiεt . (49)

The function g(ε + iη) is analytic in the upper half of the
complex plane, whereas the analytic continuation of g∗(ε +
iη) to the upper half plane has a set of isolated poles36 of the
form pj = ωj + i/τj with τj > 0. Using these poles one can
formally perform the integral in Eq. (49) to arrive at

I1(t) � 2πi(ρ0λ)2
∑

j

Rj

(
p2

j − ω2
0

)
pje

iωj t−t/τj , (50)

where Rj is the residue of |g(ε + iη)|2 at pj . Thus, for
t � 1/Dd , the function I1(t) is well approximated by a discrete
sum of exponential terms that contain both an oscillatory
component and a part that decays in time. Asymptotically,
only those terms with the largest decay time τj dominate,
hence I1(t) closely follows a simple exponential decay with
superimposed oscillations. A similar procedure can be applied
to I2(t) and to the term involving the sum over k in the
expression for F (z,t), both of which are found to be dominated
by the same set of poles pj provided z lies in the lower half
plane (as is the case throughout our calculations).

Next, we address the poles pj , which are given by the
solutions to the equation

z2 − ω2
0 − 2ω0�

(+)(z) = 0, (51)

where �(+)(z) is the analytic continuation of �∗(ε + iη) to
the upper half plane. For L → ∞, the self-energy (28) has the
explicit analytic expression

�(z) = (ρ0λ)2Dd [ξeξE1(ξ ) − ξe−ξE1(−ξ ) − 2], (52)

where ξ equals z/Dd and E1(z) is the exponential integral
function.37 Expanding E1(z) as a logarithm plus a power
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series in z, one obtains �∗(ε + iη) = (ρ0λ)2Dd [iπε̃ − 2 +
O(ε̃2 ln ε̃)] with ε̃ = ε/Dd , resulting in

�(+)(z) = (ρ0λ)2Dd [iπξ − 2 + O(ξ 2 ln ξ )]. (53)

In general, Eq. (51) lacks an analytical solution. However, in
the desired limit where ρ0λ = g/(π�) � 1 and ω0 � Dd , one
can truncate the expansion of �(+)(z) at linear order in ξ , to
be left with a simple quadratic equation in Eq. (51). In this
limit, only two poles exist, which differ in the sign preceding
the frequency: p± = ±ω + i/τ with

ω = ω0

√
1 − 2

π

g2

ω0�
− 1

π2

(
g

�

)4

. (54)

The decay time τ is given in this approximation by τ =
π�2/(ω0g

2) where we have converted back to the original
model parameters of Eq. (1) in writing both the frequency ω

and the single relaxation time τ . Note that these expressions
for ω and τ coincide with second-order perturbation theory
in g when applied directly to the electronic Hamiltonian
of Eq. (1),38 thus validating the cutoff scheme used in
bosonization. The expression for τ can be further improved
by going to the next order in ω0/Dd , i.e., by including one
more order in ξ in the expansion of �(+)(z). This in turn yields

τ = π

ω0

(
�

g

)2 (
1 + 2

π

ω0

�

)
, (55)

where we have restricted ourselves to linear order in ω0/Dd in
writing the expression in the right brackets.

As we shall confirm by explicit numerical calculations,
the nonequilibrium dynamics of all observables of interest is
governed exclusively by ω and τ at time scales exceeding
1/Dd . Similar results for ω and 1/τ were reported by Dóra
and Halbritter24 (corresponding in their notation to the real and
imaginary parts of ωp±), yet their expression for ω contained
the bare conduction-electron bandwidth D rather than the
renormalized one Dd ∼ � � D. Indeed, Eqs. (54) and (55)
are free of the bandwidth D, indicating that one can safely
implement the limit D → ∞ for the Hamiltonian of Eq. (1),
provided �, g, and ω0 are all held fixed. Physically this reflects
the fact that the local phonon couples to the conduction band
by way of the resonant level only, hence its level width �

serves as a new effective high-energy cutoff. By contrast,
there is no meaningful Dd → ∞ limit for the continuum-limit
Hamiltonian of Eq. (17) that keeps both ω and τ finite.

Equation (54) features two special values of the electron-
phonon coupling g. One, g0, above which the frequency
ω becomes imaginary (i.e., p± become purely imaginary)
and another, slightly larger coupling gc, above which the
pole p− is shifted to the lower half plane. The former
coupling strength represents the point where the local phonon
is completely softened, whereas the latter value represents
the point above which the energy of the lowest bosonic
eigenmode of the Hamiltonian of Eq. (23) becomes negative.
Both values of g lie well beyond the applicability of our
theory, as the mapping onto the continuum-limit Hamiltonian
assumed � � max{g,g2/ω0}. Interestingly, it has been argued
by Dóra25 that the bosonized Hamiltonian of Eq. (23) offers
a faithful representation of the continuum-limit Hamiltonian
of Eq. (17) all the way up to strong coupling, where the

nonlinear conversion between the fermionic and the bosonic
coupling constants is not explicitly known. In particular, the
point where p− is shifted to the lower half plane was identified
by Dóra with λ → ∞. It remains to be seen whether such
strong electron-phonon couplings can indeed be described by
a bosonized Hamiltonian with just a simple linear displacement
coupling, or whether additional nonlinear terms must be
included.

B. Phononic occupancy and displacement

With the explicit expansions of b†(t) and b(t) at hand we can
proceed to compute the time evolution of physical observables,
starting with the phonon occupancy nb(t) and displacement
Q(t). Since b†(t) is linear in the eigenmodes of the initial
Hamiltonian, the phonon number operator n̂b(t) = b†(t)b(t)
is quadratic in these operators. When averaged with respect
to the initial state, only the combinations aka

†
k , b†b, bb†, bb,

and b†b† contribute to the expectation value of n̂b at time t ,
resulting in

nb(t) = λ2
∑
k>0

ξ 2
k |F (−εk − iη,t)|2 + |I1(t)|2[nb(0) + 1]

+ |I2(t)|2nb(0) + 2Re[I1(t)I ∗
2 (t)〈bb〉t=0]. (56)

Equation (56) is the central result of this section. It provides
an asymptotically exact expression for the time evolution of
nb(t) in the weak-coupling regime. Several comments should
be made about this result. First, the occupancy nb(t) depends
on the initial state of the phonon via two parameters only:
nb(0) and 〈bb〉t=0. Any two initial states that share the same
values of nb(0) and 〈bb〉t=0 will produce identical curves for
nb(t). Second, since I1(t) and I2(t) decay to zero with time,
the occupancy at long times is independent of the initial state
of the phonon. Third, the term involving the summation over
k in Eq. (47) decays to zero as well, resulting in a compact
expression for the phononic occupancy at long times:

nb(t → ∞) = λ2
∑
k>0

ξ 2
k |g(εk + iη)|2(εk − ω0)2. (57)

Finally, one can show that Eq. (57) is just the zero-temperature
equilibrium phonon occupancy with respect to the full
Hamiltonian,39 implying thermalization at long times. This
result on its own is not surprising, since it has been rigorously
shown by Ambegaokar40 that Hamiltonians involving a local
bosonic mode coupled linearly to a macroscopic bosonic bath
do indeed equilibrate at long times in response to a local
quantum quench. Below we analyze in detail the decay to
the new thermal equilibrium.

Figures 1 and 2 summarize the time evolution of nb(t), for
different coupling constants and different initial conditions. In
Fig. 1, we have plotted nb(t) in response to an abrupt switching
on of the electron-phonon coupling g, with the phonon initially
occupying the empty state |0〉 at time t = 0. Different values
of g are depicted. Starting from nb(0) = 0, the time-dependent
occupancy first overshoots its new equilibrium value to which
it then decays with superimposed oscillations. The oscillatory
decay is well described by the long-time behaviors of I1(t) and
I2(t) and the term involving the sum over k in the expression
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FIG. 1. (Color online) Time evolution of the phonon occupancy
nb(t) following an abrupt switching on of the electron-phonon
coupling g at time t = 0, with the phonon initially occupying the
empty state |0〉. Here, ω0/Dd = 0.2, while g/� equals 0.229 (green),
0.28 (red), and 0.324 (black). The corresponding values of g2/(ω0�)
are 1/6, 1/4, and 1/3, respectively. Inset: a fit of the g/� = 0.324
curve to the functional form of Eq. (58) using the fitting range
9 � ω0t � 95. The two curves practically coincide above ω0t = 8.

for F (z,t). Indeed, based on our previous analysis, one expects
nb(t � 1/Dd ) to follow the functional form

nb(t) = [A sin(2�t + φ) + B]e−2t/τ0 + C, (58)

with � and τ0 equal to ω and τ of Eqs. (54) and (55). The inset
of Fig. (1) shows a typical fit of the g/� = 0.324 curve to the
functional form of Eq. (58) using the fitting range 9 � ω0t �
95. While some deviations are seen at shorter times, the two
curves are hardly distinguishable above ω0t = 8. Moreover,
the extracted values of �/ω0 = 0.896 and τ0ω0 = 35.5 fall

0 20 40 60 80
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0
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1

n b(t
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1             0

0.4        -0.566i
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n
b
(0) <bb>

t=0

FIG. 2. (Color online) Time evolution of the phonon occupancy
nb(t) following an abrupt switching on of the electron-phonon
coupling g, for g/� = 0.324, ω0/Dd = 0.2, and different initial
phononic states. Each of the curves with nb(0) > 0 corresponds
to a family of initial states whose values of nb(0) and 〈bb〉t=0 are
specified in the legends. Representative states for each category are
[2|0〉 − i|2〉]/√5 (red) and |1〉 (green). The curve with nb(0) = 0
(black) corresponds exclusively to the initial state |0〉.

within 1.2% from those of ω and τ quoted above. The
agreement between the predicted and extracted parameters is
equally good for the two curves with the smaller values of g,
confirming our analytic predictions for the long-time behavior
of nb(t).

Figure 2 displays the complementary dependence of nb(t)
on the initial state of the localized phonon. As emphasized
above, nb(t) depends on the initial state of the phonon via
two parameters only: nb(0) and 〈bb〉t=0. Hence each curve
with nb(0) > 0 corresponds to a family of initial states. It is
nevertheless useful to have a particular initial state in mind
by assigning a representative state to each combination of
nb(0) and 〈bb〉t=0. One possible choice of states for the two
curves with nb(0) > 0 are [2|0〉 − i|2〉]/√5 (red line) and |1〉
(green line). The curve with nb(0) = 0 (black line) corresponds
exclusively to |0〉 as the initial state.

As in Fig. 1, all curves in Fig. 2 can be fit equally well to the
functional form of Eq. (58) using the same pair of values for �

and τ0 that were extracted for nb(0) = 0. Generally speaking,
the larger is nb(0) the more pronounced is the component
of the pure exponential decay, while the magnitude of the
superimposed oscillations is more sensitive to 〈bb〉t=0.

Another quantity of interest is the time evolution of the
phonon displacement, Q(t). Since Q is strictly zero for εd = 0
in thermal equilibrium, its time evolution remains pinned to
zero unless either εd or 〈b〉t=0 is nonzero. In this section,
we consider the latter possibility where 〈b〉t=0 is nonzero.
A straightforward evaluation of Q(t) using Eq. (33) and its
Hermitian conjugate yields

Q(t) =
√

2 Re{[I1(t) + I ∗
2 (t)]〈b〉t=0}, (59)

whose dependence on the initial state is reduced to the sole
parameter 〈b〉t=0. Writing the latter in terms of its magnitude
and phase, 〈b〉t=0 = |〈b〉|eiϕ , the time-dependent displacement
depends linearly on |〈b〉|. The dependence on ϕ is less
transparent as it requires detailed knowledge of I1(t) and I2(t).
Numerical calculations reveal, however, that the dependence
on ϕ is rather weak, hence we focus our attention hereafter on
ϕ = 0.

Figure 3 depicts the time evolution of Q(t) for 〈b〉t=0 = 1
and two representative values of the electron-phonon coupling
g. As can be seen, Q(t) displays damped oscillations with a
frequency and decay time that depend on the magnitude of g.
Indeed, based on our previous analysis of I1(t) and I2(t) one
expects the long-time behavior of Q(t) to follow the functional
form

Q(t) = A sin(�t + φ)e−t/τ0 (60)

with � and τ0 equal to ω and τ , respectively. Fits to Eq. (60)
yield excellent agreement, with values of � and τ0 that coincide
to within less than 1% with those extracted from Fig. 1 using
fits to Eq. (58).41 Thus Q(t) displays a relaxation time twice
as long as that of nb(t) and half the frequency of oscillations.
Such a relation is quite natural for a classical oscillator
where nb(t) = 〈b†(t)〉〈b(t)〉 ∼ Q2(t), but is less obvious for
the quantum case considered here.
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FIG. 3. (Color online) Time evolution of the phonon displacement
Q(t), starting from an initial phonon state where 〈b〉t=0 = 1. Here,
ω0/Dd equals 0.2. Two representative values of the electron-phonon
coupling are depicted: g/� = 0.324 (black) and g/� = 0.229 (red),
corresponding to g2/(ω0�) = 1/3 and 1/6, respectively.

C. Phononic wave function

Lastly we shall address the time evolution of the phononic
wave function, defined as

|ψph(x,t)|2 = 〈δ(Q̂(t) − x)〉. (61)

Here, Q̂(t) = U †(t,0)Q̂U (t,0) is the phonon displacement
operator in its Heisenberg representation, x is a dimensionless
position coordinate, and averaging is done with respect
to the initial state of the system. In thermal equilibrium,
|ψph(x,t)|2 was calculated by Dóra,25 who showed that it takes
a simple Gaussian form. Below, we extend the calculation to
nonequilibrium quench dynamics, allowing for an arbitrary
initial phonon state.

Following Dóra, we begin by rewriting Eq. (61) as

|ψph(x,t)|2 =
∫ ∞

−∞

ds

2π
〈eis[Q̂(t)−x]〉. (62)

Since Q̂(t) is linear in bosonic operators, and since averaging
on the right-hand side is taken with respect to a product state of
the filled Fermi sea and the initial phonon state, 〈eis[Q̂(t)−x]〉 can
be recast as the product of two independent averages of the
conduction-electron and local-phonon components of Q̂(t).
Explicitly, denoting the two components of Q̂(t) by Q̂c(t) and
Q̂b(t) one has that

〈eisQ̂(t)〉 = 〈eisQ̂b(t)〉b〈eisQ̂c(t)〉FS , (63)

where 〈· · ·〉FS and 〈· · ·〉b stand for averaging with respect to
the filled Fermi sea and the initial phononic state, respectively.

Each of the two averages in Eq. (63) can be evaluated
in turn using standard bosonic techniques. Consider first the
conduction-electron component. As the average is taken with
respect to the ground state of a free bosonic bath one can use
the identity 〈eÂ〉 = e〈Â2〉/2, applicable to any operator Â that

is linear in bosonic creation and annihilation operators. This
results in

〈eisQ̂c(t)〉FS = exp

[
− s2

2

〈
Q̂2

c(t)
〉
FS

]
. (64)

Moving on to the local phonon component, we first note that
Q̂b(t) has the explicit form

Q̂b(t) = I3(t)b† + I ∗
3 (t)b, (65)

where

I3(t) = 1√
2

[I ∗
1 (t) + I2(t)] =

√
2ω0λ

2
∑
k>0

ξ 2
k |g(εk + iη)|2

×[(εk − ω0)eiεkt + (εk + ω0)e−iεk t ]. (66)

Next we use the identity eÂ+B̂ = eÂeB̂e[B̂,Â]/2, applicable to
any two operators Â and B̂ whose commutator is a c number,
to write

〈eisQ̂b(t)〉b = e−(s2/2)|I3(t)|2〈eisI3(t)b†eisI ∗
3 (t)b〉b. (67)

The combination of Eqs. (63), (64), and (67) then yields

|ψph(x,t)|2 =
∫ ∞

−∞

ds

2π
e−γ (t)s2−isx〈eisI3(t)b†eisI ∗

3 (t)b〉b (68)

with

γ (t) = ω2
0λ

2
∑
k>0

ξ 2
k |K(εk − iη,t)|2 + 1

2
|I3(t)|2 (69)

and

K(z,t) = g(z)eizt + 2ω0λ
2
∑
q>0

ξ 2
q |g(εq + iη)|2

×
(

eiεq t

εq − z
+ e−iεq t

εq + z

)
. (70)

Equation (68) allows one to calculate the phononic wave
function for arbitrary time t > 0 and any initial phononic
state. Before turning to concrete examples let us address some
generic features of |ψph(x,t)|2. Since I3(t) decays to zero
as t → ∞, the expectation value on the right-hand side of
Eq. (68) reduces asymptotically to one regardless of the initial
state of the phonon. Furthermore, repeating the same type
of analysis as beforehand one finds that the term involving
the sum over q in the expression for K(εk − iη,t) decays to
zero with the relaxation time τ , and that γ (t) decays to its
asymptotic value

γ = lim
t→∞ γ (t) = λ2ω2

0

∑
k>0

ξ 2
k |g(εk + iη)|2 (71)

with the reduced relaxation time τ/2. The phononic wave
function thus takes the asymptotic Gaussian form

|ψph(x)|2 = lim
t→∞ |ψph(x,t)|2 = 1

2
√

πγ
exp

(
− x2

4γ

)
. (72)

Lastly, recognizing that γ is half the thermalized expectation
value of Q̂2, i.e., 2γ = 〈Q̂2〉eq, we recover hereby the
equilibrium result of Dóra25 at long times.

While the asymptotic form of the phononic wave function
is independent of the initial state of the phonon, the associated
relaxation time does depend on whether 〈b〉t=0 is zero or
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not. To see this, we note that |ψph(x,t)|2 has two sources
of time dependence originating from γ (t) and I3(t). While
γ (t) decays to its asymptotic value γ with a relaxation time
equal to τ/2, I3(t) decays to zero with a relaxation time that
is twice as long. The relaxation of |ψph(x,t)|2 depends then
on whether the expectation value on the right-hand side of
Eq. (68) has a contribution that is linear in I3(t) and I ∗

3 (t) or
not. If 〈b〉t=0 = 0, there is no such linear contribution, hence
|ψph(x,t)|2 approaches its asymptotic form with the relaxation
time τ/2. If, on the other hand, 〈b〉t=0 is nonzero then there
is such a contribution and |ψph(x,t)|2 relaxes on a longer time
scale equal to τ .

Although Eq. (68) applies to any initial phonon state, of
particular interest are those cases where the phonon initially
occupies either a coherent state or an eigenstate of n̂b = b†b.
If the initial state is a coherent state, i.e., b|ψ0〉 = λ|ψ0〉, then

〈eisI3(t)b†eisI ∗
3 (t)b〉b = eis2Re{I ∗

3 (t)λ} = eisQ(t), (73)

resulting in

|ψph(x,t)|2 = 1

2
√

πγ (t)
exp

{
− [x − Q(t)]2

4γ (t)

}
. (74)

The phononic wave function is therefore a simple Gaussian,
characterized by the time-dependent average Q(t) and the
time-dependent width σ (t) = √

2γ (t). If the initial state is
an eigenstate of n̂b with the eigenvalue n, the phononic wave
function is somewhat more convoluted, given by the formal
expression

|ψph(x,t)|2 =
n∑

m=0

(
n

m

) |I3(t)|2m

2m!
√

πγ (t)

d2m

dx2m
e−x2/4γ (t). (75)

Alternatively, Eq. (75) can be rewritten using Hermite polyno-
mials as

|ψph(x,t)|2 =
n∑

m=0

(
n

m

) |I3(t)|2m

m!
√

π[4γ (t)]m+1/2
Hn(y)e−y2

, (76)

with y = x/
√

4γ (t).
The time evolution of the phononic wave function is

displayed in Figs. 4 and 5 for two representative initial
configurations of the phonon: a coherent state with λ = 1 (see
Fig. 4) and an eigenstate of n̂b with the eigenvalue n = 1
(see Fig. 5). Starting from a coherent state, the phononic wave
function evolves through a sequence of Gaussians, as can be
seen in Fig. 4. The center of the Gaussian, Q(t), oscillates from√

2 at time t = 0 to zero as t → ∞ according to the black
curve in Fig. 3, while its width increases form 1/

√
2 to 1. In

contrast, the phononic wave function undergoes a qualitative
change in shape when starting from n̂d = 1. Here, |ψ(x,t)|2
is initially composed of two symmetric peaks that gradually
merge to a single Gaussian at long times. This behavior can be
understood from the explicit form of Eq. (76) with n = 1:

|ψph(x,t)|2 =
[

1 − |I3(t)|2
2γ (t)

+ |I3(t)|2
4γ (t)2

x2

]
e−x2/4γ (t)

2
√

πγ (t)
. (77)

At t = 0, one can show that |I3(0)|2 = 2γ (0) = 1/2, resulting
in

|ψph(x,t = 0)|2 = 2√
π

x2e−x2
. (78)

-2 0 2

x

ω
0
t = 0

ω
0
t = 10|ψ

(x
,t)

|2

ω
0
t = 20

ω
0
t = 100

FIG. 4. (Color online) Time evolution of the phononic wave
function |ψ(x,t)|2 starting from an initial coherent state with λ = 1.
Here, ω0/Dd = 0.2 and g/� = 0.324.

As time increases, |I3(t)|2 gradually decays to zero, leaving
us with the thermalized Gaussian of Eq. (72). The transition
between the two forms of the wave function is therefore driven
by the relaxation of |I3(t)|2, which happens on a time scale
of τ/2.

D. Thermalization in the presence of integrability

Tracking the time evolution of the phononic occupancy,
displacement, and wave function in response to switching g

on, we observed in the previous sections that all quantities
eventually approach their thermal equilibrium values with
respect to the full Hamiltonian. In other words, the system
thermalizes at long times. Indeed, this limit was rigorously
shown by Ambegaokar40 for a class of bosonic models that
include our Hamiltonian of interest. More generally, it was

ω
0
t = 10

-2 0 2

x

ω
0
t =   0

|ψ
(x

,t)
|2

ω
0
t = 20

ω
0
t = 80

FIG. 5. (Color online) Same as Fig. 4, but starting from an initial
phonon state where n̂b = 1.
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shown by Doyon and Andrei42 in the context of interacting
quantum dots that

lim
t→∞ U †(t,0)e−βH0U (t,0) = e−βH, (79)

provided the bath is a large Fermi sea and H − H0 is a local
perturbation, as is the case here. However, one may wonder at
this point how can an integrable system thermalize given the
infinite set of conservation laws it possesses [specifically, the
occupation numbers α

†
kαk , see Eq. (29)]?

To address this question consider the quench dynamics
starting from an excited Fermi sea∣∣nk1 , . . . ,nkN

〉
g=0 = (

a
†
k1

)nk1 · · · (a†
kN

)nkN |0〉g=0, (80)

obtained by creating several particle-hole excitations with
momenta k1,k2, . . . ,kN above the filled Fermi sea of the
unperturbed system. Starting from the product state |ψ0〉 =
|nb〉 ⊗ |nk1 , . . . ,nkN

〉g=0 of the excited Fermi sea and a local
phonon state with the occupation number nb, one can repeat
the calculation of Sec. IV B to track the time evolution of the
phonon occupancy. At long time, one finds

nb(t → ∞) = λ2
∑
q>0

ξ 2
q |g(εq + iη)|2(εq − ω0)2

+ 2λ2
N∑

j=1

ξ 2
kj

∣∣g(
εkj

+ iη
)∣∣2(

ε2
kj

+ ω2
0

)
nkj

= g

〈
nk1 , . . . ,nkN

∣∣b†b∣∣nk1 , . . . ,nkN

〉
g
, (81)

where ∣∣nk1 , . . . ,nkN

〉
g

= (
α
†
k1

)nk1 · · · (α†
kN

)nkN |0〉g (82)

is the corresponding eigenstate of the full Hamiltonian,
obtained by creating scattering-state excitations with identical
quantum numbers above the ground state of the full system.
Thus while the initial state of the local phonon is wiped
out in the course of the evolution, the quantum numbers
characterizing the initial state of the Fermi sea are preserved.
In other terms, the conservation laws constrain the bulk but
not the local degrees of freedom. Since ξ 2

kj
scales as 1/L, local

observables are independent of the initial state of the Fermi
sea as long as the initial excitation energy is not extensive, i.e.,

1

L

N∑
j=1

nkj
→ 0 (83)

in the thermodynamic limit. We therefore conclude that the
local phonon thermalizes, while the bath does not, and that
the conservation laws, which constrain the bath dynamics, do
allow for a generic evolution of local degrees of freedom.

V. ABRUPT CHANGE OF PHONON FREQUENCY

The second quench dynamics we consider is the response to
a sudden change in the phonon frequency. Namely, the system
is taken to occupy the ground state of the Hamiltonian of
Eq. (23) at time t = 0 when the phonon frequency is abruptly
shifted from ω0 to ω1 = ω0 + δω > 0. In contrast to the
electron-phonon coupling, which is difficult to control in actual
devices, the frequency of vibrations can be tuned electrically

in suspended carbon nanotubes.43 This offers a potential
realization of the present scenario. For concreteness, we
restrict attention in this section to εd = 0 and zero temperature,
though both restrictions can be relaxed. Accordingly, our
interest will center on nb(t), as Q(t) is pinned by symmetry
to zero. Similarly, the phononic wave function retains a
Gaussian form centered at x = 0 at arbitrary time t , with a
time-dependent width equal to

√
〈Q̂2(t)〉.

A. Time evolution of phononic operators

The general strategy for calculating the time evolution of
physical observables is similar to the one taken in the previous
section, except that the initial Hamiltonian is now the full
Hamiltonian H of Eq. (23) with ε̃d set to zero, and the final
Hamiltonian is given by H′ = H + δH with

δH = δωb†b. (84)

The technical details are slightly more cumbersome, though,
since the time evolution of b†(t) is carried out by expanding b†

in terms of the eigenmodes γk and γ
†
k of the final Hamiltonian

H′, whereas the evaluation of expectation values requires an
expansion of b†(t) in terms of the eigenmodes αk and α

†
k of the

initial Hamiltonian H. In other words, one needs to know how
to convert from the eigenmodes of H′ to those of H.

There are two approaches one can take to achieve this goal.
The first is to invert Eq. (26) and its Hermitian conjugate in
order to express aq , a

†
q , b, and b† in terms of the eigenmodes

of H, and to plug the resulting expressions into the expansion
of γ

†
k in terms of aq , a

†
q , b, and b†. An alternative approach

is to directly express γ
†
k in terms of αq and α

†
q by solving the

modified Lippmann-Schwinger equation:

[γ †
k ,H′] = −εkγ

†
k + iη(α†

k − γ
†
k ). (85)

To this end, it is necessary to first write H′ in terms of the
eigenmodes of H, which follows directly from Eqs. (29)
and (32). As we prove in the Appendix, the two methods
of computation are equivalent, allowing us to use the latter
approach, which is more concise. Deferring all details of the
calculation to the Appendix, we quote here only the end result:

γ
†
k = α

†
k + 2δωλ2ξkg̃(εk + iη)

×
∑
q>0

ξq

[
g(εq − iη)

εkεq + ω0ω1

εk − εq + iη
α†

q

− g(εq + iη)
εkεq − ω0ω1

εk + εq + iη
αq

]
, (86)

where

g̃(z) = 1

z2 − ω2
1 − 2ω1�(z)

(87)

is the same function of Eq. (27) with ω0 replaced by ω1.
Since H′ has the same exact form as the Hamiltonian H

of Eq. (23) only with ω0 replaced by ω1, one can borrow all
results derived previously in Sec. III for the latter Hamiltonian.
In particular, H′ is diagonal in the new basis set,

H′ =
∑
k>0

εkγ
†
k γk, (88)
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and the expansions of b† and b†(t) detailed in Eqs. (32) and
(33) still hold upon substituting ω1, g̃, γk , and γ

†
k in for ω0, g,

αk , and α
†
k , respectively. Plugging Eq. (86) and its Hermitian

conjugate into Eq. (33), we finally obtain the desired expansion
of b†(t) in terms of the αk’s:

b†(t) = λ
∑
k>0

ξk

[
g̃(εk − iη)(εk + ω1)eiεkt

+ 2δωg(εk − iη)J (εk − iη,t)
]
α
†
k

+ λ
∑
k>0

ξk

[
g̃(εk + iη)(−εk + ω1)e−iεk t

+ 2δωg(εk + iη)J (−εk − iη,t)
]
αk, (89)

where we have defined the auxiliary function

J (z,t) = λ2
∑
k>0

ξ 2
k |g̃(εk + iη)|2

[
(εk + ω1)

εkz + ω0ω1

εk − z
eiεk t

+ (εk − ω1)
εkz − ω0ω1

εk + z
e−iεk t

]
. (90)

B. Phononic occupancy

With Eq. (89) at hand, we are now in position to evaluate
expectation values pertaining to the local phonon mode b†.
Focusing on the time evolution of the phonon occupancy
nb(t) = 〈b†(t)b(t)〉, we note that b†(t)b(t) is quadratic in α

†
k

and αk . Since the expectation value is taken with respect to the
ground state of the initial Hamiltonian H, the only nonzero
contributions stem from the diagonal terms αkα

†
k , resulting in

nb(t) = λ2
∑
k>0

ξ 2
k |g̃(εk + iη)(−εk + ω1)e−iεk t

+ 2δωg(εk + iη)J (−εk − iη,t)|2. (91)

At t = 0, Eq. (91) properly reduces to the equilibrium
expectation value of n̂b with respect to H specified in Eq. (57).
To see this, we note that Eq. (89) must coincide at time t = 0
with Eq. (32), as both expressions offer an expansion of b†

in terms of the αk’s and α
†
k’s. Equating the corresponding

expansion coefficients, one finds the identity

g(εk + iη)(−εk + ω0) = 2δωg(εk + iη)J (−εk − iη,0)

+ g̃(εk + iη)(−εk + ω1) (92)

from which the equivalence of Eqs. (57) and (91) at time
t = 0 immediately follows. In the opposite limit of long times,
Eq. (91) reproduces the new equilibrium expectation value
of n̂b with respect to H′. Indeed, using a similar analysis as
beforehand one can show that J (−εk − iη,t) decays to zero
with the same relaxation time τ and frequency of oscillations
ω as listed in Eqs. (54) and (55), subject to the substitution of
ω0 with ω1. This in turn leaves us at long times with

nb(t → ∞) = λ2
∑
k>0

ξ 2
k |g̃(εk + iη)|2(εk − ω1)2, (93)

which is the thermalized expectation value of n̂b with respect
to H′. Thus, as expected, nb(t) interpolates between the two
equilibria expectation values of n̂b.

0 20 40 60 80
ω0t

0.01

0.015

0.02

0.025

n b(t
)

δω/ω0 = -0.3

δω/ω0 = 0.3

FIG. 6. (Color online) Time evolution of the phononic occupancy
following an abrupt shift in the phonon frequency from ω0/Dd = 0.2
to ω1 = ω0 + δω with δω = ±0.3ω0. The electron-phonon interac-
tion is held fixed at g/� = 0.324.

Figure 6 shows the complete time evolution of nb(t) for
two opposite shifts of the phonon frequency. Once again
the curves take the form of damped oscillations with the
relaxation time τ/2 and the frequency of oscillations 2ω.
Consequently, the decay time and frequency of oscillations
differ substantially between δω = 0.3ω0 and δω = −0.3ω0,
in accordance with the substitution ω0 → ω1 = (1 ± 0.3)ω0

in Eqs. (54) and (55). The larger is ω1 the smaller are the
new thermalized expectation value of n̂b and the amplitude of
damped oscillations that nb(t) undergoes.

VI. ABRUPT SHIFT OF ENERGY LEVEL

The third and final quench scenario we consider is the
response to an abrupt shift in the electronic energy level,
which has been held fixed up until now at resonance with the
Fermi energy. Specifically, we assume that the system resides
at time t < 0 in its ground state for εd = 0, when a nonzero
εd is suddenly switched on. This has the effect of breaking
particle-hole symmetry, dynamically generating a nonzero
displacement Q(t) of the local phonon along with deviations
of the level occupancy from half-filling [i.e., nd (t) �= 1/2].
These two observables will be our main focus of interest. Of
the different quench scenarios under consideration the present
one is by far the most accessible experimentally, as the energy
level εd can be controlled quite efficiently using suitable gate
voltages.

The foundations for calculating Q(t) and nd (t) in this
scenario have been laid down in Sec. III B. Specifically, from
Eq. (38) one has that

b̃†(t) = λ
∑
k>0

ξk[g(εk − iη)(εk + ω0)eiεktβ
†
k

− g(εk + iη)(εk − ω0)e−iεk tβk], (94)

which, when combined with Eqs. (36) and (39), yields

b†(t) = h1(t) + λ
∑
k>0

ξk[g(εk − iη)(εk + ω0)eiεktα
†
k

− g(εk + iη)(εk − ω0)e−iεk tαk] (95)
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with

h1(t) = λε̃d

∑
k>0

ξ 2
k |g(εk + iη)|2(ε2

k − ω2
0

)

×
(

εk + ω0

εk + iη
eiεk t − εk − ω0

εk − iη
e−iεk t

)

+ εd

π�

g

ω0

1

1 − 2g2/(πω0�)
. (96)

Accordingly, the phonon displacement is equal to Q(t) =√
2Re{h1(t)}, which follows from the fact that αk and α

†
k

average to zero with respect to the initial state. Similarly from
Eq. (41), one has that

ñd (t) = 1

2
+ a

∑
k>0

ξk

(
ε2
k − ω2

0

)
[g(εk − iη)eiεktβ

†
k + H.c.],

(97)

which, when combined with Eqs. (36) and (42), yields

ñd (t) = h2(t) + a
∑
k>0

ξk

(
ε2
k − ω2

0

)
[g(εk − iη)eiεk tα

†
k + H.c.]

(98)

with

h2(t) = 1

2
− εd

π�

1

1 − 2g2/(πω0�)

+ ε̃da
∑
k>0

ξ 2
k |g(εk + iη)|2(ε2

k − ω2
0

)2

×
(

eiεk t

εk + iη
+ e−iεk t

εk − iη

)
. (99)

Hence the occupancy of the localized level is simply given by
nd (t) = h2(t).

The occupancy nd (t) of the localized electronic level is
depicted in Fig. 7. Several points are noteworthy. First, nd (t) −
1/2 depends linearly on εd in our solution. This property stems
from the fact that εd couples linearly to the bosonic degrees of
freedom, in accord with the assumption that |εd | � �. Indeed,
as |εd | is increased, the mapping onto the bosonic Hamiltonian
of Eq. (23) gradually breaks down, generating higher-order
corrections in εd .

Second, the dynamics of nd (t) is composed of two distinct
segments: fast dynamics on the scale of 1/Dd ∼ 1/�, where
most of the charge redistribution takes place, followed by an
extended region of damped oscillations. The short-time dy-
namics originates from the high-energy end of the summation
over k in Eq. (99), and is given by

nd (t) = 1

2
− εd

π�

(tDd )2

1 + (tDd )2
(100)

(see inset of Fig. 7). This simple analytical form stems from the
exponential high-energy cutoff imposed by ξ 2

k [see Eq. (22)].
While the functional form of nd (t) may differ from Eq. (100)
for other cutoff schemes, the relevant time scale t ∼ 1/�

and the characteristic change in occupancy δnd ∼ εd/π�

experienced within this time segment should be generic. As
for the damped oscillations, these are expected to take the
functional form

nd (t) = A sin(�t + φ)e−t/τ0 + C (101)

0 25 50 75 100
ω

0
t

-0.5

-0.4

-0.3
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. Γ
/ε

d

Fit to Eq. (101)
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Eq. (100)

FIG. 7. (Color online) Time evolution of the occupancy nd (t) of
the localized electronic level, following an abrupt change in its energy
from εd = 0 to εd �= 0. Here, ω0/Dd = 0.2 and g/� = 0.324. Note
that nd (t) − 1/2 depends linearly on εd . The green dashed line shows a
fit to Eq. (101) using the fitting range 10 � ω0t � 100. Inset: zoom in
on the short-time behavior. The red dashed curve shows the analytical
form of Eq. (100).

with � and τ0 equal to ω and τ . We confirm this form in Fig. 7,
where the fitted values of � and τ0 agree to within 0.1% with
those extracted from Fig. 1 by fitting nb(t) to Eq. (58).41

Lastly, from the asymptotic long-time behavior of nb(t),
one can deduce the dimensionless parameter controlling the
perturbative expansion in g in thermal equilibrium. For g =
0 and arbitrary εd , the exact equilibrium occupancy of the
electronic level is given by the standard expression

nd = 1

2
− 1

π
arctan

(
εd

�

)
, (102)

which reduces to nd = 1/2 − εd/π� for |εd | � �. This latter
result is accurately reproduced by our treatment upon setting
g equal to zero. For nonzero g, we find that

nd = 1

2
− εd

π�

1

1 − 2g2/(πω0�)
, (103)

revealing that the true expansion parameter is g2/ω0�, i.e., the
ratio of the polaronic shift g2/ω0 to the hybridization width �.
The effect of the electron-phonon coupling g is to increase the
deviation from half-filling for a given value of εd , signaling a
narrowing of the electronic resonance according to

� → �eff = � − 2g2

πω0
. (104)

The time evolution of the phonon displacement is plotted
in turn in Fig. 8. Similar to the level occupancy, Q(t) depends
linearly on εd and undergoes damped oscillations with the
relaxation time τ and frequency ω. It lacks, however, the fast
dynamics that the level occupancy experiences on the time
scale of 1/�. In equilibrium nd and Q are related through

Q = −
√

2
g

ω0

(
nd − 1

2

)
, (105)

which is an exact result applicable to arbitrary εd , ω0, and g.44

It is thus natural to ask whether this general relation extends
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FIG. 8. (Color online) Time evolution of the displacement Q(t),
following an abrupt change in the level energy from εd = 0 to εd �= 0.
All model parameters are the same as in Fig. 7. For comparison, the
red curve plots Q̄(t) of Eq. (106).

to nonequilibrium dynamics. To this end, in Fig. 8, we have
plotted

Q̄(t) = −
√

2
g

ω0

[
nd (t) − 1

2

]
(106)

alongside Q(t). Although nearly in phase, the two quantities
are characterized by vastly different amplitudes of oscillations,
marking the breakdown of Eq. (105) under nonequilibrium
dynamics. The latter relation is restored only asymptotically
as the system thermalizes.

VII. DRIVEN DYNAMICS

Up until now, we considered the response to a single
quantum quench. Quantum control of nanodevices often
requires the usage of driven dynamics, where periodic forcing
is applied to the system. Such drives are a theoretical challenge
to describe since the system not only remains permanently
remote from thermal equilibrium, but it never even reaches
steady state. Remarkably, we are able to extend our exact
solution to a rather broad class of driven dynamics where the
forcing couples linearly to the bosonic degrees of freedom.
As we discuss below, this class of drives includes at least
two physically relevant scenarios where periodic forcing is
applied either to the localized phonon or to the electronic
level. Accordingly, we begin our derivation with a general
discussion of this class of drives before turning to the two
concrete examples of interest.

A. Drives that couple linearly to bosons

The general setting we consider consists of a system that
resides at time t < 0 in thermal equilibrium, when a time-
dependent drive is suddenly applied to it. In formal terms, the
Hamiltonian of the system is changed abruptly at time t = 0

from the Hamiltonian H of Eq. (23) to H′(t) = H + Hdrive(t)
with

Hdrive(t) =
∑
k>0

[Mk(t)α†
k + M∗

k (t)αk]. (107)

Here, we have assumed that the drive couples linearly to
the eigenmodes of H, exploiting the fact that any linear
combination of the original bosonic degrees of freedom can
be expanded in terms of the scattering-state operators αk

and α
†
k . The coefficients Mk(t) depend on the exact scenario

under consideration and will typically have the separable form
Mk(t) = A(t)mk . Nevertheless, we shall regard them for the
time being as general coefficients without making any further
assumption about their form. The initial value of the energy
level εd will be taken for simplicity to be zero, though the
extension to nonzero εd is quite straightforward.

A convenient way to incorporate the time-dependent drive
is via the Heisenberg equation of motion for the scattering-state
operators, which takes the form

α̇k(t) = −iεkαk(t) − iMk(t), (108)

subject to the initial condition αk(t = 0) = αk . Here, the first
term on the right-hand side of Eq. (108) is due to H and the
second term is due to Hdrive. Equation (108) has the formal
solution

αk(t) = αke
−iεk t − i

∫ t

0
eiεk (t ′−t)Mk(t ′)dt ′, (109)

from which the time evolution of all physical operators of
interest can be deduced. For example, combining Eq. (32)
with Eq. (109) and its Hermitian conjugate, one obtains

b†(t) = b
†
0(t) + iλB(t), (110)

where b
†
0(t) is the time-evolved operator in the absence of a

drive [see Eq. (33)] and B(t) is a time-dependent shift given
by

B(t) =
∑
k>0

ξk

[
g(εk − iη)(εk + ω0)

∫ t

0
M∗

k (t ′)e−iεk (t ′−t)dt ′

+ g(εk + iη)(εk − ω0)
∫ t

0
Mk(t ′)eiεk(t ′−t)dt ′

]
. (111)

Accordingly, the phonon displacement takes the form

Q(t) = −
√

2λIm[B(t)], (112)

while its occupancy reads

nb(t) = n
(0)
b + λ2|B(t)|2. (113)

Here, n
(0)
b denotes the equilibrium phononic occupancy in

the absence of a drive, given by Eq. (57) for T = 0. Note
that in deriving Eqs. (112) and (113), we have made use
of the fact that b(t) + b†(t) and b†(t)b(t) are averaged with
respect to the equilibrium density operator corresponding toH,
which is diagonal in the occupation numbers α

†
kαk . As a result

〈αk〉 and 〈α†
k〉 identically vanish. A similar calculation for the

035411-14



QUANTUM QUENCHES AND DRIVEN DYNAMICS IN A . . . PHYSICAL REVIEW B 85, 035411 (2012)

time-dependent occupancy δnd (t) = nd (t) − 1/2 of the local-
ized level yields

δnd = a
∑
k>0

ξk

(
ε2
k − ω2

0

)[−ig(εk + iη)
∫ t

0
Mk(t ′)eiεk (t ′−t)dt ′

+ ig(εk − iη)
∫ t

0
M∗

k (t ′)e−iεk (t ′−t)dt ′
]
. (114)

Equations (113) and (114) combined provide us with a
formal solution for the occupancies of the local phonon and
the electronic level for a general drive. Furthermore, these
expressions apply to arbitrary temperature T , provided n

(0)
b

is taken to be the equilibrium phononic occupancy at that
temperature. Below we utilize these expressions to analyze
two cases of practical interest where ac forcing is applied
either to the local phonon or to the localized level.

B. ac forcing of the local phonon

In the first scenario to be analyzed, ac forcing is applied at
time t > 0 to the local phonon, as described by the Hamiltonian
term

Hdrive(t) = � sin(�t)(b† + b). (115)

Here, �, which has dimensions of energy, is the amplitude of
the drive and � is the driving frequency (not to be confused
with the fitting parameter previously used for analyzing the
damped oscillations). Such forcing can be applied, e.g., to
polar molecules using an ac electric field.

Using the expansion of b† in terms of the scattering-state
operators given in Eq. (32), the Hamiltonian term of Eq. (115)
can be recast in the form of Eq. (107) with the coefficients

Mk(t) = 2ω0λ� sin(�t)ξkg(εk − iη), (116)

such that∫ t

0
M∗

k (t ′)e−iεk(t ′−t)dt ′ = ω0λ�ξkg(εk + iη)ζk(t) (117)

with

ζk(t) = ei�t − eiεk t

εk − �
− e−i�t − eiεk t

εk + �
. (118)

For computational convenience, it is useful to add an infinitesi-
mal imaginary part iη to the denominators in Eq. (118), thereby
rewriting ζk(t) as45

ζk(t) = ei�t − eiεk t

εk − � + iη
− e−i�t − eiεk t

εk + � + iη
. (119)

A somewhat lengthy calculation then gives

λB(t) = �

2
[F (−� − iη,t) − F (� − iη,t)], (120)

where F (z,t) is the same function defined in Eq. (47). The
phonon displacement and occupancy therefore take the rather
compact forms

Q(t) = − �√
2

Im[F (−� − iη,t) − F (� − iη,t)] (121)

and

nb(t) = n
(0)
b + �2

4
|F (−� − iη,t) − F (� − iη,t)|2. (122)

The general structure of Q(t) and nb(t) could be understood
from properties of the function F (z,t). Since F (z,0) identi-
cally vanishes for arbitrary z, the phononic occupancy and
displacement properly reduce at time t = 0 to their thermal
equilibrium values, as they physically should. As soon as
t > 0, the two components of F (±� − iη,t) behave markedly
differently. The first term in Eq. (47) oscillates indefinitely
with frequency �, whereas the term involving the sum over
k undergoes damped oscillations with the relaxation time τ

and frequency ω of Eqs. (55) and (54), respectively. Thus
there is a clear distinction between the roles of the two terms:
while the first term in Eq. (47) survives at long times and
is responsible for the long-time behavior, the second term
contains all transients that decay in time. This leads to the
following characterization of Q(t) and nb(t). At short times,
t < τ , the phonon displacement comprises two components
oscillating at frequencies � and ω, while nb(t) contains four
distinct oscillatory terms with the frequencies 2�, � ± ω, and
2ω. At long times, τ � t , the phonon displacement oscillates
with frequency � about zero, while nb(t) oscillates with
frequency 2� about a new time-averaged value n̄b. Explicitly,
Q(t) and δnb(t) = nb(t) − n

(0)
b reduce at long times to

Q(t) =
√

2�ω0|g(� + iη)| sin(�t + φ) (123)

and

δnb(t) = �2

2
|g(� + iη)|2[ω2

0 + �2 + (
�2 − ω2

0

)
× cos(2�t + 2φ)

]
, (124)

with φ = arg[g(� − iη)].
On physical grounds, one expects the response to an

ac drive to reduce at long times to a periodic function of
time, containing all harmonics of the driving frequency �.
Surprisingly, the oscillatory parts of Q(t) and δnb(t) consist in
this limit of just a single harmonic each. While Q(t) tracks the
driving field with a phase difference of φ, δnb(t) oscillates with
the doubled frequency 2�, lacking any signal at the principal
harmonic �. Such behavior is quite atypical, as is the absence
of higher harmonics. We expect both features to qualitatively
change as the electron-phonon coupling is increased beyond
the validity of our solution. We further note that the doubling
of frequency in δnb(t) is reminiscent of a similar doubling of
frequency in the damped oscillations that nb(t) undergoes in
response to a quantum quench (see, e.g., Figs. 1 and 3 and
their accompanying texts).

Focusing on δnb(t), its amplitude depends in a simple
quadratic manner on �. Other than setting the overall am-
plitude, � has no additional effect on δnb(t). By contrast, the
shape of δnb(t) is quite sensitive to the driving frequency �, as
demonstrated in Figs. 9 and 10. When � is tuned off-resonance
with the intrinsic frequency ω of the system, see Fig. 9, the
transient behavior shows a rather rich structure that stems from
the interference of the four underlying frequencies 2�, � ± ω,
and 2ω. Only after all transients have decayed on a time scale
of τ does δnb(t) approach its asymptotic long-time form of a
single harmonic with the doubled frequency 2�.
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FIG. 9. (Color online) Time evolution of δnb(t) = nb(t) − n
(0)
b

in response to ac forcing of the phonon according to Hdrive(t)
of Eq. (115). Here, ω0/Dd = 0.2, g/� = 0.28, and � = 1.3ω0.
Initially there is a rich structure involving the interference of four
distinct frequencies. As transients decay (on a time scale of τ ),
δnb(t) gradually reduces to a single harmonic with a frequency of
oscillations equal to 2�. Inset: zoom in on the earlier time segment
ω0t < 50, including a comparison to the stronger coupling strength
g/� = 0.324 (red curve).

A rather different picture is recovered when � is tuned to the
resonance frequency ω, see Fig. 10. Here, both the transient and
long-time behaviors are governed by the same single frequency
2� = 2ω, resulting in much smoother curves. Quite striking is
the substantial increase of the amplitude of oscillations upon
approaching the resonance frequency. Indeed, the amplitude of
the long-time oscillations is roughly two orders of magnitude
larger in Fig. 10 as compared to Fig. 9, which is readily
understood from Eq. (124). Since the amplitude of oscillations
is given at long times by

Ab = �2

2
|g(� + iη)|2∣∣ω2

0 − �2
∣∣, (125)
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FIG. 10. (Color online) Same as Fig. 9, with � tuned to the res-
onance frequency: ω = 0.896ω0 for g/� = 0.324 and ω = 0.923ω0

for g/� = 0.28. All other model parameters are the same as in Fig. 9.
Note the vastly different vertical scale as compared to that used in
Fig. 9.
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FIG. 11. (Color online) The asymptotic long-time amplitude of
oscillations Ab vs the driving frequency �, for ω0/Dd = 0.2 and two
different strengths of the electron-phonon coupling g. Inset: zoom in
on the vicinity of the resonance peak. A logarithmic scale is used for
the y ordinate so as to emphasize the vanishing of Ab for � = ω0.

it displays a sharp resonance for � ≈ ω where |g(� + iη)| is
sharply peaked.46 The amplitude of oscillations at resonance
can be crudely estimated as

Ares
b ∼ (�τ )2

8ω2

∣∣ω2
0 − ω2

∣∣, (126)

with ω and τ approximately given by Eqs. (54) and (55),
respectively. Another interesting observation is the vanishing
of Ab for � = ω0. A plot of the amplitude Ab of the long-time
oscillations as a function of � is depicted in Fig. 11.

C. ac forcing of the local electronic level

In the second scenario that we analyze, ac forcing is applied
at time t > 0 to the localized electronic level, as described by
the Hamiltonian term

Hdrive(t) = � sin(�t)
(
n̂d − 1

2

)
. (127)

Here, as before, � denotes the amplitude of the drive and �

is the forcing frequency. Experimentally such a drive can be
realized by applying microwave voltage to a near-by plunger
gate, similar to the setups used by Elzerman et al.47 and by
Kogan et al.48 in their respective studies of the ac Kondo effect
in semiconductor quantum dots.

Using the mode expansion of Eq. (34), one can again recast
the Hamiltonian term of Eq. (127) in the form of Eq. (107),
this time with the coefficients

Mk(t) = �a sin(�t)ξkg(εk − iη)
(
ε2
k − ω2

0

)
. (128)

Repeating the same sequence of steps detailed in Eqs. (117)–
(119) and plugging the resulting expressions into Eq. (114),
one obtains, after a rather lengthy calculation,

δnd (t) ≡ nd (t) − 1

2
= �

g2
Im[F̃ (� − iη,t)] (129)
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FIG. 12. (Color online) Time evolution of δnd (t) in response to ac
forcing of the local electronic level according toHdrive(t) of Eq. (127).
Here, ω0/Dd = 0.2 and g/� = 0.324. Two driving frequencies are
shown, one (� = 1.3ω0) off resonance and the other (� = 0.896ω0)
on resonance with the internal frequency ω.

with

F̃ (z,t) = (
z2 − ω2

0

)
g(z)�(z)eizt + λ2

∑
k>0

ξ 2
k |g(εk + iη)|2

×(
z2 − ω2

0

)2
(

eiεk t

εk − z
+ e−iεk t

εk + z

)
. (130)

The function F̃ (z,t) has similar properties to those of
F (z,t). At t = 0, it vanishes identically for any value of z,
and is composed of two distinct components for t > 0: one
that oscillates indefinitely with frequency � and another that
oscillates with frequency ω and decays with the relaxation time
τ for any z in the lower half plane. Since δnd (t) is proportional
to the imaginary part of F̃ (� − iη,t) [as opposed to δnb(t)
that depends quadratically on F (±� − iη,t)], it comprises, at
short times t < τ , two oscillatory terms, one with frequency
� and another with frequency ω. As t exceeds τ , the latter
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Ω/ω0
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g/Γ = 0.28

g/Γ = 0.324

FIG. 13. (Color online) The asymptotic long-time amplitude of
oscillations Ad vs the driving frequency � for ω0/Dd = 0.2 and two
different strengths of the electron-phonon coupling g.

component is progressively suppressed and δnd (t) gradually
approaches its asymptotic long-time form:

δnd (t) = Ad sin(�t + ϕ), (131)

with

Ad = �

g2

∣∣(�2 − ω2
0

)
g(� + iη)�(� + iη)

∣∣ (132)

and ϕ = arg[(�2 − ω2
0)g(� − iη)�(� − iη)]. As beforehand,

the long-time oscillations develop a resonance for � ≈ ω,
albeit with a reduced amplitude as compared to Ab of Eq. (125).
This reduction in amplitude stems from a weaker linear
dependence of Ad on |g(� + iη)|. Similar to Ab, the amplitude
of oscillations is suppressed to zero for � = ω0, leaving no
signal at long times for this particular frequency. A summary
of our results is presented in Figs. 12 and 13.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have presented an asymptotically exact
solution for the nonequilibrium dynamics of a single-molecule
transistor in response to various quantum quenches and drives.
Our solution, which is based on a controlled mapping of
the original Hamiltonian of Eq. (1) onto a form quadratic
in bosonic operators,24 is formally confined to weak electron-
phonon coupling and near-resonance conditions for the elec-
tronic level: � � max(g,|εd |,g2/ω0). While some aspects
of this regime can be accessed using ordinary perturbation
theory in g, the ability to sum all orders exactly allowed us
to (i) explicitly show how the system thermalizes following
a quantum quench, (ii) identify the different time scales
that govern the dynamics of the system, and (iii) access the
asymptotic long-time response to a periodic drive.

Transient behaviors following a quantum quench were
found to involve two characteristic scales24—an intrinsic
frequency ω and a relaxation time τ approximately given by
Eqs. (54) and (55), respectively. Quite surprisingly, some ob-
servables, such as the phonon displacement and the electronic
occupancy of the localized level, display damped oscillations
with frequency ω and the relaxation time τ , while other
observables, such as the phononic occupancy, oscillate with
frequency 2ω and decay with the reduced relaxation time τ/2.
The distinction has to do with the bosonic representation of
the observable in question. If the latter is expressed as a linear
combination of bosonic operators, the relevant frequency and
decay time are ω and τ . If, on the other hand, the observable
in question is quadratic in bosonic operators, the relevant
frequency and decay time are 2ω and τ/2, respectively.

A special feature of our solution is the nature of the long-
time response of observables to ac drives, whose oscillatory
component reduces to just a single harmonic with an amplitude
that depends in a simple power-law fashion on the forcing
amplitude �. The absence of additional harmonics in the long-
time ac response is a direct consequence of the mapping onto
a free bosonic Hamiltonian with a forcing field that couples
linearly to the bosonic modes. Physically, this implies that
other harmonics, which are generally expected to exist for
the original Hamiltonian of Eq. (1), are parametrically small
for � � max(g,g2/ω0). As the electron-phonon interaction is
increased such that max(g,g2/ω0) approaches �, additional
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harmonics are expected to gain significance, that is provided
the forcing amplitude � is not too small. Concomitantly, the
amplitudes of the different harmonics should gradually acquire
a more elaborate dependence on � beyond a simple power-
law form. We emphasize that this regime can no longer be
described by the bosonic Hamiltonian (23).

It would be interesting to compare our results with a
numerical evaluation of the quench dynamics using, e.g.,
the time-dependent numerical renormalization group (TD-
NRG).9,10 Since ω and τ are independent of the high-energy
cutoff used in the electronic Hamiltonian of Eqs. (1) and
(2), this should facilitate a direct comparison between the
two approaches on time scales exceeding 1/Dd ∼ 1/�. The
precise forms of ω and τ as well as the short-time dynamics
up to t ∼ 1/� do depend on the cutoff scheme used for
the bosonized Hamiltonian (23). Nevertheless, we expect our
weak-coupling expressions for ω and τ to apply in their present
forms, as these coincide with low-order perturbation theory in
g when applied directly to the electronic Hamiltonian (1).

The true power of the TD-NRG lies, however, in its ability
to treat arbitrary couplings strengths, which should enable one
to go beyond the weak-coupling regime covered in this paper.
It would be particularly interesting to see which aspects of our
solution persist away from weak coupling, and what are the
new qualitative features that are introduced as the electron-
phonon coupling is increased. The study of stronger couplings
along these lines is left for future work.
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APPENDIX: SOLUTION OF THE SCATTERING-STATE
OPERATORS

In this Appendix, we detail the solution of the scattering-
state operators for the different cases covered in the main text.
Altogether three cases are considered: (i) a level at resonance
with the Fermi energy, i.e., εd = 0, (ii) a level off-resonance
with the Fermi level, i.e., εd �= 0, and (iii) a local phonon with
the shifted frequency ω1 = ω0 + δω. As emphasized in the
main text, in the latter case, we are interested in expanding the
scattering-state operators corresponding to the frequency ω1

in terms of those corresponding to the original frequency ω0.

A. Level at resonance with the Fermi energy

We begin with a level at resonance with the Fermi energy,
corresponding to the Hamiltonian (23) with ε̃d = 0. Our
objective is to solve the Lippmann-Schwinger equation

[α†
k,H] = −εkα

†
k + iη(a†

k − α
†
k), (A1)

where η → 0+ is a positive infinitesimal. To this end, we
employ the methodology developed in Ref. 35. Introducing

the Liouville operator LÔ = [Ô,H], Eq. (A1) is rewritten in
the form

(L + εk + iη)α†
k = iηa

†
k, (A2)

which has the formal solution

α
†
k = iη

L + εk + iη
a
†
k. (A3)

Next, we divide the Hamiltonian H into three parts,

H0 =
∑
k>0

εka
†
kak, (A4)

H1 = ω0b
†b, (A5)

H2 = λ(b† + b)
∑
q>0

ξq(aq + a†
q), (A6)

and associate each Hamiltonian term with its own Liouville
operator: LnÔ = [Ô,Hn] (n = 0,1,2). Using the operator
identity

1

L + εk + iη
=

[
1 − 1

L + εk + iη
(L1 + L2)

]
1

L0 + εk + iη

(A7)

in combination with

(L0 + εk + iη)a†
k = iηa

†
k, (A8)

L1a
†
k = 0, (A9)

and

L2a
†
k = −λξk(b† + b), (A10)

Eq. (A3) is recast in the form

α
†
k = a

†
k + λξk

1

L + εk + iη
(b† + b). (A11)

Equation (A11) features two unknown quantities:

Ak = 1

L + εk + iη
b† and Bk = 1

L + εk + iη
b. (A12)

Our next goal is to explicitly compute these two operators
by expressing them as the solution of two coupled linear
equations. Once at hand, the scattering-state operator is simply
given by α

†
k = a

†
k + λξk(Ak + Bk).

To find Ak and Bk , we resort once again to the operator
identity of Eq. (A7). Carrying out the relevant commutators
one obtains the pair of equations:

(εk − ω0 + iη)Ak = b† + λ
∑
q>0

ξq

1

L + εk + iη
(a†

q + aq),

(A13)

(εk + ω0 + iη)Bk = b − λ
∑
q>0

ξq

1

L + εk + iη
(a†

q + aq).

(A14)

Applying yet again the operator identity of Eq. (A7) to the
right-most term in Eqs. (A13) and (A14), one arrives at

(εk − ω0 + iη)Ak = b† + �(εk + iη)(Ak + Bk) + Ck,

(A15)
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(εk + ω0 + iη)Bk = b − �(εk + iη)(Ak + Bk) − Ck,

(A16)

where

�(z) = λ2
∑
q>0

ξ 2
q

(
1

z − εq

− 1

z + εq

)
(A17)

is the phononic self-energy and Ck equals

Ck = λ
∑
q>0

ξq

(
a
†
q

εk − εq + iη
− aq

εk + εq + iη

)
. (A18)

Here, in deriving Eqs. (A15) and (A16), we made use of the
fact that

1

L0 + εk + iη

(
a
†
q

aq

)
= 1

εk ∓ εq + iη

(
a
†
q

aq

)
. (A19)

Finally, introducing the 2 × 2 phononic Green function

Ĝ(z) =
[
z − ω0 − �(z) −�(z)

−�(z) −z − ω0 − �(z)

]−1

, (A20)

Eqs. (A15) and (A16) are rewritten in the compact form

σzĜ
−1(εk + iη)

(
Ak

Bk

)
=

(
b† + Ck

b − Ck

)
, (A21)

whose solution is(
Ak

Bk

)
= Ĝ(εk + iη)σz

(
b† + Ck

b − Ck

)
. (A22)

Here, σz is the Pauli matrix. The scattering-state operators
specified in Eq. (26) are obtained by combining Eqs. (A11),
(A12), and (A22). Note that the function g(z) defined in
Eq. (27) is simply minus the determinant of Ĝ−1(z).

B. Extension to nonzero εd

The case of a level off-resonance with the Fermi energy
can, in principle, be treated using the same machinery as
the one employed for εd = 0. We, however, shall present a
more concise derivation that makes use of the scattering-state
operators obtained for εd = 0. As in the main text, the notation
α
†
k will be reserved for the scattering-state operators when

εd = 0 while the new operators for εd �= 0 are denoted by β
†
k .

Our starting point is the formal solution

β
†
k = iη

L + εk + iη
a
†
k, (A23)

where L pertains this time to the full Hamiltonian (23) with
ε̃d �= 0. Using the notations of Eqs. (A4)–(A6), we divide the
full Hamiltonian into two parts: Hεd=0 = H0 + H1 + H2 and

Hεd
= ε̃d

∑
q>0

ξq(aq + a†
q). (A24)

Denoting the corresponding Liouville operators by Lεd=0 and
Lεd

, respectively, we employ the operator identity

1

L + εk + iη
=

[
1 − 1

L + εk + iη
Lεd

]
1

Lεd=0 + εk + iη

(A25)

to rewrite Eq. (A24) in the form

β
†
k =

[
1 − 1

L + εk + iη
Lεd

]
iη

Lεd=0 + εk + iη
a
†
k.

(A26)

Recognizing that

iη

Lεd=0 + εk + iη
a
†
k = α

†
k, (A27)

we thus arrive at

β
†
k = α

†
k − 1

L + εk + iη
Lεd

α
†
k. (A28)

Since α
†
k and Hεd

are both linear in the original bosonic
degrees of freedom, their commutator is a simple c number:

Lεd
α
†
k = −ε̃dξk[1 + g(εk + iη)2ω0�(εk + iη)]

= −ε̃dξkg(εk + iη)
(
ε2
k − ω2

0

)
. (A29)

Consequently, using Eq. (A28),

β
†
k = α

†
k + ε̃dξk

ε2
k − ω2

0

εk + iη
g(εk + iη), (A30)

which is precisely Eq. (36).

C. Change in frequency from ω0 to ω1 = ω0 + δω

Lastly, we wish to expand the scattering-state operators γ
†
k

corresponding to the Hamiltonian H′ = H + δH in terms of
those corresponding to H alone (i.e., the αk’s and α

†
k’s derived

in Sec. VIII). Here, H is the full Hamiltonian of Eq. (23) with
ε̃d = 0 and δH equals

δH = δωb†b. (A31)

As in the previous section, we begin from the formal
solution

γ
†
k = iη

L′ + εk + iη
a
†
k, (A32)

whereL′ is the Liouville operator associated withH′. Denoting
the Liouville operators corresponding to H and δH by L and
Lδω, respectively, we make use of the operator identity

1

L′ + εk + iη
=

[
1 − 1

L′ + εk + iη
Lδω

]
1

L + εk + iη

(A33)

to rewrite Eq. (A32) in the form

γ
†
k =

[
1 − 1

L′ + εk + iη
Lδω

]
iη

L + εk + iη
a
†
k. (A34)

Recognizing once again that

iη

L + εk + iη
a
†
k = α

†
k, (A35)

we arrive at

γ
†
k = α

†
k − 1

L′ + εk + iη
Lδωα

†
k, (A36)

which is analogous to Eq. (A28) of the previous section.
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It is straightforward to confirm that Eq. (A36) is equivalent
to the modified Lippmann-Schwinger equation

[γ †
k ,H′] = −εkγ

†
k + iη(α†

k − γ
†
k ). (A37)

Its usefulness stems from the fact that it allows one to directly
expand γ

†
k in terms of the αq’s and α

†
q’s without resorting to

the separate expansions of γ
†
k and α

†
k in terms of the original

bosonic degrees of freedom. Indeed, using Eq. (32) and its
Hermitian conjugate, one has

Lδωα
†
k = δωλξkg(εk + iη)[(εk − ω0)b − (εk + ω0)b†],

(A38)

such that

γ
†
k = α

†
k + δωλξkg(εk + iη)[εkA

′
k + ω0B

′
k] (A39)

with

A′
k = 1

L′ + εk + iη
(b† − b) (A40)

and

B ′
k = 1

L′ + εk + iη
(b† + b). (A41)

Similar to the derivation in Sec. VIII, A′
k and B ′

k

are computed by expressing them as the solution of two

coupled linear equations, obtained by applying the oper-
ator identity of Eq. (A33) to each of Eqs. (A40) and
(A41). After some lengthy but straightforward algebra, one
obtains

M̂(εk + iη)

(
A′

k

B ′
k

)
=

(
μk

νk

)
, (A42)

with

M̂(z) =
[

1 − δω
ω0

[z2g(z) − 1] −δωzg(z)

−δωzg(z) 1 − δωω0g(z)

]
, (A43)

μk = 2λ
∑
q>0

ξqεq

[
g(εq − iη)

εk − εq + iη
α†

q − g(εq + iη)

εk + εq + iη
αq

]
,

(A44)

and

νk = 2ω0λ
∑
q>0

ξq

[
g(εq − iη)

εk − εq + iη
α†

q + g(εq + iη)

εk + εq + iη
αq

]
.

(A45)

Inverting the matrix M̂(εk + iη) to extract A′
k and B ′

k and
substituting the resulting expressions into Eq. (A39), one
recovers Eq. (86) for γ

†
k .
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14M. Schiró and M. Fabrizio, Phys. Rev. B 79, 153302 (2009).
15A. Alvermann and H. Fehske, Phys. Rev. Lett. 102, 150601 (2009).
16M. Pletyukhov, D. Schuricht, and H. Schoeller, Phys. Rev. Lett.

104, 106801 (2010); S. Andergassen, M. Pletyukhov, D. Schuricht,
H. Schoeller, and L. Borda, Phys. Rev. B 83, 205103 (2011).

17C. Karrasch, S. Andergassen, M. Pletyukhov, D. Schuricht,
L. Borda, V. Meden, and H. Schoeller, Europhys. Lett. 90, 30003
(2010).

18A. Hackl and S. Kehrein, J. Phys. C 21, 015601 (2009); A. Hackl,
M. Vojta, and S. Kehrein, Phys. Rev. B 80, 195117 (2009); P. Wang
and S. Kehrein, ibid. 82, 125124 (2010).

19A. Schiller and S. Hershfield, Phys. Rev. Lett. 77, 1821 (1996);
Phys. Rev. B 62, 16271 (2000).

20D. Lobaskin and S. Kehrein, Phys. Rev. B 71, 193303 (2005);
M. Heyl and S. Kehrein, ibid. 81, 144301 (2010).

21For recent reviews see, e.g., Introducing Molecular Electronics,
edited by G. Cuniberti, G. Fagas, and K. Richter, Lecture Notes in
Physics Vol. 680 (Springer, New York, 2005); M. Galperin, M. A.
Ratner, and A. Nitzan, J. Phys. Condens. Matter 19, 103201 (2007).

22L. I. Glazman and M. E. Raikh, JETP Lett. 47, 452 (1988).
23I. G. Lang and Yu. A. Firsov, Zh. Eksp. Teor. Fiz. 43, 1843 (1962)

[Sov. Phys. JETP 16, 1301 (1963)].
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