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Initial stages of square lattice stacks of CH4/MgO(001)
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Calculations of monolayer and bilayer lattices of methane on MgO(001) are reported for a spherical model of
the molecule. The observed stability of c(2 × 2) [also termed (

√
2 × √

2)R45◦] commensurate square monolayer
and bilayer lattices is reproduced with a surface energy corrugation that implies a large gap in the monolayer
phonon density of states of the commensurate CH4. This gap is present in the incoherent inelastic neutron
scattering measurements reported here.
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I. INTRODUCTION

Multilayer films of CH4/MgO(001) and CD4/MgO(001)
have been the subject of extensive measurements because they
appeared very suitable for studies of surface-induced melting,
as reviewed by Bienfait and Gay.1 The initial stages of the film
growth continue to attract attention in the a priori quantum
theory of catalytic processes.2,3 Many film parameters are
known and the first few layers are commensurate square solid
lattices.

The stability of the square monolayer and bilayer lattices
also is intrinsically interesting. There is six-fold coordination
in a monolayer triangular lattice but only four-fold coordi-
nation in the monolayer square lattice. While the original
observation of the methane commensurate square lattice4

was not considered to be very remarkable, because the
nearest-neighbor separation Lnn in the monolayer was only 1%
different from that in the ground state of the three-dimensional
(3D) solid, the energetics imply an unusual physical adsorption
system. To balance the difference in lateral cohesive energy
arising from the smaller coordination, the corrugation energy
arising from the substrate must be larger than the attractive
potential energy of a pair of the molecules. The only other
physical adsorption system for which such a large corrugation
is known to occur is5 H2/NaCl(001). The large corrugation
implies a large gap in the monolayer phonon density of states,
which indeed is present in the incoherent inelastic neutron
scattering data reported in Sec. II B.

The square monolayer has unusual lattice dynamics, be-
cause the interactions with next-nearest neighbors cause the
smallest in-plane vibrational frequency to be at the Brillouin
zone edge, in contrast to the minimum at the Brillouin zone
center for triangular lattices. The most likely competing
commensurate-incommensurate transition in the monolayer
is6 a first-order transition from square to compressed triangular
lattice, although a continuous transition to a uniaxially com-
pressed lattice of heavy walls7 is favored at large corrugations.

Because so much is known about the methane/MgO
system, it is reasonable to expect that an atomic scale model
calculation will reproduce the remarkable features of the
monolayer domain. Complications arise from the molecular
character of the adsorbate and from the significant role of
quantum zero-point energies in the low-temperature solids.

There is orientational ordering in the very-low-temperature
monolayer solid.8 However, over much of the monolayer phase
diagram, the molecule is in a state of nearly free rotation and a
spherical molecule approximation is sufficient to reproduce
most of the observations. Quasiharmonic lattice dynamics
suffice to evaluate the zero-point energy effects.

The organization of this paper is as follows. Section II con-
tains a summary of the experimental data and Sec. III contains
the formulation of the calculations. Results of the calculations
are presented in Sec. IV and discussed in Sec. V. Concluding
remarks are presented in Sec. VI. The Appendix describes an
extension of the Novaco-McTague perturbation theory9 to a
strongly corrugated monolayer. Supplementary material has
been deposited in Ref. 10.

II. SUMMARY OF THE EXPERIMENTAL DATA

A. Review of previous data

The degree of rotational ordering of the monolayer solid of
CH4/MgO(001) was measured8,11 using quasielastic neutron
scattering over a temperature range from 1.5 to 50 K. The
molecule is rotationally ordered below 15 K, rotationally
disordered at 20 K, and essentially has a free rotation above
40 K. The monolayer melts12 near 80 K.

The structure of thin methane films was determined
in several diffraction experiments. Early neutron scattering
experiments showed4 that the monolayer and bilayer of
CD4/MgO(001) form commensurate c(2 × 2) square lattices
up to 10 K. Later experiments showed that CD4 grows as
a commensurate square lattice to 3 layers at8 50 K and to
4 layers at13,14 77 K. Helium atom scattering15 confirmed that
the CH4/MgO(001) monolayer is a commensurate c(2 × 2)
square lattice at 33–36 K, as shown also at 50 K by low-energy
electron diffraction.16 Adsorption isotherm data12,13 indicate
limited wetting of CH4/MgO(001) at lower temperatures and
that the fourth layer becomes unstable13 below 40 K.

Integral heats of adsorption qi for condensation of the
monolayer and bilayer CH4/MgO(001) are known from
adsorption isotherms, mostly for the temperature range 70
to 95 K. For the monolayer condensation, Freitag and
Larese report12 q1 = 1385 ± 7 K and cite Madih17 for q1 =
1590 ± 50 K. For the bilayer condensation, they report
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q2 = 1212 ± 2 K and cite Madih for q2 = 1219 ± 6 K. For
comparison, the latent heat of sublimation of 3D CH4 at very
low temperatures is18 1126 K.

The results of a direct determination of chemical potential
differences at fixed temperature are used here for comparison
to calculated stability margins. Freitag and Larese give
�μ12 ≡ μ2 − μ1 = 260–280 K and μ3D − μ1 = 350–370 K
for isotherms at 70–87 K, where μ1, μ2, and μ3D are the
chemical potentials at monolayer, bilayer, and 3D solid
condensation, respectively. The difference �μ12 � 270 K is
much smaller than the value19 �μ12 � 650 K for triangular
monolayer and bilayer lattices of CH4/graphite.

B. Incoherent inelastic neutron scattering

In order to examine the dynamics of the methane
monolayer solid, incoherent inelastic neutron scattering
(INS) experiments were performed using the H5 triple
axis spectrometer at the Brookhaven National Laboratory’s
High Flux Beam Reactor (HFBR) neutron source. INS
offers unrivaled sensitivity for investigating the microscopic
dynamics of condensed matter, especially molecular systems
containing hydrogen. The spectrometer was configured in
an energy-loss, fixed-final energy (Ef = 14.7 meV) mode
using a Ge(111) monochromator and a PG(002) analyzer,
which resulted in an energy resolution (FWHM) of 0.6 meV
at the elastic position. The cylindrical, thin-walled, aluminum
sample cell was filled with ∼10 g of MgO powder. The MgO
is comprised of uniform cubic particles ∼250 nm in size (edge
length) and essentially single facet (100) exposure produced
using a patented process developed by Kunnmann and
Larese.20 The powder-averaged INS spectrum shown in Fig. 1
was recorded at 9.0 K at a wave vector transfer Q = 2.35 Å−1.
The spectra shown in the figure have the response of the MgO
substrate (no film adsorbed) subtracted away. As noted above,
monolayer methane forms a commensurate c(2 × 2) phase
and the methane coverage investigated here corresponds to
95% of the completed monolayer (100-cm3 STP, where STP
is standard temperature and pressure).

Figure 1 shows that there are essentially no excitations that
involve the phonon density of states below about 2.5 meV.
The free rotor transition of the molecule at about 1.15 meV is
present at higher temperatures but disappears completely be-
low 5 K in INS measurements for monolayer CH4/MgO(001),
Fig. 3 of Ref. 21 and Fig. 3 of Ref. 22 at 1.5 and 4 K.

We summarize some comparisons of the lattice dynamics
for adsorption on MgO and on graphite. The nearly dis-
persionless perpendicular frequency is15 ω⊥ = 7.5 meV for
CH4/MgO(001) and is23 ω⊥ = 12.5 meV for CH4/graphite.
For the in-plane phonon motions, the zone-center frequency
gap is24 ω0,‖ = 1.25 meV for commensurate CD4/graphite and
the lower edge of the density of states is estimated from Fig. 1
to be ωmin,‖ = 2.5 meV for CH4/MgO(001).

III. INTERACTION MODELS AND THEORY

The interaction models used here for the stability deter-
minations are empirically based. It is useful to note, though,
the status of a priori calculations of the molecule-substrate,
CH4-MgO(001), interactions. Drummond et al.2 evaluated the

relative energies of methane configurations and concluded that
the dipod-down configuration is the most stable, in agreement
with the results of rotational tunneling measurements for
temperatures below 15 K. Tosoni and Sauer3 calculated a
monolayer adsorption energy of 13.3 kJ mole−1( =138 meV =
1600 K) in good agreement with experimental estimates12,26 of
120–126 meV. However, the calculated vibration frequencies
are25 about twice the experimental CH4 results (i.e., a factor
of four in the force constant) for the perpendicular vibration
ω⊥ obtained from inelastic helium atom scattering15 and for
the lower edge of the in-plane vibration spectrum ωmin,‖
reported in Sec. II B. For the present work, parameters of the
CH4-MgO(001) interaction are based on experimental data
for molecules in the monolayer and from an estimate of the
London-van der Waals energy for molecules in the second
layer of the bilayer solid.

The force constant for perpendicular vibrations is derived
from the frequency ω⊥ = 7.5 meV measured by helium
scattering15 for CH4/MgO(001), which scales to 6.7 meV for
CD4/MgO(001). The interaction of the first-layer molecules
with the square substrate lattice is taken to be determined by
two parameters V0 and Vg0:

Vs(x,y) = V0 + 2Vg0 (cos g0x + cos g0y), (1)

where g0 = 2π/� with � = 2.98 Å for MgO(001). The Fourier
amplitude Vg0 determines the energy parameter �,

� = h̄g0

√
2|Vg0|/m , (2)

(particles of mass m). � is equal to Brillouin zone center
frequency gap ω0‖ when the ground state lattice is the c(2 × 2)
commensurate square lattice with one molecule per unit cell.
For square lattices ω0‖ is distinct from the minimum in-plane
frequency in the Brillouin zone, ωmin,‖, which determines the
gap in a measured density-of-states spectrum. The two values
differ by 10–20% in these calculations for CH4/MgO(001) and
the distinction probably is much larger6 for a commensurate
square lattice of Kr/NaCl(001).

FIG. 1. (Color online) INS difference plot of S(Q,ω) from 0.95
c(2 × 2) commensurate monolayer of CH4 on the MgO(001) surface
at Q = 2.35 Å−1 using the H5 three-axis spectrometer set in the fixed
final-energy mode with a resulting energy resolution at the elastic
position of 0.6 meV FWHM. T = 9.0 K.
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The parameters V0 and Vg0, specific to CH4 adsorption on
MgO(001), are set by requiring that the monolayer condenses
as a square lattice, rather than a triangular lattice, and that the
square bilayer lattice condenses before the chemical potential
is increased to the point that a monolayer triangular lattice
forms. The model calculations were guided by the estimate
ωmin,‖ � 2.5 meV inferred from the incoherent inelastic
neutron scattering data.

The molecules are approximated as spheres, which is a fair
leading approximation for temperatures above 20 K where
they are rotationally disordered. The venerable Lennard-Jones
(12,6) functional form is used for the molecule-molecule pair
potential at separation r with energy minimum at r = Rmin,

φ(r) = 4ε[(σ/r)12 − (σ/r)6] = ε[(Rmin/r)12 − 2(Rmin/r)6]

(3)

with two sets of parameters: ε = 137 K and σ =
3.6814 Å, used by Phillips27 (JMP) in many calculations
for CH4/graphite, and ε = 148.9 K and σ = 3.783 Å, used
by Lynden-Bell28 (RLB) in a simulation of CH4/MgO(001)
multilayers and based on a fit29 to a range of 3D gas phase
data. Given the large σ difference of 0.1 Å, it is surprising that
the results of the two sets for the dense phase conditions of
the monolayer do not lead to large differences in the inferred
values of V0 and Vg0. This may be because the intrinsic length
scales of the two models span the range of physical separations
that dominate the present applications, see Table I. The JMP
set reproduces properties of the monolayer and bilayer solids
somewhat better.

The MgO substrate is the source of a molecule-substrate
van der Waals potential VvdW � −C3/z

3, C3 = 0.313 a.u., and
of a substrate-mediated molecule-molecule interaction. The
substrate-mediated interaction in the monolayer is taken to be

TABLE I. Zero-temperature properties of CH4 and CD4 lattices
in 2D and 3D. LJ(12,6) models augmented with McLachlan (McL)
or triple-dipole (td) energy as stated. Ground-state energies in K
(with 3D zero-point energy) and unconstrained lattice constants (zero
pressure, zero spreading pressure) in Å. ω⊥ = 7.5 meV for CH4/MgO
and 6.7 meV for CD4/MgO. Calculated lengths determined to
±0.005 Å.

species CH4 CH4 CD4 CD4

LJ JMPa RLBb JMP RLB

Lu(2D)(McL) 4.215 4.320 4.205 4.310
E0(	)(McL) −305.4 −348.4 −316.1 −359.3
Lu(2D)(no McL) 4.185 4.295 4.175 4.285
E0(	)(no McL) −350.3 −388.9 −361.3 −400.1

L0 (3D) (no td) 4.095 4.20 4.085 4.195
E0(3D) (no td) −1006 −1104 −1021 −1119
L0 (3D) (td)c 4.15 4.245 4.14 4.235
E0(3D) (td)c −909.5 −1026 −922.6 −1040

L0(3D) (expt)d 4.16 ... 4.14 ...
E0 (3D) (expt)d −1126 ... −1156 ...

aPhillips27 parameters: ε = 137 K and σ = 3.6814 Å.
bLynden-Bell28,29 parameters: ε = 148.9 K and σ = 3.783 Å.
cTriple dipole strength32 ν = 1680 a.u.
dFrom data assembled in Ref. 30.

the McLachlan energy30 with coefficients Cs1 = 47.6; Cs2 =
19.0 (atomic units) and an effective distance to the substrate
(image plane) Lov = 2.25 Å derived from the empirical CH4-
MgO distance2,3,31 3.30 Å. The McLachlan energy is used only
for the monolayer molecules and the van der Waals potential
is used for the molecules in the upper layer of the bilayer.

Zero-point energy causes a 2% dilation of the ground-state
lattice constants of the intrinsic monolayer triangular lattice
and the 3D solid and is included in all the results presented
here. The 3D solid is significantly dilated by the triple-dipole
(three-molecule, non-pair-additive) dispersion energy32 as
shown in Table I. Since the goal of the calculations is to
determine relative stability of film structures, the emphasis
is on relative energies and some of the defects of the models
in giving total energies may be offset in the differences.

The structures that are treated are (1) the commensurate
c(2 × 2) monolayer, (2) the commensurate c(2 × 2) bilayer,
(3) the modulated triangular incommensurate monolayer both
at the minimum energy lattice constant (Lu) and under
compression, and (4) the heavy wall (HW) uniaxially in-
commensurate monolayer7 obtained by compression of the
c(2 × 2) monolayer. Structures (1) and (2) are analogous to
the (1 × 1) lattices treated6 for Kr/NaCl(001), while (3) is
approximated as described in the Appendix. (4) is a structure
that may be accessed7 for CH4/MgO(001) but does not arise
for Kr/NaCl(001). The transitions (1) → (2) and (1) → (3)
are first order transitions while (1) → (4) is continuous.

The stability determinations use the grand potential � of
N molecules adsorbed on an area A at temperature T and
chemical potential μ:

� = N (f − μ), (4)

where f is the Helmholtz free energy per molecule. � plays
the role of a generalized pressure for commensurate lattices.
In the static lattice approximation, f reduces to the potential
energy; when there are significant zero-point energies, the
zero-temperature theory replaces f by the ground-state energy.
If the monolayer solid is a commensurate square lattice, the
chemical potential at monolayer condensation is μ1 = E1(�).
The chemical potential at condensation of a commensurate
square bilayer solid is

μ2 = 2E2(�) − E1(�) , (5)

and the difference is

�μ12 = μ2 − μ1 = 2[E2(�) − E1(�)] . (6)

The question of whether the c(2 × 2) monolayer lattice is com-
pressed to a triangular monolayer lattice, with area/molecule
ax = x(2�2), before the bilayer forms is governed by

μ(x) − μ1 = 1

1 − x
[E1(x) − E1(�)] . (7)

The threshold value �μ(	) ≡ μ1(	) − μ1(�) is the mini-
mum of Eq. (7) as a function of x; the energy E1(x) is evaluated
as described in the Appendix using a generalization of the
Novaco-McTague perturbation theory9 for the modulation
energy arising from the substrate corrugation. The threshold
�μ(HW) = μ1(HW) − μ1(�) is evaluated from the slope
with misfit of the energy E1(HW) of a series of uniaxially
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incommensurate heavy wall (HW) lattices7 at misfits less
than 1%.

The energies that are first formed in the calculations do not
include the average first layer molecule-substrate energy V0.
These are denoted Ẽ1(�), Ẽ2(�), Ẽ1(	), and Ẽ1(HW) and are
related to the energies that enter in Eqs. (5)–(7) by

E1(�) = Ẽ1(�) + V0, (8)

E2(�) = Ẽ2(�) + 1
2V0, (9)

E1(	) = Ẽ1(	) + V0,E1(HW) = Ẽ1(HW) + V0. (10)

Hence �μ(	) and �μ(HW) do not depend on V0 but �μ12

does. It is significant that the chemical potential μ2 does not
depend explicitly on V0:

μ2 = 2Ẽ2(�) − Ẽ1(�). (11)

Equation (11) expresses the fact that the chemical potential
at bilayer condensation is insensitive to the binding of
the monolayer to the substrate. This has been noted33 for
the bilayer condensation of xenon on several substrates (the
C3 term, though, does depend on the substrate). For the
commensurate square lattices, the classical registry energy of
4Vg0 for first layer molecules also cancels from μ2, but Vg0

does affect the zero-point energy in μ2.

IV. COMPUTATIONS

The zero-point energy and free energy of the monolayer
and bilayer lattices are evaluated with quasiharmonic lattice
dynamics.30,34 Calculations27 for methane/graphite suggest
this accurately includes thermal effects at temperatures below
30 K. The pair potentials are summed over seven neighbor
shells in-plane (Rc = Lnn

√
10) and five shells between planes

for the square lattices and five shells in-plane (Rc = 3Lnn)
for the triangular lattice. For the methane 3D fcc lattice
results in Table I, the lattice sums are cut off at a distance
Rc = 3.5Lnn and the Brillouin zone sums are evaluated with
the Chadi-Cohen35 special point set.

Results for the monolayer and bilayer solids of CH4

and CD4 are presented in Table II for the JMP and RLB
parameters. More extensive data, for several other values
of � and for models that do not include the McLachlan
interaction, are given in Supplementary Material.10 These
are zero-temperature results that include zero-point energies.
For comparison, the lattice constant that minimizes the total
potential energy for a 2D triangular lattice with LJ(12,6) pair
potentials is Lnn/σ = 1.111 or 4.09 Å for the JMP parameters
(with −463 K cohesive energy) and 4.20 Å (with −504 K
cohesive energy) for the RLB parameters. The entries for Lu

in Table I, with zero-point energy but without the McLachlan
energy, are 2% larger.

The entries in Table II are as follows. The frequencies
ωmin and ωmax are the minimum and maximum in-plane
frequencies of the c(2 × 2) monolayer. Lu and Ẽu denote the
average nearest-neighbor spacing and energy of the minimum
energy modulated incommensurate triangular lattice. Ẽ1(�)
and Ẽ2(�) denote the energy per molecule of the c(2 × 2)
monolayer and bilayer solids. �μ(	) is obtained using Eq. (7),
while �μ(HW) uses data for the HW lattice at small misfit,
as described there. When �μ(HW) < �μ(	), as occurs for

TABLE II. Zero-temperature properties of CH4/MgO(001) and
CD4 structures with LJ parameters of Phillips27 (denoted JMP) and
Lynden-Bell28 (denoted RLB). Calculations include the McLachlan
energy and the 3D zero-point energies. Ẽ1 and Ẽu are without V0, Ẽ2

is without V0/2, see Eqs. (8)–(10).

species CH4 CH4 CD4 CD4

LJ JMP RLB JMP RLB

�a (meV) 3.00 3.00 2.50 2.50
2 |Vg0| (K) 90.1 90.1 78.3 78.3
ωmin

b (meV) 2.73 2.38 2.24 1.89
ωmax 6.65 8.47 5.87 7.51
Lu(	)c (Å) 4.28 4.37 4.25 4.34
Ẽu(	) (K) −324 −364 −330 −371
Ẽ1(�)d (K) −392 −427 −380 −416
Ẽ2(�) (K) −689 −753 −688 −753
μ1(	) − μ1(�)e (K) 470 578 348 424
μ1(HW) − μ1(�)f (K) 418 540 346 406
V0

g (K) −864 −921 −886 −944
μ1 (K) −1256 −1348 −1266 −1360

a� in terms of Vg0, see Eq. (2).
bMinimum and maximum in-plane frequencies of the c(2 × 2)
monolayer.
cAverage nearest-neighbor spacing and energy of the minimum
energy modulated incommensurate triangle lattice, see the Appendix.
dGround-state energies of the monolayer and bilayer commensurate
square lattices, see Eq. (5).
eChemical potential increment for compression from square to
triangular monolayer lattice, see Eq. (7).
fChemical potential increment for compression from square to
uniaxially incommensurate heavy wall (HW) lattice, see discussion
at Eq. (7).
gV0 = 2[Ẽ2(�) − Ẽ1(�)] − �μ12, using the empirical CH4 value
�μ12 = 270 K for both species.

the larger values of �, the heavy wall lattice is more stable
than the triangular incommensurate monolayer. The values V0

and μ1 are obtained from the empirical �μ12 = 270 K, using
Eqs. (6), (8), and (9).

An attempt was made to estimate the role of thermal effects
at higher temperatures, because most of the data on adsorption
energies is taken at relatively high temperatures, 70–90 K. This
is not routine to do with the quasiharmonic theory because,
as found in other monolayer and bilayer calculations, the
quasiharmonic approximation leads to supra-linear thermal
expansion for CH4 at temperatures above 40 K as well as a large
increase of the interplanar spacing of the bilayer. Quantum
corrected cell model calculations of the unconstrained thermal
expansion and �μ(	) are stable up to about T = 50 K and
indicate that the thermal effects may reduce the values of
�μ(	) relative to the T = 0 K values in the Tables by 20–30 K
for the temperature range T = 30–60 K. This is not large
enough to cause qualitative changes in the stability tests.

V. DISCUSSION

Requiring that the minimum in-plane phonon energy of
CH4 be ωmin,‖ � 2.5 meV sets � ≈ 2.8 meV for the Phillips
model and � ≈ 3.0 meV for the Lynden-Bell model. Both
give values of �μ(HW) and �μ(	) that are much larger
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than the value �μ12 set for the monolayer square to bilayer
square transition. The calculations for CD4, with the same
value of Vg0, show that the square monolayer is succeeded by
the square bilayer too. A separate calculation that shows the
bilayer square is stable relative to the bilayer triangular lattice
increases the requirement on � to the range 3.0–3.1 meV.

As in the modeling6 of p(1 × 1)Kr/NaCl(001), the c(2 ×
2) square commensurate lattice at small corrugations Vg0 is
dynamically unstable relative to a deformation to a square
commensurate Bravais lattice with four molecules in the unit
cell and then � �= ω0‖. The threshold corrugation to make
the potential energy of the one-molecule unit cell lower than
that of the four-molecule CH4 cell is 2|Vg0| � 15 K, i.e., � �
1.2 meV for the JMP parameters. For the RLB parameters, the
values are 2|Vg0| � 33 K and � � 1.8 meV. Hence the four-
molecule unit cell is excluded by the datum ωmin,‖ � 2.5 meV.

To make the energy of the square c(2 × 2) CH4 monolayer
lower than that of a modulated triangle, E1(�) − Eu(	) <

0, requires � � 2.25 meV and that is satisfied by the fit to
ωmin,‖. The most severe constraint is that the chemical potential
increment �μ for compression from the monolayer square to
other monolayer lattices (	 and HW) must be larger than
270 K, and that requires � > 2.75 meV. With � � 3.0 meV,
the calculated gap is ωmin,‖ � 2.4–2.7 meV and compression
of the c(2 × 2) monolayer leads to the bilayer solid and not to
an incommensurate monolayer solid.

The larger core radius σ in the RLB set leads to stronger
repulsive forces in the dynamics of the monolayer square
lattice. The width of the in-plane phonon density of states
ωmax − ωmin for CH4 is about 4 meV for the JMP set and is
close to 6 meV for the RLB set. The latter width is closer to
what is shown in Fig. 1. A reservation on the significance of
this comparison is that the models do not treat the librational
degrees of freedom of the molecule and thus the calculation
omits some higher frequency motions that may be accessed
in the experiments. Also, Fig. 2, the overall shape of the
calculated incoherent inelastic spectrum for the RLB set is
further from the experimental data than that of the JMP set.

The calculated powder-averaged incoherent inelastic neu-
tron scattering spectrum from c(2 × 2)CH4/MgO(001) is
shown in Fig. 2 for the JMP and RLB parameter sets,
both with � = 3.0 meV. The one-phonon inelastic double-
differential cross-section36 is evaluated for initial wave number
ki = 2.958 Å−1, wave number transfer Q = 2.35 Å−1, target
temperature 9.0 K, and a Gaussian instrumental resolution
function with FWHM = 0.6 meV. The quantity shown is D(E),
an average density of states related to the partial differential
cross section and the incoherent one-phonon spectral density
Sincoh,1 by

D(E) =
〈

d2σ

dωdE
′

/
(σi/4π )

〉
= 〈(kf /ki)Sincoh,1(Q,�E)〉,

(12)

where σi is the neutron-molecule incoherent scattering cross
section. The calculated spectra have two peaks, at energy
transfers close to ωmin,‖ and ω⊥, and are in qualitative
agreement with the experimental spectrum, Fig. 1. The ratio
of the lower energy peak intensity to that at the higher energy

FIG. 2. (Color online) Calculated powder average of the double-
differential cross section for incoherent inelastic neutron scattering
from the c(2 × 2) CH4/MgO(001) monolayer, with parameters given
in Sec. V and corresponding to the data in Fig. 1. The density of
states function D(E) defined in Eq. (12) is shown as a function of
energy transfer E. The smooth and chain lines are the results for
the Phillips and Lynden-Bell parameter sets, respectively, both using
� = 3.0 meV.

is about 1.5 in the experimental spectrum, about 1 for the JMP
parameters, and about 0.5 for the RLB parameters.

Combining μ2 from Eq. (11) and the �μ12 � 270 K fitted
to the Freitag-Larese data12 leads to values for the monolayer
condensation chemical potential at T = 0 K of μ1 = −1256 K
for the JMP set (methane/graphite) and μ1 = −1348 K for the
RLB set (methane/MgO multilayers). The offset from the 3D
solid ground-state energy (including triple dipole energies)
then is μ1 − μ3D � −350 K for the former and μ1 − μ3D �
−320 K for the latter. Both values are in remarkable agreement
with the estimate μ1 − μ3D � −350 to − 370 K from the
Freitag-Larese isotherms at higher temperatures. Without the
triple dipole energy in the 3D calculation, the calculated
differences would have shifted by about 100 K.

The calculations10 show that μ1 for CH4 varies by only 1 K
as � is changed from 2.25 to 3.25 meV for the JMP parameters
(from 2.5 to 3.25 meV for the RLB parameters). Thus μ1 is
insensitive to the value of � and to whether the McLachlan en-
ergy term is included, in accord with the discussion of Eq. (11).

The monolayer registry energy at � = 3.0 meV is
−4|Vg0| = −180 K. This also is the barrier to motion on
the surface in a 2D model. It is smaller than an activation
energy �E � 660 K fitted to the diffusion coefficient of
a dense monolayer fluid of CH4/MgO(001) measured37 by
quasielastic neutron scattering for temperatures of 88 to 97 K.
However, it does offset the reduction of lateral energy in the
square lattice, which is approximately the ε = 137–149 K of
the Lennard-Jones (12,6) potential. The a priori calculations
of relative site energies by Drummond et al.2 give energy
differences on this scale, but also show the complexity of the
full molecular problem. The energy difference for the dipod
orientation (edge down) at the O2− and Mg2+ sites is 6.5 meV
(75 K) with a height difference of 0.5 Å. The energy difference
for the tripod down configuration is 14.2 meV (165 K) with a
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height difference of 0.3 Å. The energy barrier for translational
motions must be an average of these increments that arises
from coupled orientational and out-of-plane motions of the
molecule. The a priori calculations have not evaluated this
yet.

The negative dispersion of the in-plane shear mode fre-
quency from Brillouin zone center to the zone boundary
is a characteristic of the square lattice. The net shift for
atomic/molecular mass m is given in terms of the nearest-
neighbor force and the dipole-dipole and dipole-quadrupole
dispersion energy coefficients38 C6 and C8 by

m
[
ω2

min,‖ − ω2
0,‖

] = 8

r

dφ

dr

∣∣∣∣
r=Lnn

− 4C6

L8
nn

[
9

4
+ 312

3125

]

− 4C8

L10
nn

[
2 + 560

15625

]
, (13)

where the first term in each square bracket on the right-hand
side is the contribution of the next-nearest neighbors at distance
Lnn

√
2 and the second term is the contribution of farther

neighbors at separations out to Lnn

√
5. Equation (13) can

be used to interpret the lattice dynamics calculation of the
dispersion. For Kr/NaCl(001), the first term on the right-hand
side is well determined from dimer spectroscopy and accurate
values are available for the dispersion force coefficients C6 and
C8 that give the dominant contributions from farther neighbors.
For CH4/MgO(001), the C6 coefficient is believed to be known
to 5%, while the accuracy of C8 is at the 10–15% level and
the nearest-neighbor term is an estimate based on spherical
molecule approximations. For the Kr case,6 with Lnn < Rmin,
all terms are of the same sign and the net reduction may be as
large as 50% of ω0‖. For CH4 with the JMP parameters, the
first term on the right-hand side is positive (Lnn > Rmin) and
there is an offsetting effect. For CH4 with the RLB parameters,
the first term on the right-hand side is negative (Lnn < Rmin)
and the net reduction is larger.39

VI. CONCLUSION

The calculated stability margins between candidate dense
molecular packings, once the internal parameters are opti-
mized, tend to be a small part of the total energy and one
that is hard to match reliably to experiments. However, the
difference in coordination between the square and triangular
lattices has large enough effect that the requirements on
the external potential can be estimated rather easily. The
conclusion of this paper is that the condensation of the methane
monolayer as a simple commensurate square lattice that
is succeeded by a commensurate square bilayer lattice is
understood and consistent with the scattering and isotherm
data. The observed frequency gap is large enough to require
a substrate corrugation, with � ≈ 3 meV, that suffices to
stabilize the observed square lattices. It is a novel situation
to unite the two complementary approaches in a consistent
picture.
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APPENDIX: VARIATIONAL APPROXIMATION
TO THE NOVACO-MCTAGUE ENERGY

An incommensurate monolayer solid is modulated by the
spatially periodic terms in the adatom-substrate potential
energy v(r), i.e., the corrugation energy terms. Novaco and
McTague9 found that the corresponding shift �E of the
ground-state energy often is well approximated by a second-
order perturbation theory. When the corrugation is strong,
as for Kr/NaCl(001) and CH4/MgO(001), the second-order
perturbation theory for �E leads to a divergent dilation
of the lattice because the harmonic adatom-adatom force
constants become very small. While this artifact might be
remedied by an expansion that retains higher harmonics
(anharmonic perturbation theory), a variational modification
of the perturbation theory is implemented here.

Let the classical potential energy for adatoms at positions
{rj } be written as

� =
∑

i

v(ri) +
∑
i<j

φ(|ri − rj |) , (A1)

and retain only the leading shell of reciprocal lattice vectors

v(r) = Vg

∑
g

exp(ıg · r) . (A2)

Second-order perturbation theory for the displacements {uj }
from the positions {Rj } in the uniform triangular incommen-
surate lattice driven by the v(r) gives

uj = −Vg

∑
g

exp(ıg · Rj )D−1(g) · (ıg) , (A3)

D(g) =
∑

j

[1 − exp(ıg · Rj0)]∇∇φ , (A4)

where the tensor D is proportional to the dynamical matrix of
harmonic lattice dynamics.

The variational theory first evaluates the potential energy,
Eq. (A1), for the positions rj = Rj + f uj without expanding
the functions v and φ. The scale factor f and the angle
α that a primitive vector of the triangular lattice makes
with a primitive vector of the square substrate lattice are
variational parameters for each choice of uniform triangular
incommensurate lattice {Rj }. The sums in Eq. (A1) are carried
over a lattice of 800 × 800 = 640 000 adatoms. The potential
energy � is minimized as a function of f and α. The lattice
constant that minimizes the potential energy plus the harmonic
zero-point energy of the uniform triangular lattice is denoted
Lu(	) in the Tables and the corresponding total energy is
denoted Eu. (The subscript u denotes the “unconstrained” or
zero spreading-pressure lattice.) �μ(	) is obtained using the
optimized total energy in Eq. (7).

The variational approximation coincides with the second-
order perturbation result at small corrugations, and it elim-
inates the divergent dilation at large corrugations that was
described previously6 for Kr/NaCl(001).

035401-6



INITIAL STAGES OF SQUARE LATTICE STACKS OF CH . . . PHYSICAL REVIEW B 85, 035401 (2012)

*lwbruch@wisc.edu
†jzl@utk.edu
1M. Bienfait and J. M. Gay, Surface Melting and Diffusion, in Phase
Transitions in Surface Films 2, edited by H. Taub, G. Torzo, H. J.
Lauter, and S. C. Fain Jr., (Plenum, New York, 1991), pp. 307–259.

2M. L. Drummond, B. G. Sumpter, W. A. Shelton, and J. Z. Larese,
Phys. Rev. B 73, 195313 (2006).

3S. Tosoni and J. Sauer, Phys. Chem. Chem. Phys. 12, 14330 (2010).
4J. P. Coulomb, K. Madih, B. Croset, and H. J. Lauter, Phys. Rev.
Lett. 54, 1536 (1985).

5L. W. Bruch, R. D. Diehl, and J. A. Venables, Rev. Mod. Phys. 79,
1381 (2007).

6L. W. Bruch, J. Phys. Chem. A 115, 6882 (2011).
7A. Patrykiejew, S. Sokołowski, and K. Binder, J. Chem. Phys. 115,
983 (2001).

8J. Z. Larese, Physica B 248, 297 (1998).
9A. D. Novaco and J. P. McTague, Phys. Rev. Lett. 38, 1286 (1977).

10See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.85.035401 for additional tables with data from
computations with other values of the corrugation parameter �.
Results are also given for the molecule-molecule interaction model
without the McLachlan term, i.e., the interaction is given by the
Lennard-Jones (12, 6) potential only.

11J. M. Gay, P. Stocker, D. Degenhardt, and H. J. Lauter, Phys. Rev.
B 46, 1195 (1992).

12A. Freitag and J. Z. Larese, Phys. Rev. B 62, 8360 (2000).
13K. Madih, B. Croset, J. P. Coulomb, and H. J. Lauter, Europhys.

Lett. 8, 459 (1989).
14J. M. Gay, J. Suzanne, and J. P. Coulomb, Phys. Rev. B 41, 11346

(1990).
15D. R. Jung, J. Cui, and D. R. Frankl, Phys. Rev. B 43, 10042

(1991).
16T. Meichel, J. Suzanne, and J. M. Gay, Compte Rendues Academie

Sciences Paris 303, 989 (1986).
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