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Phase separation of hydrogen atoms adsorbed on graphene and the smoothness of the
graphene-graphane interface
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The electronic properties of a graphene sheet with attached hydrogen atoms are studied using a modified
Falicov-Kimball model on the honeycomb lattice. It is shown that in the ground state this system separates
into two phases: fully hydrogenated graphene (graphane) and hydrogen-free graphene. The graphene-graphane
boundary acquires a positive interface tension. Therefore, the graphene-graphane interface becomes a straight
line, slightly rippled by thermal fluctuations. A smooth interface may be useful for the fabrication of mesoscopic
graphene-based devices.
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I. INTRODUCTION

Creating a sample with flat edges is a significant chal-
lenge for producing graphene mesoscopic devices.1–3 One
possibility is to break a graphene sheet into fragments
with sharp edges.4 Another alternative involves the use of
graphane. Graphane5 is fully hydrogenated graphene; it is an
insulator with a gap of several eV. With graphane, instead
of physically cutting graphene, one can create graphene
patches of required shapes inside a sheet of graphane by
local dehydrogenation. In such systems, low-energy electrons
from graphene cannot penetrate the insulating graphane host.
Therefore, the graphene-graphane interface serves as the
effective edge of the graphene structure. Different arrange-
ments of this type have been discussed.6,7 Thus, the issue
of the graphene-graphane interface stability is important both
for fundamental and applied research. There are indications
from numerical studies that such an interface is stable8,9 and
that the adsorbed hydrogens tend to cluster together.10 This
tendency may be explained in terms of phase separation into
hydrogen-rich and hydrogen-free regions. This separation was
established on the basis of a semiphenomenological analysis
of electron-mediated interactions between hydrogen adatoms
in graphene.11

The purpose of the present paper is twofold. First, we
put forward a microscopic approach to the problem of phase
separation in graphene-graphane systems. To demonstrate the
phase separation, Ref. 11 assumed a specific type of interaction
between the graphene electrons and the adatoms. For the hy-
drogen adatoms this assumption is supported experimentally
and numerically. However, it remains unclear if the phase
separation is a unique feature of the hydrogen on graphene,
or if other adsorbents would show the same feature. Avoiding
phenomenological arguments, we discuss the phase separation
within the framework of a modified Falicov-Kimball model,
with an infinite interaction constant between a hydrogen hole
and an s electron on the hydrogen atom. The advantage of such
an approach is its generality: The phase separation is a known
property of a ground state of Falicov-Kimball-like models,12–16

robust against variation of microscopic details. To estimate the
characteristic energies of the phase-separated state, we apply
the Hubbard-I approximation.17 To check the validity of this

approximation, we also perform exact diagonalizations of the
model Hamiltonian in a finite cluster.

The phase separation implies that the homogeneous state
is either unstable or metastable. However, it is possible to
imagine that, under suitable conditions, such phase may be
stabilized for a long period of time. If the stabilization is
indeed possible, the properties of the homogeneous phase can
be investigated. Our calculations show that the homogeneous
phase has finite density of states at the Fermi energy, in
agreement with the numerical results of Ref. 10.

Our second goal is to explore the connection between phase
separation and the stability of the graphene-graphane interface.
We show that the graphene-graphane interface has a positive
boundary tension. To stretch the interface with a positive
interface tension by a unit length requires a finite amount
of work. This amount is high for the system considered. Thus,
the interface remains flat over substantial distances, which is a
highly desired property, necessary for the creation of ballistic
mesoscopic systems. In other words, the interface is stable not
only with respect to vacancy defects in small samples, as found
in Refs. 8 and 9, but also with respect to any conceivable defect.
Our approach allows us to obtain a qualitative estimate of the
interface tension and to assess the flatness of the interface at a
given temperature. We estimate that at room temperature the
graphene-graphane interface remains atomically smooth over
distances of about 102 lattice constants.

The paper is organized as follows. In Sec. II we formulate
the model of the adatoms adsorbed on a graphene sample. This
model is solved in Sec. III within the Hubbard-I approxima-
tion. To check the accuracy of the Hubbard-I approximation a
finite-cluster numerical study is presented in Sec. IV. In Sec. V
we investigate the stability of the graphene-graphane interface,
evaluate the interface tension, and investigate its smoothness.
We conclude in Sec. VI.

II. MODEL

We use the model Hamiltonian for graphane,

HA = HE −
∑
iσ

[t0(P †
iσ Siσ + H.c.) + εHS

†
iσ Siσ ], (1)
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HE = −
∑
ijσ

(P †
iσ T̂ijPjσ + H.c.), (2)

where P
†
iσ = (pA†

iσ ,p
B†
iσ ), S

†
iσ = (sA†

iσ ,s
B†
iσ ), σ is the spin pro-

jection. The Hamiltonian HE (HA) corresponds to graphene
(graphane). Below, label ‘E’ (‘A’) is used to denote quantities
associated with graphEne (graphAne). The Hamiltonian HE is
the usual graphene Hamiltonian corresponding to pz electrons
of carbon hopping between nearest carbon atoms arranged into
the honeycomb lattice. For such lattice, the electron creation
operators are arranged into a spinor P

†
iσ , where i denotes

the biatomic unit cell of the lattice. The spinor component
labeled ‘A’ (‘B’) corresponds to a site on the A sublattice (B
sublattice). The hopping matrix T̂ij in the spinor representation
in momentum space is

T̂k =
(

0 tk
t∗k 0

)
,

(3)

tk = tp

[
1 + 2 exp

(
3ikxa0

2

)
cos

(√
3kya0

2

)]
.

The Hamiltonian HA is a simplified model of graphane. It
describes the pz electrons of graphene hybridized with the s

electrons of hydrogen, attached to each carbon atom. Other
bands are disregarded. The carbon-hydrogen hybridization
constant t0 = 5.8 eV exceeds the carbon-carbon hopping
amplitude tp = 2.8 eV and the relative energy of the hydrogen
s orbital εH = 0.4 eV.7

In k space the Hamiltonian HA can be expressed as

HA = −
(

T̂k t0σ0

t0σ0 εHσ0

)
, (4)

where σ0 is the 2 × 2 unity matrix. Here the upper left 2 ×
2 corner corresponds to the carbons atoms, lower right 2 ×
2 block corresponds to the hydrogens, the remaining blocks
describe the C-H hopping.

The matrix for HA is easy to diagonalize. As a result we
obtain four graphane bands,

εA
m = 1

2

( ± |tk| ±
√

4t2
0 + |tk|2

)
, m = 1,2,3,4. (5)

In this formula εH is neglected because it is small.
Although only four bands in graphane are considered in

our model Hamiltonian, Eq. (1), it captures the main features
of graphane: At half filling, Eq. (1) describes an insulator
with a gap located at the � point. The value of the gap Eg

(for the parameters written above Eg = 6.0 eV) is found
to be consistent with Refs. 18 and 19. Note, however, that
there is no consensus about the exact values of the graphane
model parameters. But high precision is not important for the
qualitative results obtained below.

The Hamiltonian HA is valid when the numbers of hydrogen
and carbon atoms are equal. If at some site hydrogen is absent,
then the hydrogen s orbital is not available for the electrons.
This constraint may be enforced by introducing an infinitely

strong repulsion between the hydrogen hole and the electron
on the s orbital

HEA = HA + U
∑
iσ

S
†
iσ N̂hh

i Siσ , (6)

N̂hh
i = diag

(
nhh
Ai ,n

hh
Bi

)
, (7)

where U → +∞, and nhh
A,Bi are the numbers of hydrogen holes

at site i. These numbers can randomly take the values 0 or 1
with mean value 〈nhh

A,Bi〉 = nhh, where nhh is the concentration
of hydrogen holes per carbon atom. The Hamiltonian HEA is a
version of the Falicov-Kimball model in which mobile p and
s electrons interact with immobile holes whose concentration
nhh is fixed externally. Thus, nhh = 1 refers to graphene,
nhh = 0 refers to graphane. Below, we will study partial
hydrogenation: 0 < nhh < 1.

III. CALCULATIONS

An analogy between HEA, Eq. (6), and the Falicov-Kimball
model is very useful for our purposes since the latter model ex-
periences phase separation in a broad range of parameters.12–16

The reasons for the existence of phase separation here can be
understood with the help of simple arguments. Since t0 exceeds
tp, let us study the limit

t0 � tp. (8)

We now introduce the electron operators a, b diagonalizing
those terms of HEA which do not involve the carbon-carbon
hopping,

HEA − HE =
∑

α

a†
αaα

[
t0

(
1 − nhh

α

) + Unhh
α

]
− t0

∑
α

b†αbα

(
1 − nhh

α

)
, (9)

where

pα = bα − aα√
2

(
1 − nhh

α

) + nhh
α bα ,

(10)

sα = bα + aα√
2

(
1 − nhh

α

) + nhh
α aα .

We omit the sublattice and spin labels since the expressions
are the same for any A,B, and σ . The index α labels individual
carbon atoms (i,j label unit cells). In Eq. (9) we neglect the
term proportional to εH since εH 	 tp (	 t0). It follows from
Eq. (9) that the on-site energy of the fermions a is much higher
than the on-site energy of b for any nhh

α , since t0,U � tp. Thus,
to lowest order in tp/t0, these states are empty, and can be
neglected. In this approximation

HEA ≈ −t0
∑

α

b†αbα

(
1 − nhh

α

)
− tp

2

∑
〈αβ〉

b†αbβ

[
1 + γ

(
nhh

α + nhh
β

) + γ 2nhh
α nhh

β

]
,

(11)

γ =
√

2 − 1 ≈ 0.41, (12)

where 〈. . .〉 denotes summation over the nearest neighbors.
From this equation we see that to separate two hydrogen

035408-2



PHASE SEPARATION OF HYDROGEN ATOMS ADSORBED . . . PHYSICAL REVIEW B 85, 035408 (2012)

holes sitting on neighboring sites one must spend an energy
of the order of tpγ 2〈b†αbβ〉. This corresponds to the attraction
between the hydrogen holes (and between the hydrogen atoms)
as in the model used in Ref. 11. This attraction induces
the phase separation. The additional correlations between
the adsorbed adatoms (e.g., due to bond reorganization in
graphane), which our model neglects, may be incorporated as
an effective short-range attraction between the hydrogens. The
effect of this attraction is obvious: it favors phase separation.

Using HEA, Eq. (6), we can derive the equation of motion for
the single-electron Green’s function in the (ω,k) representation

(ω + μ)Ĝpp + T̂kĜpp + t0Ĝsp = 1,
(13)

(ω + μ + εH)Ĝsp + t0Ĝpp − UF̂sp = 0.

Here μ is the chemical potential, Ĝpp,sp and F̂sp are the Fourier
transforms of the time-ordered propagators

Ĝpp(i − j,t) = −i〈T Piσ (t)P †
jσ (0)〉,

Ĝsp(i − j,t) = −i〈T Siσ (t)P †
jσ (0)〉, (14)

F̂sp(i − j,t) = −i
〈
T N̂hh

i (t)Siσ (t)P †
jσ (0)

〉
.

The propagator F̂sp requires an additional equation of motion,
which relates F̂sp with the propagator

F̂pp = −i
〈
T N̂hh

i (t)Piσ (t)P †
jσ (0)

〉
. (15)

To truncate the infinite set of equations for the Green’s
functions, we apply the Hubbard-I approximation. It is a simple
mean-field scheme developed in the seminal papers.17 The
applicability of Hubbard-I and related approaches has been
tested in many cases (see, e.g., Refs. 17, 20, and 21). In the
Hubbard-I approach, F̂pp is approximated by the product

F̂pp = 〈N̂hh〉Ĝpp = nhhĜpp. (16)

This closes the system of equations (13), whose solution may
now be written explicitly as

Ĝpp = ω + μ + εH

(ω + μ + εH)(ω + μ + T̂k) − nHt2
0

,

(17)

Ĝsp = − nHt0

(ω + μ + εH)(ω + μ + T̂k) − nHt2
0

,

where nH = 1 − nhh is the hydrogen concentration per carbon
atom. These equations are obtained in the limit U → ∞.
Similarly, the Green’s function

Ĝss(i − j,t) = −i〈T Siσ (t)S†
jσ (0)〉 (18)

is calculated

Ĝss = nH 1 − t0Ĝsp

ω + μ + εH
. (19)

In the limiting case nH = 0 (nH = 1), the Green’s functions in
Eqs. (17) and (19) coincide with the exact Green’s functions
corresponding to the Hamiltonian HE of graphene (HA of
graphane).

FIG. 1. (Color online) Electron energy E vs the concentration
nH of hydrogen adatoms calculated in the Hubbard-I approximation
(green solid curve) and by exact diagonalizations of 10 × 10 unit
cells cluster (red dashed curve). The negative curvature of E(nH)
over the whole range of nH is an indication of the instability of the
system toward the macroscopic separation into phases with nH = 0
and nH = 1. The Maxwell construction is shown by blue dot-dashed
line. The inset shows the energy difference between homogeneous
and phase-separated states calculated in the Hubbard-I approximation
(green solid curve) and by exact diagonalizations of 10 × 10 and
6 × 6 clusters (red dashed and blue dotted curves, respectively). The
model parameters are: t0 = 5.8 eV, tp = 2.8 eV, εH = 0.4 eV. For
exact diagonalizations, U = 400 eV.

When the Green’s functions are known, the density of states,
the electron concentration, and the energy can be calculated
as a function of μ. Fixing the electron concentration (1 + nH)
per carbon atom, we find μ = μ(nH) and the energy E =
E[μ(nH)] at T = 0.

The Hubbard-I results are presented in Fig. 1. The energy-
versus-density curve has negative curvature for any nH. This
indicates the instability of the homogeneous phase toward the
phase separation. The energy of the phase-separated state can
be found with the help of the Maxwell construction. In our case,
it is simply a straight line connecting the energy of the pure
graphene at nH = 0 and the energy of the fully hydrogenated
graphane at nH = 1. This means that the separated phases are
pure graphene and pure graphane.

The single-electron band structure of the unstable mixed
graphene-graphane phase is shown in Fig. 2. It is interesting
to note that the homogeneous phase has finite density of states
at the Fermi energy. This is consistent with numerical results
for small clusters.10

IV. NUMERICAL CALCULATIONS

To verify our analytic approach, we also perform exact
diagonalizations of the Hamiltonian (6) on a finite honeycomb
cluster containing 10 × 10 unit cells (200 carbon atoms).
Periodic boundary conditions are used. For each nH, hydrogen
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FIG. 2. (Color online) Electronic dispersion ε(k) of the unstable
homogeneous phase for nH = 0.2. Four single-electron bands, found
with the help of Hubbard-I17,22 are plotted for different points of the
Brillouin zone. The chemical potential μ is marked by the horizontal
green dashed line; μ was calculated self-consistently to ensure that the
electron concentration is (1 + nH) per carbon atom. The gap between
the conducting and the valence bands at nH = 0.2 is smaller than the
graphane gap (nH = 1).

atoms are randomly distributed on the cluster, and we calculate
the system energy by averaging it over 1500 configurations.

To check the reliability of the numerical results we
investigate their dependence on the number of sites in the
cluster (Nsites) and the number of the configurations used for the
averaging (Nconfig). In Fig. 3 the averaged energy (normalized
per site)

〈E〉 = 1

NconfigNsites

Nconfig∑
	=1

E[	] (20)

sites

sites

config

FIG. 3. (Color online) The lower (brown) curve represents the
averaged energy 〈E〉, Eq. (20). The upper (blue) curve represents
the dispersion, Eq. (21). The curves are plotted as functions of the
number of the disorder realizations Nconfig. Both curves demonstrate
saturation for Nconfig � 750.

sites

sites

sites

FIG. 4. (Color online) Finite size effects. The solid (green) curve
(connecting skew crosses) represents the averaged energy 〈E〉,
Eq. (20), versus cluster size, Nsites. It saturates for Nsites � 125.
The solid (red) curve connecting filled circles represents the energy
dispersion, Eq. (21). It decays as N

−1/2
sites . The decay of the dispersion

implies that for large samples the energy is a self-averaging quantity.
The value of the dispersion may be used to evaluate the accuracy of
the estimated value of the energy. For Nsites = 200, the error for 〈E〉
is a fraction of a percent.

and the normalized energy dispersion

DE =
√

〈E2〉 − 〈E〉2 (21)

are plotted as functions of Nconfig. In Eq. (20) index 	 labels
different realizations of disorder, E[	] is the energy for a
given disorder realization 	. Both 〈E〉 and DE demonstrate
saturation for Nconfig � 750. This suggests that the Nconfig =
1500 we used in our numerical calculations is sufficient to
obtain reliable results.

In Fig. 4 the same quantities are plotted versus Nsites.
The dispersion decays as N

−1/2
sites . This means that the relative

strength of the energy fluctuations decreases when the cluster
size grows, and the energy experiences self-averaging. The
energy itself saturates for Nsites � 125. Therefore, our choice
of Nsites = 200 is adequate. In addition, the ratio DE/〈E〉
sets the relative error for 〈E〉. For Nsites = 200 this error
is a fraction of a percent. We conclude that our numerical
calculations are reliable.

The most important results are shown in Fig. 1, where the
negative curvature of the function E(nH) is clearly seen. It
implies that the system is unstable and phase separates in two
phases: with nH = 0 (graphene) and with nH = 1 (graphane).
Unless nH is close to 0 or 1, the energy gain due to the phase
separation is of the order of 103 K (see the inset of Fig. 1).
Thus, even at room temperature we can safely use the results
obtained at zero temperature.

Further, the numerically evaluated energy is of the same
order as the Hubbard-I energy: The magnitude of the Hubbard-
I energy is approximately two times higher than the numerical
estimate (see inset in Fig. 1). Thus, the qualitative consistency
between the numerical calculations and the Hubbard-I results
provides firm support to the findings of Sec. III.
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V. INTERFACE TENSION AND INTERFACE STABILITY

In the phase-separated state there is a boundary between
graphene and graphane. The geometry of the stable inhomo-
geneous state depends on the sign and the value of the interface
tension σ0. If σ0 < 0, then the inhomogeneous phase breaks
into small clusters to maximize the boundary length. In the case
of σ0 > 0, the interface tension acts to minimize the length of
the graphene-graphane border. In the case of a long strip this
border is a straight line (if the concentration of the hydrogen
adatoms is not small). However, at finite temperatures, even
for positive σ0, small thermal fluctuations destroy the perfect
smoothness of the boundary between the two phases. The
difference in the lattice symmetry between graphene and
graphane, at the level of the electron model, manifests itself
through the values of the orbital overlaps. In the model con-
sidered here we make an approximation regarding the orbital
overlaps: we assume that several of them are equal to zero.

Further, we neglect the difference between the lattice
constants in graphene and graphane. The contribution of the
electron-electron interaction to the interface tension is also
disregarded (we briefly discuss the effect of the interaction
below). In other words, the interface tension in our model arises
only due to the electron motion through the graphene-graphane
boundary.

These assumptions can be justified post factum: (i) from our
model it follows that the binding energy between a hydrogen
atom and the graphene-graphane interface is of the order of
tp, which is consistent with the results presented in Ref. 9;
(ii) we pointed out above that the value of the graphane gap
in our simplified model Eq. (1) turns out to be consistent
with other studies; (iii) we found that for intermediate
hydrogenation the stable homogeneous phase has finite density
of states at the Fermi energy, in agreement with Ref. 10.

We will now evaluate σ0 in the limit shown in Eq. (8). In
this approximation, electrons in graphane are localized on the
C-H valence bonds [see Eq. (9)] and their contribution to σ0

is small (this contribution is proportional to t2
p/t0 and εH).

In graphene, electrons are moving from one carbon atom to
its nearest neighbors. However, the electrons from graphene
cannot penetrate into graphane since they have to overcome
the graphane gap, which, according to Eq. (9), is of the order
of t0 when Eq. (8) holds. Thus, each carbon-carbon bond
connecting an atom in graphene with an atom in graphane does
not contribute to the graphene electron kinetic energy. This, in
effect, is equivalent to an increase in the kinetic energy of the
electrons in graphene. The longer the interface, the larger the
number of broken bonds. Thus,

σ0 ∼ κ εb

a0
, (22)

where εb is the kinetic energy for each carbon-carbon bond.
The numerical coefficient

κ =
{

1/
√

3 ≈ 0.6 for zigzag

2/3 ≈ 0.7 for armchair
(23)

characterizes the linear concentration of the carbons on the
interface. The kinetic energy per bond is equal to

εb = 2

3

∫
d2k

S0|tk|
(2π )2

∼ tp , (24)

where the integration is performed over the first Brillouin zone,
S0 = 3

√
3a2

0/2 is the area of the graphene unit cell, the factor
2 corresponds to two spin projections, (1/3) enters since there
are three bonds in a graphene unit cell, and tk is defined by
Eq. (3). After integration, we have εb ≈ 1.05 tp, and in our
approximation,

σ0 ∼ 0.6 tp/a0. (25)

A more accurate calculation (following Ref. 23) provides

σ0 ≈ 0.2tp/a0 ≈ 0.6 eV/a0. (26)

In the calculations presented above, the contribution of the
electron-electron interaction to σ0 is disregarded. The detailed
account of the interaction goes beyond the scope of the present
study. Yet, we would like to offer two observations. First,
the contribution due to the interaction is of the same order
as σ0. Indeed, the latter originates mostly from the energy
of C-C bond. The chemical energy of C-H bond is of the
same order (few eV). Thus, there is no energy scale in the
system that would be able to generate an overwhelmingly large
contribution to the interface tension. Second, the contribution
due to the interaction increases the tension. To prove this,
let us neglect the interaction in the bulk, as it is usually
done for graphene, but retain the interaction term for the
electrons near the graphene-graphane edge. This assumption
mimics the relative importance of the interactions for electrons
in lower dimensions. It is known that repulsive interaction
gives positive contribution to the electron energy (see, e.g.,
Sec. I, § 6 of Ref. 24) and, consequently, to the interface
tension.

We neglect the effects of the temperature T on the phase
separation since the characteristic energies of the problem
are much higher than kBT for any realistic T . However,
the temperature fluctuations could affect the smoothness of
the graphene-graphane interface even under such conditions.
Following Ref. 25, we can express the average square
fluctuation of the deviation u of the interface having a length
L as

〈u2〉 = kBT L

2πσ0
. (27)

Thus, we obtain

〈u2〉
a2

0

≈
(

L

a0

) (
kBT

tp

)
. (28)

Using the value of the carbon-carbon hopping tp = 2.8 eV, we
find that, at room temperature, the graphene-graphane interface
remains atomically-flat (〈u2〉/a2

0 � 1) over distances

L1 ≈ 100 a0. (29)

Note that the estimated values of σ0 and, consequently, L1

will be larger if one takes into account the contribution to the
interface tension due to the difference between lattice constants
in graphene and graphane.

VI. CONCLUSION

We mapped the model of hydrogen atoms adsorbed on
graphene on a Falicov-Kimball-like model. We demonstrated
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that this system has a strong tendency to phase separate.
The thermodynamically stable state is inhomogeneous. All
adatoms cluster together, forming two phases: hydrogen-
saturated graphane and hydrogen-free graphene. The interface
between these phases has finite and positive interface tension,
which means that the boundary is stable and flat (if the
number of hydrogen adatoms is not small). The estimated
value of the interface tension is high and, at room temperature,
the interface remains atomically flat over distances of about
102 lattice constants. This result may be of interest for
fabricating graphene mesoscopic devices with weak edge
scattering.
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19S. Lebègue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson,
Phys. Rev. B 79, 245117 (2009).

20J. Beenen and D. M. Edwards, Phys. Rev. B 52, 13636
(1995).

21A. V. Rozhkov and A. L. Rakhmanov, J. Phys. Condens. Matter 23,
065601 (2011).

22J. Hubbard, Proc. R. Soc. London A 281, 401 (1964).
23R. Balian and C. Bloch, Ann. Phys. (NY) 60, 401 (1970).
24E. Lifshitz and L. Pitaevskii, Course of Theoretical Physics, Vol. 9,

Statistical Physics, Part 2 (Butterworth-Heinemann, Oxford, 1999).
25P. Chaikin and T. Lubensky, Principles of Condensed Matter

Physics (Cambridge University Press, Cambridge, 2000).

035408-6

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1080/00018732.2010.487978
http://dx.doi.org/10.1016/j.physrep.2011.02.002
http://dx.doi.org/10.1126/science.1150878
http://dx.doi.org/10.1126/science.1150878
http://dx.doi.org/10.1103/PhysRevB.68.085410
http://dx.doi.org/10.1021/nl803622c
http://dx.doi.org/10.1103/PhysRevB.81.165439
http://dx.doi.org/10.1134/S002136400918012X
http://dx.doi.org/10.1063/1.3525377
http://dx.doi.org/10.1063/1.3525377
http://dx.doi.org/10.1088/0953-8984/21/47/474219
http://dx.doi.org/10.1088/0953-8984/21/47/474219
http://dx.doi.org/10.1103/PhysRevLett.103.016806
http://dx.doi.org/10.1103/PhysRevLett.103.016806
http://dx.doi.org/10.1103/PhysRevB.60.1617
http://dx.doi.org/10.1103/PhysRevB.60.1617
http://dx.doi.org/10.1103/PhysRevLett.88.106401
http://dx.doi.org/10.1103/PhysRevLett.88.106401
http://dx.doi.org/10.1002/pssb.200460067
http://dx.doi.org/10.1002/pssb.200460067
http://dx.doi.org/10.1103/PhysRevLett.95.267210
http://dx.doi.org/10.1103/PhysRevLett.95.267210
http://dx.doi.org/10.1103/PhysRevB.76.195113
http://dx.doi.org/10.1103/PhysRevB.76.195113
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1964.0190
http://dx.doi.org/10.1098/rspa.1964.0190
http://dx.doi.org/10.1103/PhysRevB.75.153401
http://dx.doi.org/10.1103/PhysRevB.75.153401
http://dx.doi.org/10.1103/PhysRevB.79.245117
http://dx.doi.org/10.1103/PhysRevB.52.13636
http://dx.doi.org/10.1103/PhysRevB.52.13636
http://dx.doi.org/10.1088/0953-8984/23/6/065601
http://dx.doi.org/10.1088/0953-8984/23/6/065601
http://dx.doi.org/10.1098/rspa.1964.0190
http://dx.doi.org/10.1016/0003-4916(70)90497-5

