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Pressure-dependent reordering of valence band states in GaN/AlxGa1−xN quantum wells
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We show theoretically that for narrow GaN/AlxGa1−xN quantum wells, lattice matched to GaN substrate and
grown along the c-crystallographic direction a pressure-dependent reordering of the topmost valence subbands
having different symmetries occurs. This reordering depends critically on the values of the D3 and D4 deformation
potentials and can be employed in the verification of existing literature values of these parameters. In order to
analyze the effect of subband reordering on the the optical properties of such systems we consider a multiband
exciton problem including k · p and Coulomb coupling between subbands. Our calculations show that the
difference in the exciton binding energies in different valence subbands contributes significantly to the conditions
for the reordering of corresponding optical transitions in emission and absorption spectra. Pressure-induced
reordering of excitonic transitions leads to a noticeable modification of the polarization of emitted/absorbed
light.
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I. INTRODUCTION

Group III-N semiconductors crystallizing in the wurtzite
structure have complicated valence band structures consisting
of three subbands in the vicinity of the � point. One subband is
related to the �9 representation and the other two correspond
to the �7 representation of the symmetry group C6v . Using
the analogy with cubic zinc blende crystals in the framework
of the so-called “regular crystal approximation” the �9 level
is associated with the heavy hole subband, whereas two �7

subbands are termed as the light hole and the crystal-field
split-off subbands.

In the unstrained bulk GaN and InN the top subband is of �9

character, whereas in the bulk AlN, the sequence of subbands
is inverted with the topmost �7 subband. This inversion obvi-
ously is present in AlGaN alloys at high enough concentration
of Al. Combining two materials such as AlGaN and GaN in
one quantum well (QW) system gives an opportunity to modify
the symmetry properties of the top of the valence band states.
Quantum structures built with these semiconductor materials,
conventionally grown along the c-crystallographic direction,
are used to produce ultraviolet light emitters and high-power
electronic devices.1 In most cases the character of the topmost
valence subband in GaN/AlxGa1−xN QWs is of �9 type.
However, in very narrow QWs the top valence subbands are
reordered with the �7 subband at the top of the valence band. It
was established by Shields et al. that this effect was responsible
for the significant change of the excitonic g factor with the well
width.2 Proper analysis of this phenomenon requires taking
into account the large biaxial strains and huge built-in electric
fields (caused by piezoelectric and spontaneous polarizations)
which are present in these structures and lead to dramatic
modification of the electronic states of the conduction and
valence bands.1 Unfortunately, the quantitative description of
this effect in the framework of the k · p method is hampered
by existing discrepancies in the literature as to the exact values
of relevant parameters, in particular the deformation potentials
D3 and D4.3

The effect of reordering of topmost valence subbands
and hence changing the emitted light polarization has been
observed in nitride QWs grown along both nonpolar and
semipolar (i.e., nonparallel to the c axis) directions.4–6 It was
shown by applying the k · p analysis that anisotropic strain
in the c plane and shear strain are crucial in determining
the ordering of the topmost valence bands (Ref. 5). Little
attention has been devoted to the alternative possibility of
applying external stress to change the symmetry of the topmost
valence subbands. So far, hydrostatic pressure studies of the
photoluminescence (PL) and absorption have been focused
on the pressure dependence of interband transition energies
and have been used to investigate the hydrostatic deformation
potentials of the band gap in nitride bulk semiconductors
and electromechanical effects in nitride QWs and quantum
dots.7–13 The role of excitons in nitride QW structures under
pressure has usually been estimated using simple variational
calculations.8,14

In the present paper, we investigate the influence of the
external hydrostatic pressure on the valence band structure
and excitonic optical spectra of very narrow nitride QWs
grown along the c axis. Contrary to the previous papers which
were devoted to pressure dependence of interband transition
energies, we focus here on pressure-induced changes in the
top of the valence band of nitride QWs. Particularly, we
show that for multiple GaN/AlxGa1−xN QWs with properly
chosen widths of QWs and barriers, and grown on GaN
substrate along the c-crystallographic direction, one should
observe a pressure-dependent crossing between �9 and �7

subbands. This effect is extremely sensitive to the values
of the deformation potentials D3 and D4. Surprisingly, the
direction of the crossing (�7 to �9 or �9 to �7) with pressure
and the width of the QW at which it occurs depend critically
on those parameters. In order to analyze the effect of band
reordering on the excitonic optical spectra we have devel-
oped an accurate multiband exciton theory which is particu-
larly applicable for wide gap semiconductor QW structures.
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Calculations performed using this model demonstrate that the
excitonic effects contribute significantly to the conditions for
the reordering of optical transitions.

II. MODEL

A. Single-particle states

Our studies of the pressure-induced changes in the top of the
valence band are based on calculations which are performed
within the framework of the continuum theory of elasticity and
piezoelectricity and the k · p method using the Rashba-Sheka-
Pikus valence band Hamiltonian.

The conduction band states at the zone center are described
by the s-type functions v1 = |C,σc = ↑〉 ≡ |S〉↑ and v2 =
|C,σc = ↓〉 ≡ |S〉↓, where σc denotes electron spin in the
conduction band. Valence band basis is built of p-type
functions, the eigenstates of the z projection of the orbital
angular momentum with J = 1:

u1 = |V,JZ = 1,σv = ↑〉 ≡ − 1√
2
|X + iY 〉↑,

u2 = |V,JZ = 0,σv = ↑〉 ≡ |Z〉↑,

u3 = |V,JZ = −1,σv = ↑〉 ≡ 1√
2
|X − iY 〉↑,

u4 = |V,JZ = 1,σv = ↓〉 ≡ − 1√
2
|X + iY 〉↓, (1)

u5 = |V,JZ = 0,σv = ↓〉 ≡ |Z〉↓,

u6 = |V,JZ = −1,σv = ↓〉 ≡ 1√
2
|X − iY 〉↓.

These states are in the following labeled by a double index
Jzσv , where Jz = 1,0, − 1 and σv = ↑,↓. In order to find
energy levels in the QW system at the zone center we solve
eigenequations for the envelope functions in the conduction
and valence band of the general form∑

n̄

Ĥβ,nn̄(z)Fβ

n̄,N (z) = E
β

NF
β

n,N (z), (2)

where the z axis is parallel to the growth direction. Here
Ĥβ,nn̄(z) represents the Hamiltonian matrix for the conduction
band (β = C) and valence band (β = V ) and the summation
is preformed over the indices corresponding to the basis states
for the given band. The Hamiltonian matrices are taken for
the vanishing momentum component perpendicular to the
growth axis p⊥ = 0, while the z component of momentum
is replaced with the −ih̄ ∂

∂z
operator. For the conduction band

in the parabolic approximation we simply have a diagonal
2 × 2 matrix

ĤC =
(

− ∂

∂z

h̄2

2m||

∂

∂z
+ UC(z)

)
Î2, (3)

where m|| denotes z-dependent effective mass across different
QW layers in the conduction band and UC(z) is the potential
profile for the conduction band including band disconti-
nuities, electric field Ez, and band renormalization due to
strain. The standard symbol În denotes the n × n identity
matrix.

The valence band Hamiltonian at p⊥ = 0 for a given
valence band potential profile UV (z) is given by a 6 × 6 matrix
of the form

ĤV =UV (z)Î6 +
√

2�3(σ̂− ⊗ Ĵ+ + σ̂+ ⊗ Ĵ−) + �2σ̂z ⊗ Ĵz

+ Î2 ⊗
{

[�1 + D3εzz + D4(εxx + εyy)]Ĵ 2
z

− h̄2

2m0

∂

∂z
(A1Î3 + A3Ĵ

2
z )

∂

∂z

}
. (4)

We have used the notation from Ref. 15: Ĵ± = 1√
2
(Ĵx ± iĴy)

and σ̂± = 1
2 (σ̂x ± iσ̂y), where the 3 × 3 matrices Ĵx,Ĵy,Ĵz,

represent the angular momentum operator components for J =
1 and σ̂x,σ̂y,σ̂z denote standard Pauli matrices. Accordingly,
�i , Aj are the band parameters and Dk are the deformation
potentials for the valence band in wurtzite structure semicon-
ductors. Note that the equations for the envelope functions have
full symmetry with respect to the rotations about the z axis.
Consequently, the eigenstates have well-defined projection of
the total angular momentum on the z axis.

The potential profiles UC and UV contain band gap
discontinuities and modifications due to strain and the built-in
electric field which can be determined in the framework
of the continuum theory of elasticity and piezoelectricity.
Using the approach of Ref. 13, one can describe the pressure
tuning of the nonzero elements of the strain tensor and the
built-in electric field in GaN/AlxGa1−xN multi-QWs with un-
strained QWs (i.e., grown on GaN substrate) by the following
equations:

εxx,b =εyy,b = aw

ab

[
1+ C11,w −C13,w

(C11,w +C12,w)C33,w −2C2
13,w

P

]
−1,

(5)

εxx,w = εyy,w = C11,w − C13,w

(C11,w + C12,w)C33,w − 2C2
13,w

P, (6)

εzz,b = −2C13,b

C33,b

εxx,b + e33,b

C33,b

E′
z,b + P

C33,b

(e33,bE
′′
z,b − 1),

(7)

Ez,b = E′
z,b + PE′′

z,b, (8)

where

E′
z,b =

Lw

[
Psp,w + 2

(
e31,w − C13,w

C33,w
e33,w

)
εxx,w − Psp,b − 2

(
e31,b − C13,b

C33,b
e33,b

)
εxx,b

]
Lwκb + Lbκw

, (9)

E′′
z,b = Lw

Lwκb + Lbκw

(
e33,b

C33,b

− e33,w

C33,w

)
, (10)

κb = ε̃b + e2
33,b

C33,b

. (11)
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In the above equations, we indicate all material tensors,
fields, and parameters by indices w for the QWs and b for
the barriers. Formulas for εzz,w, Ez,w, and κw can be obtained
from Eqs. (7)–(11) by interchanging the indices b and w. The
piezoelectric constants are denoted by eij , Cij are the elastic
constants, P is hydrostatic pressure, L is the width of the
layer, a is the in-plane lattice constant, and ε̃ is the electric
permittivity. With the above definitions we have the following
expressions for the potential profile in each layer:

UC(z) = U0C + eEzz + aczεzz + act (εxx + εyy),
(12)

UV (z) = U0V + eEzz + D1εzz + D2(εxx + εyy),

where the U0C and U0V denote the energy of the band edge
in unstrained material in the conduction and the valence band,
respectively. The conduction band deformation potentials are
denoted by acz and act .

Equations (2), (3) and (4) are solved by the finite element
method. Note that in order to ensure the Hermiticity of
operators containing the product of functions and derivatives
we use the symmetrization

Q(z)
∂2

∂z2
→ ∂

∂z
Q(z)

∂

∂z
,

Q(z)
∂

∂z
→ 1

2

(
∂

∂z
Q(z) + Q(z)

∂

∂z

)
.

B. Multisubband exciton theory

Due to the strong exciton effects in nitride quantum
structures, it is inevitable to consider electron-hole interaction
in the studies of the optical transitions. It has been pointed
out that the complexity of the band structure in this case
restricts the applicability of variational approaches based on
the one-band electron Hamiltonians to relatively wide QWs.16

Therefore, a multiband model of excitons in GaN/AlGaN QW
at zero pressure was presented in which the hydrogen-atom-
type orbitals were used as the basis for solving the exciton
equation.16 We introduce here another technique based on the
expansion of the exciton wave function in the Landau orbitals
corresponding to a fictitious magnetic field.17

In our model we solve the Bethe-Salpeter exciton equation
in the minisubband k · p approximation.18 The excitons
are described using the time-dependent correlation function

1,2 := �(t)〈[â†

2(t)â1(t),P̂ †
ε (0)]〉, where â

†
1 and â2 are creation

and annihilation operators for electron band states 1 and 2,
respectively. The momentum operator has the form P̂ †

ε (t) =∑
1,2 P ε

1,2a
†
1(t)a2(t), where P ε

1,2 = 〈1|p̂ε|2〉 is equal to the
matrix element of p̂ε, the projection of the one-particle
momentum operator onto the light polarization vector ε. The
indices 1 denote single electron states in the conduction
subbands and the indices 2 denote the states in the valence
subbands.

The Bethe-Salpeter equation takes the form

i
∂

∂t

1,2(t) =

∑
1̄,2̄

[
HC

11̄δ22̄ − H̄V
22̄δ11̄

]

1̄,2̄(t)

−
∑
2̄,1̄

V1,2̄,2,1̄
1̄,2̄(t) + iδ(t)P ε
1,2

≡
∑
1̄,2̄

HX
12,1̄2̄
1̄,2̄(t) + iδ(t)P ε

1,2. (13)

The single-particle Hamiltonian operator HC
11̄ describes

the conduction band states in wurtzite QWs in the parabolic
band approximation. The valence band term HV

2̄2 is obtained
from the Rashba-Sheka-Pikus Hamiltonian matrix for wurtzite
QWs.15 The electron-hole Coulomb interaction containing
both the direct term and the exchange part is represented by
V1,2̄,2,1̄ matrix elements. The vector P ε

1,2 represents the initial
state of the exciton after absorption of photon. In this equation
the exciton Hamiltonian matrix is simply defined as

HX
12,1̄2̄ = [

HC
11̄δ22̄ − H̄V

22̄δ1,1̄

] − V1,2̄,2,1̄, (14)

where δij denotes the Kronecker δ and the bar over symbols
denotes the complex conjugation.

Taking advantage of the axial symmetry of the problem we
introduce the symmetrized basis set to describe the electron-
hole pair states:



Lz

sMNσc
(ρ12) =

∑
n,Jz,σv

′
ϕns(ρ12)FC

σc,M
(z1)F̄ V

Jzσv,N
(z2)|C,σc〉

⊗ K̂|V,Jzσv〉, (15)

with Lz denoting the projection of the total angular momentum
onto the z axis. A primed summation sign indicates that
a restriction should be applied as discussed below. The
time-reversal operator K̂ reflects the symmetry of the hole
states with respect to electron states. In our approach the
relative motion of the electron and hole in the QW plane
represented by the two-dimensional vector ρ12 = ρ1 − ρ2 =
x i + y j is described using the Landau orbitals corresponding
to a fictitious magnetic field B0 perpendicular to the QW plane.
Associated with this magnetic field is the so-called magnetic
length l0 = √

h̄/eB0, which determines the spatial extension
of the Landau orbitals defined by

ϕns(ρ12) = (â†)n(b̂†)s

l0
√

2πn!s!
exp

(
−ρ2

12

4l20

)
, (16)

where the ladder operators â† and b̂† are given by

â† = 1√
2

[
−l0

(
∂

∂x
+ i

∂

∂y

)
+ 1

2l0
(x + iy)

]
,

(17)

b̂† = 1√
2

[
−l0

(
∂

∂x
− i

∂

∂y

)
+ 1

2l0
(x − iy)

]
.

Each Landau orbital ϕns(ρ12) has a well-defined z component
of the angular momentum equal to h̄(n − s) so the summation
in Eq. (15) is restricted by the conditions

Lz = n − s + σc − Jz − σv, n � 0, s � 0. (18)

Operators of relative electron-hole momentum in the QW
plane are expressed in terms of the ladder operators in the
following way:

p+ = px + ipy = ih̄√
2l0

(â† − b̂),

p− = px − ipy = −ih̄√
2l0

(â − b̂†), (19)

p2
⊥ = p+p−.
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The matrix elements of the conduction band part HC
11̄ of the

exciton Hamiltonian in Eq. (13) in the above basis set are given
by

HC
MM̄

=
(

p2
⊥

2m⊥
+ EC

M

)
δM,M̄ , (20)

where m⊥ denotes the conduction band effective mass in the
direction parallel to the QW plane. The valence band part
of the exciton Hamiltonian is obtained from Rashba-Sheka-
Pikus Hamiltonian using six-dimensional eigenvectors FV

N̄
(z)

of Eq. (2):

HV
NN̄

= EV
NδNN̄ + p2

⊥
2m0

∫ ∞

−∞
dz

[
FV

N (z)
]†(

A2Î3 + A4Ĵ
2
z

)

⊗Î2 FV
N̄

(z) − 1

2m0

∫ ∞

−∞
dz

[
FV

N (z)
]†

×A5(p2
−Ĵ 2

+ + p2
+Ĵ 2

−)

⊗Î2 FV
N̄

(z) + i
h̄

2m0

∫ ∞

−∞
dz

[
FV

N (z)
]†

(p−[Ĵz,Ĵ+]+

+p+[Ĵz,Ĵ−]+) ⊗ Î2

(
A6

∂

∂z
+ ∂

∂z
A6

)
FV

N̄
(z). (21)

The Coulomb potential matrix elements in this representa-
tion are simply expressed in terms of single integrals involving
the envelope functions as discussed in the Appendix.

The excitonic wave functions can be expanded in this basis
in the following manner:


1,2(t) ≡ 
Lz (ρ12,t) =
∑

sMNσc

ψsMNσc
(t)
Lz

sMNσc
(ρ12). (22)

The summation is carried over the subbands in the conduction
band (index M), subbands in the valence band (index N ),
conduction electron spin σc and the Landau orbital index s. The
projection of the total angular momentum on the z axis Lz is a
good quantum number for excitons with circular polarization
σ± and linear polarization σz with respect to the normal
to QW plane. The Bethe-Salpeter equation (13) is solved
by expanding the coefficients ψsMNσc

(t) of excitonic wave
functions in the basis of the eigenstates of the Hamiltonian:18,19

HX
λ = EX
λ 
λ, (23)

where EX
λ denotes the energy of the excitonic eigenstate 
λ.

According to the linear-response theory the absorption
coefficient can be written as

α(ω) = 4πe2

cnrm
2
0h̄ωLw

Re
∫ ∞

0
〈[P̂ε(t),P̂ +

ε (0)]〉ei(ω+i0+)t dt,

(24)

where Lw is QW width, nr is the refractive index, m0

is electron mass, e is elementary charge, and the angular
brackets represent ensemble averaging. The absorption can
be expressed in terms of the exciton eigenstates 
λ and takes
the form

α(ω) = 4πe2

cnrm
2
0h̄ωLw

∑
λ

|〈P ε|
λ〉|2δ(ω − EX
λ

/
h̄
)
. (25)

Here we defined the product of excitonic states by

〈P ε|
λ〉 =
∑
1,2

P̄ ε
1,2


λ
1,2 =

∑
sMNσc

P̄ ε
sMNσc

ψλ
sMNσc

. (26)

The initial exciton state P ε
1,2 in the representation given in

Eq. (15) is equal to

P ε
sMNσc

= ∓1√
2π l0

PCV

∫
dz FC

σc,M
(z)F̄ V

−Lzσc,N
(z), (27)

where PCV denotes the interband momentum matrix element
at the bulk Brillouin zone center. The upper sign corresponds to
Lz = 1 for circular light polarization ε = σ+, while the lower
sign corresponds to Lz = 0 for linear polarization ε = σz, and
Lz = −1 for circular polarization ε = σ−, respectively.

Exploiting the fact that the exciton Hamiltonian matrix in
the representation of Landau orbitals is sparse, we generated
the excitonic spectra using the Lanczos reduction technique
using |P ε〉 as an initial vector. The value of the fictitious
magnetic field B0 is carefully adjusted in order to increase
the accuracy of calculations. This feature is particularly useful
when we want to describe both a tightly bound ground state
and more extended excited states and therefore it is well suited
for studying excitons in wide gap semiconductors. In the
present study we have taken B0 = 15 T, which guarantees
the accuracy of the energy of the ground state on the level of
0.05 meV and provides fairly good accuracy in describing the
lower energy portion of the continuum spectrum. In order to
simulate the broadening of optical spectra, we have replaced δ

functions in Eq. (25) by Gaussians with the standard full width
at half maximum equal to 8 meV. The emission spectra are
evaluated from absorption curves using the Einstein relation
and assuming the temperature of 80 K.

III. RESULTS AND DISCUSSION

A. Single-particle calculations

We analyze first the pressure dependence of the valence
band structure of the GaN/AlxGa1−xN QWs lattice matched to
the GaN substrate. Single-particle states have been calculated
using the values of the material parameters for GaN and AlN,
which are listed in Table I. We employ recently calculated
deformation potentials for the valence band using the density
functional method with the hybrid Heyd-Scuseria-Ernzerhof
functional.3 The parameters for AlxGa1−xN are estimated
using the linear interpolation between binaries except for the
energy gap and the spontaneous polarization, for which bowing
is taken into account as in Ref. 12.

The effect on the nonlinear piezoelectricity is included
assuming the strain dependence of piezoelectric constants of
GaN and AlxGa1−xN.22 The diagram in Fig. 1 shows the
dominant [�7 (stars) or �9 (squares)] character of the topmost
valence subband depending on the Al content in the barrier
and QW width in GaN/AlxGa1−xN multi-QWs system for
fixed barrier thickness equal to 40 nm at pressure P = 0 GPa.
According to Ref. 23 fully strained structures are available
for this Al content range and barrier thickness. For narrow
QWs, one can observe that the topmost valence subband is
of �7 character. With increasing the QW width, reordering
of �7 and �9 valence band levels occurs in accordance with
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TABLE I. Material parameters for GaN and AlN.

GaN AlN

�so (eV) 0.017a 0.019a

�cr (eV) 0.010a −0.169a

mez (m0) 0.20b 0.33b

A1 (h̄2/2m0) −5.947c −3.991c

A2 (h̄2/2m0) −0.528c −0.311c

A3 (h̄2/2m0) 5.414c 3.671c

A4 (h̄2/2m0) −2.512c −1.147c

A5 (h̄2/2m0) −2.510c −1.329c

A6 (h̄2/2m0) −3.202c −1.952c

acz = act (eV) −4.6b −4.5b

(acz − D1) (eV) −5.81d −4.31d

(act − D2) (eV) −8.92d −12.11d

D3 (eV) 5.47d 9.12d

D4 (eV) −2.98d −3.79d

a (Å) 3.189b 3.112b

C11 (GPa) 366b 397b

C12 (GPa) 139b 143b

C13 (GPa) 98b 112b

C33 (GPa) 403b 372b

e31 (C/m2) −0.34b −0.53b

e33 (C/m2) 0.67b 1.5b

e′
31 −5.0b −3.5b

e′
33 −16.0b −15.0b

Psp (C/m2) −0.034a −0.09a

ε̃ 10.4b 8.5b

Eg (eV) 3.44b 6.28b

aReference 20.
bReference 12.
cReference 21.
dReference 3.

observations of Ref. 2. The critical well width corresponding
to subband reordering, denoted as L0, is the largest for the Al
content in the barrier ranging from x = 0.2 to x = 0.35. In
Figs. 2 and 3, we show analogous diagrams for pressure equal
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P = 0GPa
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L
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FIG. 1. (Color online) Dominant character of the uppermost
valence subband in GaN/AlxGa1−xN multi-QWs for various QW
widths Lw and Al content in the barriers and fixed barrier width
Lb = 40 nm. Stars correspond to the �7 type of the uppermost
subband and squares to the �9 type.
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FIG. 2. (Color online) Same as in Fig. 1, but for the pressure
5 GPa.

to 5 and 10 GPa, respectively. The value of L0 decreases with
pressure for each value of the Al concentration in the barrier.

From Figs. 1–3, it is clear that for certain structures (for
example GaN/AlxGa1−xN QWs with x = 0.2, Lw = 1.5 nm,
and barrier width Lb = 40 nm) it is possible to induce the
�7 to �9 crossing by applying pressure. In order to illustrate
this phenomenon we present in Fig. 4 the energy difference
between the �9 and �7 levels, E�9 − E�7 , for such a QW (stars)
as a function of pressure. The �7-�9 crossing is clearly seen at
P ≈ 5 GPa. We also show corresponding curves for bulk GaN
(squares) and strained (lattice matched to GaN) AlxGa1−xN
layers for x = 0.1 (circles) and x = 0.2 (triangles). The
pressure dependence of �9-�7 energy difference in bulk
materials is significantly weaker than in the QW in which
it is apparently related to the pressure-induced changes in the
quantum confining potential.

Finally, we would like to note that the prediction of the
pressure dependence of the �9 and �7 levels reordering is
extremely sensitive to the values of the deformation potentials
D3 and D4. We present in Fig. 5 the values of E�9 − E�7 as
a function of pressure for QWs with various widths obtained
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FIG. 3. (Color online) Same as in Fig. 1, but for the pressure
10 GPa.
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FIG. 4. (Color online) Pressure dependence of the energy differ-
ence of the two top valence levels, E�9 − E�7 for the GaN/AlxGa1−xN
QW with x = 0.2, Lw = 1.5 nm, and barrier width Lb = 40 nm
(stars), bulk GaN (squares), and strained (lattice matched to GaN)
AlxGa1−xN layers for x = 0.1 (triangles) and x = 0.2 (circles).

using two sets of D3 and D4, one from Ref. 3 (open symbols)
and the other from Ref. 20 (solid symbols). One can see that
using these two sets of parameters leads to opposite behavior
of energy splitting with pressure. For deformation potentials
from Ref. 20 we obtain the negative slope of the energy level
spitting with pressure, whereas for the data from the Ref. 3
the opposite trend is observed. According to the deformation
potentials determined in Ref. 3, the reordering from �7 to
�9 levels occurs for relatively narrow QWs (Lw = 1.5 nm)
at p = 5 GPa. On the other hand, for deformation potentials
from Ref. 20 (solid symbols), we find that reordering from �9

to �7 symmetry level occurs for much wider QW Lw = 5 nm
(triangles), while for narrow wells no reordering is possible.

B. Excitonic effects

Interband transition energies in GaN/AlxGa1−xN QWs
only approximately correspond to the positions of single

0 2 4 6 8 10

-0.04

-0.03

-0.02

-0.01
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0.01

E
ΓΓ ΓΓ 9-E

ΓΓ ΓΓ 7 [
eV

]

pressure [GPa]

 Ref. 3
Ref. 20

FIG. 5. (Color online) Pressure dependence of the energy differ-
ence of the two top valence levels, E�9 − E�7 for the GaN/AlxGa1−xN
QW with x = 0.2, Lw = 1.5 nm (squares), Lw = 3 nm (circles)
and Lw = 5 nm (triangles). Solid symbols correspond to the results
obtained with deformation potentials from Ref. 20, whereas the open
symbols correspond to deformation potentials from Ref. 3.

0 2 4 6 8 10
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-8
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FIG. 6. (Color online) Valence band level energy difference
E�9 − E�7 (open squares) and difference of excitonic transition ener-
gies from the �7 and �9 to the conduction band in GaN/Al0.2Ga0.8N
QWs with Lw = 1.5 nm (solid squares) and with Lw = 1 nm (solid
circles).

particle levels in the valence and conduction band due to
strong excitonic effects. The difference in the exciton binding
energies for �7 and �9 levels contributes to the conditions for
the reordering of corresponding optical transitions of different
symmetries.

In Fig. 6 we compare the valence band single-particle
energy difference E�9 − E�7 (open squares) with difference
of excitonic transition energies from the �7 and �9 subbands
to the conduction band (solid squares) obtained using the
parameters from Table I. If not for the difference in the exciton
binding energies, both curves would be identical. Since the
difference in exciton binding energies is larger than �9-�7

level splitting, we observe that already at zero pressure the
excitonic transition sequence is reversed in comparison to the
single-particle picture. Increasing pressure does not lead to
the reordering of excitonic transition energies, while according
to the single-particle states one obtains crossing of the �7

and �9 levels at 5 GPa. In order to observe the reordering of
excitonic transitions of different symmetry, it is necessary to
use a narrower QW. Calculations including excitonic effects,
performed for a QW with Lw = 1 nm, predict the reordering
of transitions at about 5 GPa, as illustrated by the curve with
full circles in Fig. 6.

Reordering of excitonic transitions is reflected in optical
properties of GaN/AlxGa1−xN QW structures under pressure.
We show in Figs. 7 and 8 the calculated excitonic emission and
absorption spectra for the 1-nm-thick GaN/Al0.2Ga0.8N QWs
at six values of pressure and two different polarizations: circu-
lar σ+ polarization in the QW plane and linear σz polarization
along the growth direction. Since the �9 exciton transition is
allowed in the σ+ polarization and the �7 exciton transition
is allowed in the σz polarization, we observe two peaks in
PL spectra, each corresponding to different polarization. The
energy difference of those peaks follows the �7-�9 splitting
depicted in Fig. 6 by the curve with full circles (note that the
difference in the transition energies is equal to minus difference
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FIG. 7. (Color online) Photoluminescence evolution with pres-
sure for circular σ+ polarization in the QW plane (black curves) and
linear, σz polarization parallel to the growth direction (gray curves,
red online).

of the initial, valence band states). The �7 emission peak
intensity decreases with pressure while the �9 emission peak
increases. Pressure-dependent excitonic absorption spectra are
illustrated in Fig. 8, in which the absorption curves for two
polarizations (gray curves, red online, for σz and black curves
for σ+) at different pressures are presented. The excitonic
transition with σz polarization (associated with �7 levels) has
lower energy than the transition at σ+ (from �9 levels) at zero
pressure. The reordering of the fundamental transition peaks
occurs at about P = 5 GPa.

IV. CONCLUSIONS

We have investigated the influence of external hydrostatic
pressure on the electronic structure of the valence band in
GaN/AlxGa1−xN QWs. We have found that for structures with
properly chosen widths of the QWs and barriers and lattice
matched to GaN substrate, the pressure-dependent reordering
of �9-�7 valence subbands occurs. This reordering depends
crucially on the values of the deformation potentials D3 and
D4. It may even have opposite behavior as a function of
pressure for two examined sets of values given in Refs. 3
and 20. In order to analyze the effect of subband reordering
on the the optical properties of such systems we have solved
a multiband exciton problem including k · p and Coulomb
coupling between subbands. Our calculations have revealed
that the difference in the exciton binding energies for �7 and
�9 levels contributes significantly to the conditions for the
reordering of corresponding optical transitions in emission
and absorption spectra. Change of symmetry of the dominant
excitonic transition is reflected in the pressure dependence
of the polarization of the emitted/absorbed light. We believe
that our results will inspire high-pressure experiments on light
polarization switching in semiconductor quantum structures.
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FIG. 8. (Color online) Computed absorption spectra for various
pressures for circular σ+ polarization in the QW plane (black curves)
and linear σz polarization, parallel to the growth direction (gray
curves, red online).

In particular, such studies could help in verifying the values of
the deformation potentials D3 and D4.
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APPENDIX

In this appendix we describe our method of calculating
Coulomb interaction matrix elements in the Landau basis rep-
resentation. We have assumed that the dielectric permittivity
ε̃ responsible for screening is isotropic and uniform across
the QW and barrier region. Although the anisotropy of the
permittivity constant can be easily incorporated by a proper
transformation of variables, its effect is very small in GaN.17

Similarly, the assumed uniformity of the dielectric permittivity
is well justified since the difference between ε̃ in GaN QW and
AlGaN barrier is not higher than 15%.

The direct Coulomb interaction matrix elements in the
representation 


Lz

sMNσc
(ρ12) defined in Eq. (15) can be easily

reduced to a single integral,

〈



Lz

sMNσc

∣∣ 1

r12

∣∣
Lz

s ′M ′N ′σc

〉 =
∫ ∞

−∞

dkz

2π
MC

σcMM ′(kz)M̄V
NN ′ (kz)

×〈ϕns |Vkz
(ρ12)|ϕn′s ′ 〉, (A1)

where the “form factors” for the conduction and valence band
states are defined by

MC
σcMM ′(kz) =

∫ ∞

−∞
dz e−ikzzF̄ C

σcM
(z)FC

σcM ′ (z) (A2)

and

MV
NN ′ (kz) =

∑
Jzσv

∫ ∞

−∞
dz e−ikzzF̄ V

Jzσv,N
(z)FV

Jzσv,N ′ (z), (A3)
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respectively. We have also introduced

Vkz
(ρ12) =

∫
d2q

(2π )2

4πeiq·ρ12

q2 + k2
z

. (A4)

Following the derivation in Ref. 17 for p = n − n′ � 0 one
obtains

〈ϕns |Vkz
|ϕn′s ′ 〉 = (−1)s+s ′

√
n!s ′!
n′!s!

n′!Lp

s ′(−X0)

×U (n′ + 1,1 − p,X0), (A5)

where X0 = l20k
2
z /2, U (a,b,z) is the confluent hypergeometric

function and L
p

s ′(X) denotes the Laguerre polynomial.24

The exchange term is given by

〈



Lz

sMNσc

∣∣V X
∣∣
Lz

s ′M ′N ′σ ′
c

〉 = − JT

2π l0

∫
dz FV

Jzσc,N
(z)F̄ V

J ′
zσ

′
c,N

′ (z)

× F̄ C
σcM

(z)FC
σ ′

cM
′(z), (A6)

where Jz = σc − Lz and J ′
z = σ ′

c − L′
z. The exchange constant

JT is determined to reproduce the singlet-triplet splitting in
bulk GaN, as estimated in Ref. 25.
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