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Mode shape and dispersion relation of bending waves in thin silicon membranes
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We study the vibrational behavior of silicon membranes with a thickness of a few hundred nanometers
and macroscopic lateral size. A piezo is used to couple in transverse vibrations, which we monitor with a
phase-shift interferometer using stroboscopic light. The observed wave pattern of the membrane deflection is
a superposition of the mode corresponding to the excitation frequency and several higher harmonics. Using a
Fourier transformation in time, we separate these contributions and image up to the eighth harmonic of the
excitation frequency. With this method we determine the dispersion relation of membrane oscillations in a
frequency range up to 12 MHz. We develop a simple analytical model combining stress of a membrane and
bending of a thin plate that describes both the experimental data and finite-elements simulations very well. We
derive correction terms to account for a finite curvature of the membrane and for the inertia of the surrounding
atmosphere. A simple criterion for the transition between stressed membrane and thin plate behavior is presented.

DOI: 10.1103/PhysRevB.85.035324 PACS number(s): 46.40.Cd, 46.70.De, 46.80.+j, 62.30.+d

I. INTRODUCTION

Nowadays micromachined membranes are standard parts
for a variety of technological applications. They are used as
micro hotplates for gas sensors,1 as vacuum windows for ion
beams, x rays, and ultraviolet radiation,2 and as an electron-
permeable substrate for transmission-electron microscopy.3 In
fundamental research they are used as building blocks for
photonic crystals,4,5 as an elastic substrate for mechanically
controlled metallic contacts,6 as temperature sensors with high
thermal, spacial and temporal resolution,7 as ion detectors
for mass spectrometry,8 and as a sieve on a molecular length
scale.9 Membranes inside an optical cavity allow coherent
coupling of optical and mechanical degrees of freedom.
This opens fascinating possibilities for studying the boundary
between classical and quantum physics.10,11 As an example,
laser cooling of vibrational modes from room temperature
down to 7 mK has been reported recently.10

This broad range of applications motivated studies of the
mechanical properties. When the dimensions of a system are
reduced to sizes comparable with the phonon wavelength,
the discrete nature of the acoustic spectrum becomes visible.
For silicon membranes with a thickness of a few hundred
nanometers and lateral sizes of about 1 mm, thickness
oscillations at tens to hundreds of gigahertz have been studied
using time-resolved optical pump probe measurements12 and
Raman scattering.13 At lower frequencies of about 1 MHz, the
discretization of bending waves in the lateral direction is the
dominating mechanism. Although several of the applications
mentioned above make use of these excitations, no experimen-
tal analysis of mode shape and dispersion relation has been
reported so far. As we will show, the bending-wave regime is
best described by drum-head (stressed membrane) oscillations
for low frequencies, while higher frequencies correspond to
thin-plate bending waves. The transition frequency between
those regimes depends on the thickness and the prestress of the
membrane, and lies in the range of 5 MHz for the membranes
used here.

Although the length scale of our membranes is much larger,
many aspects discussed here might be interesting for the

graphene community. Graphene has a finite bending stiff-
ness, shows an inhomogeneous curvature due to spontaneous
rippling14 and in many experiments it is prestressed because
of the pinning to a substrate. A dispersion relation for bending
waves taking all these effects into account is presented in this
paper.

II. EXPERIMENT

We developed an approach to determine the dispersion
relation of bending waves in membranes, plates and shells,
starting with the measured real-space motion.

Using an imaging interferometer, we detect the surface
profile of reflecting samples with subnanometer resolution
in the vertical direction and submicrometer resolution in
the lateral direction.15 Using stroboscopic light, we take
subsequent snapshots of the vibrating sample at fixed phases
of the oscillation. Using this method we directly measure the
deflection of a membrane as a function of space and time.

A. Sample fabrication

The membranes are fabricated from a silicon-on-insulator
(SOI) wafer, using a wet etching process adapted from Ref. 16.
The wafer consists of a 340-nm thin silicon layer on top of
400 nm of silicon oxide, 500 μm of bulk silicon, and a silicon
nitride etch mask on the backside. Using anisotropic etching in
KOH, a hole is etched through an opening in the nitride mask
while the top side of the wafer is kept dry by a special etch
cell. After 24 hours the KOH solution reaches the silicon oxide
etch-stop layer. Using hydrofluoric acid the oxide is removed,
providing a 340-nm-thick silicon membrane with lateral sizes
between 200 and 700 μm in a rectangular frame made of SOI
material. The flatness of the membrane is better than 1% of
the lateral size and is best immediately after oxide removal.
The static buckling can be explained by oxide formation on
the surface leading to a compressive stress.17,18

B. Mechanical control

The chip is glued to a piezo ring and the backside is
connected to a pressure controller and a pump (Fig. 1). We
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FIG. 1. (Color online) Sketch of the experiment showing
schematically the mounting of the sample in the imaging interfer-
ometer. The interferometer is indicated by the objective lens. The
sample is glued to a piezo ring used to excite the vibrations. With the
help of a pump, a pressure difference is applied between upper and
lower sides of the sample. It is possible to fill the chamber containing
the sample with a heavy gas atmosphere as indicated by the green
(light gray) shaded area.

control the static stress by applying a pressure difference
between top and bottom sides of the membrane.

Applying an AC voltage, thickness oscillations of the piezo
ring are used to excite vibrations of the membrane. With this
simple excitation mechanism we easily obtain large vibration
amplitudes up to hundreds of nanometers without damaging
the membranes. However, the details of the excitation, given
by the coupled resonances of piezo, silicon chip, and other
parts, are difficult to unravel. This is problematic when
studying any system response amplitudes as a function of
the excitation frequency, since it is not straightforward to
distinguish resonances of the membrane and resonances of
the excitation system. Simulations addressing this issue have
been performed and will be published elsewhere. Fortunately
this knowledge is not necessary for the experimental approach
presented in this paper, as we will explain below.

Above the sample, a microscope objective with an inte-
grated Mirau interferometer detects the reflected light. The
range of excitation frequencies from 100 Hz to 2 MHz is
limited by the refresh rate of the CCD camera and the switching
time of the stroboscopic light source.

C. Data analysis

In general, the observed wave pattern of the membrane
deflection will be a superposition of the static profile, the mode
corresponding to the excitation frequency ωex , and several
higher harmonics of ωex . The main reason for the excitation of
harmonics can be found in the equation of motion. As we will
explain in Sec. III, it is only linear for very small amplitudes.
The amplitudes in our experiments (∼100 nm) are small but in
this context not negligible compared to the static deflection (a
few micrometers). Using a Fourier transformation in time, it
is possible to separate different frequency contributions. This
way frequency eigenmodes z̃(x,y,ω = nωex) up to the n = 8
harmonic of the excitation can be imaged, limited by the time
resolution of the stroboscopic light source. Examples of such
eigenmodes are shown in Figs. 2(a)–2(d) (see figure caption
for color code).

In a second step, z̃ is decomposed into a Fourier series
[Eq. (1)] to obtain the �k-space representationclm (Fig. 3) of the
mode:

z̃(x,y,ω) =
∞∑

l,m=1

clm(ω) sin(kxlx) sin(kymy) (1)

(a) (b)

(c) (d)

FIG. 2. (Color) (a)–(d) Examples of measured eigenmodes (only
the real part is shown) of a membrane with size 714 μm ×
691 μm × 340 nm. The applied pressure difference is 50 mbar
and the excitation frequency is varied from 1 to 2 MHz. Red and
blue denote opposite sign of the phase with respect to the excitation.
The darkness of the color is proportional to the deflection amplitude.
Lower frequency modes (a) are not localized, higher modes (b)–(d)
are usually located along specific paths through the membrane. For
comparison with the dispersion relation we distinguish paths along
the edge (b), through the center, perpendicular to the edge (d) and
completely random patterns (c). (e) Dispersion relation. The black
dots are experimental results from the �k-space fit method, and the
colored lines are calculated using Eq. (2). The colors correspond to
selected paths of wave propagation with varying membrane stress
(red: high stress, center of the membrane; blue: low stress, edge of
the membrane; dashed green: medium stress, diagonal propagation).
The apparent scattering of the experimental data is a result of the
localization of modes to paths of higher or lower stress.

with kxl = lπ/dx and kym = mπ/dy . dx and dy are the lateral
dimensions of the membrane. Cosine terms are absent because
of the fixed boundary conditions. Although we are dealing with
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FIG. 3. (Color online) �k-space distribution (clm) of a mode at 9.8
MHz (same membrane as in Fig. 2). The color indicates the intensity
according to the scale bar at the right side. The solid lines show the
fit results for the main contributions [black: peak position; red (gray):
half of maximum]. The signal in the upper left corner is an artifact of
a lower frequency mode.

standing instead of propagating waves, we can still define a
wave vector �k = (kx,ky).

Using the clm(ω) data, there are two ways to extract a
dispersion relation: Either we can find a mean value for |k| for
each ω, or we can find the frequency ω, where the component
for one specific �k shows the highest amplitude.

D. The �k-space fit method

Since the elastic properties of the (100) plane of silicon
are nearly isotropic, the main contributions to the �k-space
distribution are found in a circular ring. Fitting a circle
to the clm(ω) data (black line in Fig. 3), we obtain a
data point for an approximately isotropic dispersion relation.
Repeating the procedure described above while scanning ωex ,
the experimental dispersion relation in Fig. 2(e) is generated.
For ωex far away from any resonance, the �k-space distribution
is dominated by noise. This is most problematic for the first few
modes because the spacing between resonance frequencies is
high in this regime, limiting this method to frequencies above
≈1 MHz.

E. Maximum-amplitude method

For the low-frequency part of the dispersion we apply a
different method of data analysis. We pick an arbitrary �k vector
and check for which excitation frequency the �k component
of the mode has the highest amplitude (Fig. 4). Repeating
this analysis for all the �k vectors, the experimental data in
Fig. 5 is obtained. This method works best for low frequencies
�1.5 MHz, when the resonance frequencies are well separated,
providing a perfect supplement for the �k-space fit method
described above. Since the mode for a given frequency is
described by a �k-space distribution (Fig. 3) rather than a single
�k vector, the ω(k) data points show apparent scattering as well.

(a) (b)

(c)

FIG. 4. (Color) The amplitude of the (l,m) = (3,3) component
of the measured modes over the excitation frequency f . The (3,3)
eigenfunction is shown in inset (a). The insets (b) and (c) depict the
modes measured at 880 kHz and 1.008 MHz respectively. The mode
(b) is a (3,3) eigenmode with only a small (1,1) contribution, resulting
in the large peak. (c) is a superposition of higher modes with only a
small (3,3) component.

This scattering is part of the nature of the system and should
not be mistaken as a measurement error.

F. Discussion of results

For low frequencies, where wavelengths are comparable
to the membrane dimensions, the modes are delocalized

FIG. 5. (Color online) The dispersion relation of membrane
bending waves (membrane size 238 μm × 269 μm × 337 nm; smaller
than the one in Fig. 2). The black dots and pluses are experimental
results from the maximum-amplitude method measured in air and
SF6 atmospheres respectively; the red (gray) dots are FE results.
The curves show the effect of the correction terms. Unlike in Fig. 2,
only curves for diagonal propagation are shown while the curves
for maximum and minimum stress are omitted. The gray grid marks
the wave numbers of diagonal propagation, where the data points
and the shown curves should fit. The dotted blue line depicts the
unperturbed result of Eq. (2). The dashed red line takes the effect of
static curvature into account using Eq. (3). For the solid black line,
the correction factor for air inertia [Eq. (4)] has been applied to the
curved membrane dispersion.
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[Fig. 2(a)]. For higher frequencies, the modes are localized
along varying paths. Modes along the edge [Fig. 2(b)] tend to
have comparatively low frequencies, modes through the center
[Fig. 2(d)] have high frequencies, while modes following
arbitrary patterns [Fig. 2(c)] show medium frequencies for
the same given |�k|. The reason for this is the inhomogeneous
stress distribution in the membrane discussed in Sec. III.

G. Finite-elements simulations

Finite-elements (FE) simulations have been performed
using the Comsol Multiphysics software [red (gray) dots in
Fig. 5]. The membrane is modeled as a cuboid with four fixed
boundaries at the edges and two free boundaries describing
the top and the bottom side. A normal force on the bottom
side is introduced to describe the pressure difference. In a first
step, the pressure-induced static deformation of the membrane
is computed. Because of the large static deformations, a
nonlinear solver has to be used. In the second step, the equation
of motion is linearized around the static solution and the
eigenmodes are computed by a linear solver. The mesh consists
of approximately 100 points in each lateral direction. In the
vertical direction we use four points for the nonlinear and two
points for the linear solver. A high number of points in the
lateral direction is necessary to get reliable results for small
wavelengths, whereas the number of points in the vertical
direction has no significant influence on the results.

(a)

(b)

FIG. 6. (Color online) (a) The static deflection of the membrane
as a function of the applied pressure difference. Experimental data are
shown as well as the results of simulations using different models to
take buckling into account. (b) The maximum stress in the membrane
as a function of the applied pressure difference. The following FE
models have been used: “FEM flat”: The membrane is modeled as a
cuboid without prestress. Buckling is neglected in this case. “FEM
23.5 MPa”: A flat membrane with a compressive prestress of 23.5
MPa, leading to spontaneous buckling compensating the stress. “FEM
exp. prof.”: The measured profile of the pressure free membrane
is used as the equilibrium configuration of the membrane in the
simulation. “FEM sinusoidal”: A sinusoidal deflection is used as
equilibrium configuration of the membrane.

Both the experimental data and the FE simulations show a
superlinear dispersion relation starting with a finite frequency
for k → 0. The experimental frequencies are systematically
lower as compared to the simulated data. This offset is
explained by the inertia of the surrounding media, introducing
an additional mass to the membrane not taken into account
in the simulations. A detailed discussion of this effect can be
found in Sec. IV B of this paper.

To check the validity of the simulations, we compare the
simulated static deflection of the membrane as a function
of the pressure difference with the experimental data. Using
the simplest model possible, a cuboid without prestress, the
deflection at 50 mbar from the simulation is 17% smaller
than measured [see Fig. 6(a), lines labeled as “FEM flat” and
“experiment”). Regarding the buckling of 1.2 μm for zero
pressure, this is a reasonably good agreement. We tried several
different ways to include buckling in the model, explained in
detail in the caption of Fig. 6. All these approaches improve
the agreement between simulation and experiment, but none
of them results in quantitative agreement for all pressures at
once. In Fig. 6(b), the maximum stress is shown for all of
the theoretical models investigated. The maximum stress is
much less sensitive to buckling than the deflection. The results
for different models differ by less than 6% from the simple
flat membrane model. As we will show in the next section,
the stress is much more important for the dispersion relation
than the deflection, consequently the dispersion relations from
our simulations are reliable, although they are calculated
neglecting buckling.

III. ANALYTIC THEORY

Both prestressed membranes and thin plates have been
studied theoretically to great detail in literature.19–21 Here the
more general case of a prestressed thin plate is discussed.

For prestressed membranes, neglecting bending stiffness,
the equation of motion is

hρz̈ = Fz,memb = h
∑
ij

σij

∂2z

∂xi∂xj

.

h is the thickness, z the deflection, Fz the restoring force
density, and σij the stress tensor of the membrane. The indices
i and j cover the lateral directions. For small amplitudes z the
stress is constant, given by the static prestress, and therefore the
equation of motion is linear. Using the plane-wave ansatz z ∝
eikx−iωt , the dispersion relation ω = √

σxx/ρk is obtained.20

For thin plates, neglecting both prestress and anisotropy,
the restoring force is

Fz,plate = −D�2z,

with the bending stiffness D = Eh3/12(1 − ν2) using the
Young’s modulus E and the Poisson ratio ν. � denotes the
Laplace operator. The dispersion ω = √

D/(hρ)k2 follows
using the same ansatz.20 For anisotropic materials, E and ν

and therefore D depend on the direction of propagation.
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Using the restoring force Fz = Fz,memb + Fz,plate we derive
the dispersion for a prestressed thin plate:

ω =
√

D
h
k2 + σxx

ρ
k. (2)

A more general but less accessible form of the dispersion
relation can be found in Ref. 22.

The only unknown quantity in Eq. (2) is σxx , and unfor-
tunately this value is not constant in space. Therefore we use
the finite-elements results of σxx to extract the mean values
along characteristic paths of wave propagation. These values
are indicated in the legend of Fig. 2(e). This way we obtain
ω(k) for waves traveling along the path of maximum stress
(perpendicular to the edge through the center), minimum stress
(along the edge), and for diagonal propagation. In Fig. 2(e)
these extremal dispersion relations are shown in red, blue,
and green respectively. The validity of the analysis is verified
by the spatial distribution of the real-space images shown in
Figs. 2(a)–2(d), which are close to these extremal curves. The
interval between these curves is an upper boundary for the
uncertainty of the wave number due to inhomogeneous stress.
In the experimental data it is visible as the range of scattering
in the dispersion relation [Figs. 2(e) and 5], as well as the
width of the circular ring in the �k-space map (Fig. 3).

The stressed membrane behavior ω ∝ k and the thin-plate
bending behavior ω ∝ k2 appear in Eq. (2) as limiting cases for
high (λ 	 λ0) and for low (λ 
 λ0) wavelengths, respectively.
Except for a factor close to 1, the wavelength λ0 of the
crossover of both regimes is found by equalizing the addends
under the square root in Eq. (2):

λ0 =
√

E

σxx

h.

IV. CORRECTION TERMS

For small wavelengths (high k), the analytical expression
(2) provides a good description for both the experimental and
the FE results (see Fig. 2). For large wavelengths, there is no
satisfactory agreement. For very small k in Fig. 5, both the
FE as well as the measured frequencies seem to have a finite
limit, while Eq. (2) predicts ω(k = 0) = 0. This effect will be
explained below, taking a static curvature of the membrane
into account. The FE method predicts systematically higher
frequencies than observed experimentally. This is caused by
the inertia of the surrounding gas.

A. Membrane curvature

As a result of the applied pressure difference, the mem-
branes show a finite curvature. The force needed to bend
a curved shell is larger than the force to bend a flat plate,
leading to an increase in frequency. The reason for this is
the coupling between bending waves and the in-plane waves
(longitudinal and shear). For thin shells with small curvature
and without prestress, this has been studied theoretically in
Refs. 23 and 24. In analogy to the procedure above, we add

the stressed-membrane force term to the equation of motion in
Ref. 24 and derive the dispersion relation

ω2 = D

hρ
k4 + σxx

ρ
k2 + ω2

R (3)

with

ω2
R = E

ρ

(
n2

x

Ry

+ n2
y

Rx

)2

.

�n = �k/k is the normalized vector in propagation direction,
and Rx and Ry are the radii of curvature in x and y directions.
Note that this expression is only valid for small curvatures
(k 	 1/Ri). For frequencies much larger than ωR , the first two
terms in Eq. (3) dominate, meaning that membrane curvature
is only important for low-frequency modes.

The dispersion relation from Eq. (3) is depicted in Fig. 5
(dashed red line) and shows very good agreement with the
FE data. The experimental data is systematically lower in
frequency than both Eq. (3) and the FE results. The reason for
this is that both of them describe the membrane in vacuum,25

neglecting the inertia of the surrounding atmosphere, as we
will discuss in the next section.

B. Surrounding fluid

We estimate the inertia of the air using the simple
assumption that the thickness T = Cλ of the air film in motion
is proportional to the wavelength λ of the bending wave
with a dimensionless constant C. The effective density of the
membrane is described by hρeff = hρmemb + Tρgas, with the
membrane thickness h, and the densities of membrane ρmemb

and surrounding gas ρgas. In the case of different gases on top
and bottom side, we assume symmetry in the film thicknesses
hρeff = hρmemb + T

2 ρgas,1 + T
2 ρgas,2. This allows us to treat the

two gas system as only one gas with the average density. Using
the proportionality ω ∝ 1/

√
ρ from Eq. (2) or (3), we conclude

ω ∝ 1√
1 + Cλρgas

hρmemb

. (4)

Comparing the frequencies ω1 and ω2 of the same mode
measured under gas atmospheres with the densities ρ1 and
ρ2 respectively, we isolate C in Eq. (4):

C = hρmemb

λ

ω2
2 − ω2

1

ρ1ω
2
1 − ρ2ω

2
2

. (5)

Resonance frequencies measured with one side in SF6 and
one side in air atmosphere are shown in Fig. 5. The parameter
C is calculated for each of these modes using ρ1 = ρAir and
ρ2 = 1

2 (ρAir + ρSF6 ). The mean is 〈C〉 = 0.66 with a standard
deviation of 0.19. Using this parameter, we can use the
correction factor from Eq. (4) to account for air inertia in
the dispersion from Eq. (3). The resulting black line in Fig. 5
is in excellent agreement with the experimental data. For very
small wave vectors, corresponding to wavelengths much larger
than the size of our membranes, the fluid correction Eq. (4)
and therefore the frequency approaches zero. In this regime our
approach is no longer valid because the motion is dominated
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by the fluid instead of the membrane, comparable to the motion
of a flag in the wind.

V. CONCLUSION AND SUMMARY

We have studied the vibrational modes of 340-nm-thick
silicon membranes using optical profilometry, FE simulations,
and an analytic model. Starting from experimental data in
the real space and time domains, we calculate the dispersion
relation. The possibility of observing the phenomenon both
in real space and in �k space at the same time, allows us
to obtain a very detailed understanding of the system. The
physics of the system is governed by two regimes: For low
frequencies the nature of the system corresponds to that of a
drum head, and for high frequencies thin-plate bending forces
dominate the vibrational behavior. We derived correction terms
to the analytical description to account for the effects of

finite curvature of the membrane and for the inertia of the
fluid surrounding the membrane. Including these terms, we
obtain excellent agreement between our analytical theory,
the FE simulations, as well as the experimental results. Our
findings pave the way for tailoring this kind of nanoscale
membrane to the requirements of applications relying on
particular properties of the vibrational excitations.
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