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The paper presents low-dimensional quantum models for atomistic transport in nanowire field-effect transistors.
A variational method is developed to construct a small representative basis which reproduces physical states
of a tight-binding Hamiltonian within an arbitrary energy window. The equivalent transport models with the
basis-transformed Hamiltonian are constructed and tested for various silicon nanowire transistors. The small size
of the model makes it a powerful tool to study atomistic quantum transport in the presence of inelastic scattering.
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I. INTRODUCTION

Recent progress in semiconductor device technologies has
led to the development of a variety of novel devices such
as double-gate transistors,1 carbon nanotubes,2 and gate-all-
around (GAA) metal-oxide-semiconductor field-effect tran-
sistors (MOSFETs).3–6 Continual technological innovations
make it possible to create semiconductor structures with
the MOS channel lengths on the order of 10 nm or even
smaller.7,8 Experimental studies of Ge/Si nanowire (NW)
heterostructures have shown excellent gate control, high
drain current, and reduced sensitivity to temperature.9,10 The
modern growth mechanisms11 also enable one to modulate the
composition of NWs along the growth axes and synthesize NW
heterostructures with embedded tunnel barriers.12,13 The NWs
thus offer plenty of opportunities in quasi-one-dimensional
physics and can also be considered to be promising candidates
for nanoelectronics.14 Detailed theoretical studies of the elec-
tronic transport in such devices can support the experimental
research and help in addressing practical issues related to the
development of MOSFETs with ultrashort channels.15

In the nanoscale regime, semiconductor NWs can no
longer be treated as continuous systems within the effective
mass approximation. The current characteristics or electric
conductance are directly related to the electronic subband
structure which depends on the size and growth direction of
NW. Another important factor is the inelastic interaction of
mobile carriers with lattice vibrations,16 which is expected to
strongly deteriorate the ON current of NWs in the nanoscale
regime.17,18 The nearest-neighbor tight-binding models with
various levels of approximations are commonly used to
account for realistic band structure in transport simulations.19

In combination with the nonequilibrium Green’s function
(NEGF) method,20,21 is has become a standard approach to
quantum transport in semiconductor nanostructures.

In the ballistic regime, the inelastic processes can be
neglected and NEGF becomes equivalent to the Landauer
approach; that is, the nonequilibrium state of the device is
described in terms of appropriate one-particle scattering wave
functions. This is a great simplification compared to the full
NEGF description. The recursive Green’s function method22,23

is commonly used to manage computation burden effectively
in the ballistic regime. Recently developed atomistic R-matrix
propagation technique24–26 offers further improvements.
Even in the ballistic regime, however, atomistic transport

simulations in realistic nanostructures with thousands of
atoms require substantial computational resources.

Modeling inelastic scattering processes is computationally
much more challenging. The NEGF formalism provides a
regular approach to account for the inelastic effects but
it requires self-consistent calculations of the total Green’s
functions in order to characterize the spectrum of quasiparticle
states and their occupation. In the scope of the tight-binding
models, the size of Green’s function matrices is the total
number of atomic orbitals which can reach millions of
states in realistic nanostructures. Dealing with such huge
complex-valued matrices is prohibitively difficult in terms of
both storage capacity and computational time. Most of the
simulators with the dissipative scattering are based on the
effective mass model and mode space approach.27–29 Full band
simulations of a Si NW transistor have been also reported
recently, but limited computer resources necessitates extra
simplifications in the NEGF scheme.18 In order to minimize the
required memory and reduce the computational burden, only
the diagonal part of scattering self-energies has been taken
into consideration. There is no clear physical justification for
this approximation but it appeared to be the only way to treat
realistic three-dimensional nanostructures.

In this paper we present a basis expansion method to
overcome the above computational limitations without losing
essential physics of quantum transport in NWs. We consider
a nonequilibrium steady state of a NW device as a result
of scattering processes in a reference ideal wire. A periodic
Hamiltonian of this wire yields a spectrum of one-particle
Bloch states and describes free mobile carriers in the device.
The rest of the device Hamiltonian represents various scat-
tering mechanisms including electric field and interaction of
the mobile carriers with their environment (impurities, lattice
vibrations, etc). Under normal bias conditions, the electronic
transport is dominated by the free carriers at the bottom of
the allowed band of the wire, and the steady states can be
calculated, at least in principle, as a mixture of the Bloch
states in a narrow energy interval. Our purpose will be to
construct a moderate representative basis which reproduces
all the scattering states within the energy interval of interest.
Neglecting contribution outside this energy range, we replace
the original huge set of the atomic orbitals with the new basis
and obtain a low-dimensional equivalent model in the basis
representation.
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The basis expansion is commonly used in the effective mass
model. In the mode space approach, scattering wave functions
�(r) = ∑

ν �ν(σ )ξν(x) are represented by the subband bound
states �ν in the wire cross section. The three-dimensional
transport problem is thus reduced to a much easier task
of computing a few one-dimensional functions ξν(x) in the
transport direction. The subband eigenstates coincide up
to a phase factor with the Bloch states �ν(r + ex�x) =
�ν(r) exp(ikν�x) in an ideal wire with parabolic band
structure. Thus, the mode space approach seems to allow for
a direct generalization to atomistic Hamiltonians. Although
the local two-dimensional quantization cannot be performed
in this case, one can always calculate enough Bloch states
within the energy interval of interest and extract a reduced
basis which suffices to reproduce all these states with enough
accuracy. We see below that such a simple procedure generally
fails. The main difficulty comes from the fact that the device
Hamiltonian is no longer a bounded operator. As a result,
there is no energy minimization principle to guarantee correct
spectrum of the basis-transformed model even if the basis
reproduces well all the physical states of interest. The failure
of the ordinary variational procedure shows up clearly in
the erroneous band structure of the model and this problem
deserves special treatment.

In the next section, we introduce necessary definitions,
construct a representative basis of Bloch states and discuss
the unphysical band structure of the reduced model in the
basis representation. This problem is solved in Sec. III, where
we formulate a variation method to deal with an arbitrary part
of spectra of the Bloch Hamiltonians. The method converts
the primary basis of Bloch states into a new one with
correct physical properties. The low-dimensional equivalent
transport model (EM) is obtained by the basis transformation
of the tight-binding device Hamiltonian with scattering terms
incorporated. Section IV demonstrates application of EMs
to various SiNWFETs in ballistic and nonballistic regimes.
Section V gives concluding remarks.

II. BASIS REPRESENTATION IN QUANTUM WIRE

We consider an ideal wire with the tridiagonal block
Hamiltonian (see Fig. 1),

Hnn = H0; Hn n+1 = HT
n+1 n = W, (1)
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FIG. 1. (Color online) Schematic diagram of an ideal wire with
tridiagonal block Hamiltonian (a) in the original tight-binding picture
[Eq. (1)] and (b) in the basis representation [Eq. (6)]. An interaction
Hamiltonian is introduced into the central part (device area) after
constructing the basis representation.

where n is the number of unit structures in the ideal wire, H0

is the tight-binding Hamiltonian for an isolated unit structure,
and W contains coupling terms between the atomic orbitals in
two neighboring unit structures. The size of blocks NTBM is the
number of atomic orbitals in one unit structure which depends
on the lattice orientation and the tight-binding method (TBM).

The scattering states of the ideal wire are in the form �n =
eiqn�(q), where NTBM possible Bloch states are found from
the Hermitian eigenvalue problem

H (q)�ν(q) ≡ [H0 + Weiq + WT e−iq]�ν(q) = εν(q)�ν(q).

(2)

We are interested in a relatively narrow energy interval [ε1; ε2]
such that the number of subbands with energies εν(q) ∈ [ε1; ε2]
is much smaller compared to NTBM. A smooth q dependence of
the subband energies suggests that one can use the Bloch states
�ν(q) at few representative wave numbers to construct an
appropriate basis for all other states within the energy interval
of interest. An alternative way is to solve the Bloch eigenvalue
problem,30

[WT Z−1 + H0 + WZ − ε]� = 0, (3)

at few representative energies ε and retain the scattering
eigenstates (�ν(ε),Zν(ε)) with |Zν | = 1. More generally, one
can consider an arbitrary set of points (qi,εi) in various
subbands which “represent” well enough all the branches of the
band structure within [ε1; ε2]. It is hardly possible to formulate
the best algorithm of how to choose the representative states
in a generic band structure. However, this is never a problem
in practice, since, as we will see, the basis can be tested and
improved in the course of the construction. For a moment,
let us just assume a set of properly chosen Bloch states
�i associated with points (qi,εi) in the band structure with
εi ∈ [ε1; ε2]. Figure 2(a) shows an example: the Bloch states
in a thin p-SiNW at two reference energies −0.3 and −0.4 eV

FIG. 2. (Color online) Constructing EM basis in a [100] p-SiNW
with rectangular cross section 2.2 × 2.2 nm. (a) Band structure near
the top of the valence band. The red points show the representative
Bloch states. (b) Band structure of the primitive reduced model with
artificial unphysical branches. The green points of larger size indicate
the subband energies εν(q) ∈ [−0.6; 0] (eV) at three wave numbers
q = 0, 0.6, and 1.7. The variational method is designed as to minimize
the number of these points. (c) The band structure after eliminating
the unphysical branches.
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are expected to reproduce the spectrum at the top of the valence
band. Two more states at q = 0 are added in order to ensure
exact valence band edge and incorporate the next subband
threshold at ∼−0.44 eV. The representative Bloch states can
be further transformed into a real-valued orthogonal basis set.
The real and imaginary parts of the Bloch states are taken as M

columns of a NTBM × M real matrix �̃. In the case of Fig. 2(a),
there are six states at q �= 0 and two more states at q = 0 giving
M = 14 real functions in total. After diagonalizing the overlap
matrix �̃T �̃ = c	cT , we obtain the matrix with orthonormal
columns

� = �̃c	−1/2; �T � = 1 (4)

for the basis representation

�ν(q) = �θν(q). (5)

Hereafter we employ matrix notations and omit the indices for
the atomic orbitals and the basis states. To make a distinction
with the original tight-binding model, the quantities in the
basis representation are denoted using lowercase letters. The
basis size Nb (i.e., the number of columns in � and the length
of array θν) is generally less than M since the initial functions
can be linearly dependent and the corresponding eigenstates
of the overlap matrix with numerically small 	i should
be eliminated. By the construction, the basis representation
Eq. (5) is exact for the Bloch states at the representative points
(qi,εi) and it shows fairly good agreement for all other states in
the considered energy interval. Inserting Eq. (5) into Eq. (2) or
Eq. (3) and premultiplying by �T , one obtains the equations in
the basis representation with the Nb × Nb model Hamiltonian

hnn = h0 = �T H0�; hnn+1 = hT
n+1n = w = �T W�. (6)

The accuracy of Eq. (5) can be estimated from the band
structure in this basis-transformed model. Lack of accuracy
around some εν(q) would indicate that the corresponding
Bloch state should be added into the basis. Repeating the or-
thogonalization, one obtains a new basis with better accuracy.

Extra scattering terms �nm in the open device Hamiltonian
mix the free states eiqn�ν(q) and bring about the formation
of a nonequilibrium device state �n = ∑

ν,q �ν(q)Cnν(q).
Assuming the validity of Eq. (5) for all relevant Bloch states,
we obtain

�n = �ψn, (7)

where ψn is a nonequilibrium state in the model Hamiltonian
Eq. (6) plus the basis-transformed scattering terms �T �nm�.
Compared to the original tight-binding model, the size of the
device Hamiltonian is reduced by a factor of Nb/NTBM � 1,
which greatly facilitates the transport simulations.

The above procedure is straightforward and fairly simple
but the reduced model with so-obtained basis generally fails.
It turns out that the accurate basis representation of the Bloch
states Eq. (5) is a necessary but not a sufficient condition
for constructing a model with correct physical properties. This
becomes apparent by looking at the band structure of the model
Eq. (6). Figure 2(b) shows an example. By the construction,
the model Hamiltonian does reproduce physical subband but
it also allows for unphysical scattering states within the same
energy interval which makes the model useless because of

the erroneous density of states. This kind of problem could
be anticipated: In any basis expansion method, the basis
transformed model Hamiltonian contains both physical and
unphysical levels. For a bounded Hamiltonian operator, the
unphysical states have higher energies and can be disregarded.
This is not the case for a realistic band structure with both
valence and conduction bands.

The problem of extracting a sensible basis from a group
of energy bands has been studied previously in the context
of Wannier functions (WFs) which have recently found
important applications in electronic structure calculations.
The method of maximally localized (maxloc) WFs has been
developed to perform practical calculations of the minimal
basis set.31–33 The maxloc WFs have been successfully used
in the first-principles study of bulk dielectric properties of
insulators34 and quantum transport in atomic chains.35 In
the present case, however, we need to reproduce NTBM-
component Bloch states �ν(q) with strong dispersion across
the one-dimensional Brillouin zone. Each �ν(q) generally has
noticeable overlap with a large number of states in both valence
and conduction bands at different q. In such case, constructing
the Wannier representation is not much help since the corre-
sponding Hamiltonian would contain a long-range interaction
part.

In order to obtain a correct physical model with a short-
range Hamiltonian [Eq. (6)], we have developed a variational
method which enables unphysical part of the spectrum to
be eliminated. Let � be a NTBM × Nb basis matrix which
reproduces all the Bloch states within [ε1; ε2]. The band
structure of the corresponding reduced model is obtained from
the Nb × Nb Bloch Hamiltonian

h(q) = �T H (q)�. (8)

Many of its eigenstates do not correspond to any physical
solution but may easily fall within [ε1; ε2], giving rise to the
unphysical subbands of the model. Let us consider an extra
basis state (NTBM × 1 real array) �̃ : �T �̃ = 0 and define a
new model with basis � ⊗ �̃. The corresponding (Nb + 1) ×
(Nb + 1) Bloch Hamiltonian reads

h̃(q) =
∣∣∣∣ h(q) X(q)

X†(q) H�̃�̃(q)

∣∣∣∣ , (9)

where the Nb × 1 array X(q) is given by

X(q) = �T H (q)�̃. (10)

Adding an extra basis state does not deteriorate the basis
expansion Eq. (5) and has no effect on the physical subbands
but the rest of the model band structure may strongly depend
on �̃. Our purpose is to find a new model with fewer branches
within [ε1; ε2] compared to the previous one. We construct
an analytical functional F [�̃] which returns lower values
for models with fewer subbands in this energy interval. The
physical model with correct band structure is the one where
F [�̃] takes its minimum value. Hence, constructing this model
can be turned into a variational problem.
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III. CONSTRUCTING EQUIVALENT MODEL

We introduce a function of energy,

N (ε) =
〈
z − εc

z − ε

〉
≡ 1

2nz

2nz∑
k=1

zk − εc

zk − ε
, (11)

where εc = (ε1 + ε2)/2 and zk = εc + ρe
iπ
nz

(k− 1
2 ) are 2nz points

in the complex z plane along the contour C with center εc

and radius ρ = (ε2 − ε1)/2. For brevity’s sake, we drop the
constant parameters ε1,2, nz in N (ε). One can readily check
that (1) N (ε) is a real-valued analytical function for all real
ε; (2) N (ε) is symmetric with respect to εc, where it reaches
its maximum value; and (3) n the limit of large nz, N (ε) =

1
2πi

∮
C

dz
z−ε

+ O( 1
nz

) returns 1 or 0 depending on whether ε

is inside or outside the energy interval [ε1; ε2]. N (ε) can be
thought as a contribution to the “number of states” within
[ε1; ε2] from a single energy level ε. The smoothness of thus
defined “number of states” is controlled by nz.

Let ε be an unphysical level in a model with a trial basis
state �̃ and let [ε1; ε2] be the energy interval where we need
the model to be correct. The “number of states” becomes an
analytical functional N (ε[�̃]) which gives ∼1 for ε ∈ [ε1; ε2]
and �1 for ε /∈ [ε1; ε2]. Thus, minimization of N (ε[�̃]) solves
the problem of eliminating this unphysical level from [ε1; ε2].

Generalization to a model band structure is straightforward.
We introduce the variational functional

F [�̃] ≡
nq∑
i=1

∑
ν

N (εν(qi,[�̃])), (12)

which gives the total “number of states” at nq representative
wave numbers qi . Figure 2(b) illustrates our construction. In
this particular example we set ε1 = −0.6 eV, ε2 = 0 eV and
consider three wave numbers q = 0, 0.6, and 1.7. The branch
index ν in Eq. (12) runs over all the subbands, but the main
contribution comes from the terms εν(qi) ∈ [ε1; ε2] shown in
Fig. 2(b) by the green points of larger size. Minimization
of the variational functional Eq. (12) shifts the unphysical
points away from [ε1; ε2] and yields a model with correct band
structure [Fig. 2(c)].

Inserting Eq. (11) into Eq. (12), we obtain

F [�̃] =
〈∑

i

Tr

[
1

z − h̃(qi)

]
(z − εc)

〉
, (13)

where h̃(q) is given by Eq. (9) and 〈· · · 〉 is defined in Eq. (11).
Calculating the trace of the resolvent, we arrive at

F [�̃] = F0 + �F [�̃], (14)

where F0 is the “number of states” in the original model
without �̃ and

�F [�̃]

=
〈∑

i

1 + X†(q)(z − h(qi))−2X(q)

z − H�̃�̃(q) − X†(q)(z − h(q))−1X(q)
(z − εc)

〉
(15)

“measures” changes in the unphysical part of the band
structure. A minimum value �F [�̃min] ∼ −nq is reached

in the new model � × �̃min with one unphysical branch
eliminated.

In practice, we calculate �̃ in the form

�̃ = 1√
CT C

�C, (16)

where C is an array of M ′ expansion coefficients and the
NTBM × M ′ trial basis matrix � will be shortly discussed later.
Inserting Eq. (16) in Eq. (15), we obtain the rational variational
function

�F (C) = 1

2nz

nq∑
i=1

2nz∑
k=1

CT A(qi,zk)C

CT B(qi,zk)C
(zk − εc) + (CT C − 1)2,

(17)

where A, B are given by

A(q,z) = 1M ′×M ′ + �T H (q)�[z − h(q)]−2�T H (q)�,

(18)
B(q,z) = z1M ′×M ′ − �T H (q)�

−�T H (q)�[z − h(q)]−1�T H (q)�, (19)

and the last term has been added for numerical reasons. Note
that the coefficients in the trial basis expansion [Eq. (16)]
are not normalized so that we can perform an unconstrained
minimization. The variational functional is invariant with
respect to transformation C → αC, which causes convergence
problems. The last term in Eq. (17) breaks this symmetry and
ensures fast convergence.

We have thus reduced the problem to minimization of a
rational analytical function �F (C). To complete the construc-
tion, the trial basis � still needs to be specified. In practice, we
orthogonalize the columns of the primary NTBM × 2Nb matrix

[(1 − ��T )H0�, (1 − ��T )(W + WT )�] (20)

and obtain M ′ � 2Nb basis functions �. Here (1 − ��T ) acts
as a projector to the orthogonal complement to the functional
space of the unphysical model, and � includes all the functions
with nonzero matrix elements �T

i H (q)�j for q = 0 and
q = π . This choice of � is certainly not unique. For example,
one can enlarge the trial basis by postulating nonzero matrix
elements with W and WT separately or even use the full
(NTBM − Nb)-dimensional orthogonal complement. However,
numerical tests show that a larger variational space is not
needed. By the construction, the above trial basis offers enough
freedom to eliminate unphysical energies at q = 0 and q = π ,
which suffice to guarantee correct band structure at all q.
For the same reason, there is generally no need for many
representative wave numbers in the variational functional
Eq. (12). Even nq = 2 with qi = 0, π already gives a stable
variational scheme. In most of the calculations below we used
nq = 3 with qi = 0, π

2 and π .
Let us now summarize the variational procedure. First of

all, one must specify the energy interval which needs to be
reproduced by the equivalent model. The choice depends on
the problem at hand. For atomistic transport in MOSFETs,
a good strategy would be to start with a small EM which
reproduces a few lowest branches in the allowed band and
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a certain part of the forbidden band in order to prevent an
unphysical leakage current. For a given interval [ε1; ε2], the
calculations proceed as follows.

(1) Choose a number of representative points in the band
structure and calculate the corresponding Bloch states. Con-
struct the primary basis Eq. (4) and calculate the band structure
in the corresponding reduced model Eq. (6). Make sure that
the band structure contains all the physical branches within
the energy interval of interest. Otherwise, add necessary Bloch
states and recalculate the basis.

(2) Given an Nb-dimensional model, orthogonalize 2Nb

columns in Eq. (20) and obtain the trial basis �.
(3) Compute necessary matrix elements which define A, B

in Eqs. (18) and (19). The variational functional depends of
two integer parameters. nz = 3 and nq = 3 (q1−3 = 0, π

2 , π )
is a good choice.

(4) Minimize �F and obtain the new basis state �̃min

Eq. (16). Since both the function and its derivatives are
calculated analytically, one can effectively use any available
method for unconstrained minimization. The simulations
below employ the conjugate gradient method. The basis � ⊗
�̃min defines a new (Nb + 1)-dimensional model with fewer
unphysical branches. If there are still unphysical branches in
the new model, return to (2) and repeat. Generally, it is difficult
to eliminate more than one unphysical branch in one step.

The trial basis Eq. (16) does not distinguish between
different unphysical branches and the result of minimization
depends on the initial �̃. One may consider a slightly
different trial basis in order to specify the branch to be
eliminated. For example, using the null space of

∑
ν �=ν0

(1 −
��T )H (q0)�θν(q0)θ †

ν (q0)�T H †(q0)(1 − ��T ) instead of
the full orthogonal complement, one obtains a smaller trial
basis which is effective in removing the branch where εν0 (q0)
belongs. Which basis to use is a matter of choice; both give
similar performance. The variational simulations are very fast:
CPU time for items (2)–(4) in the above scheme is negligible
compared to computing the representative Bloch states in
item 1.

In the above example, a 17-dimensional model with correct
band structure at the top of the valence band [Fig. 2(c)] is
obtained from the one in Fig. 2(b) by successive variational

FIG. 3. (Color online) EMs in a p-Si NW along [100] crystal axis
with a rectangular cross section 2.2 × 2.2 nm. The black lines show
the band structure in the sp3s∗ tight-binding model. The red points
represent four EMs with Nb = 17, 36, 46, and 53. �E is the energy
window reproduced by the EMs.

calculations of three supplementary basis states. This basis
can be further used as a good starting point to construct EMs
with wider band structures. Just add extra Bloch states from
the missing part of the desired energy range [the last sentence
before (2)] and proceed as before. In this way, we have obtained
the larger 36D, 46D, and 53D EMs shown in Fig. 3. Hereafter,
we use the notation NbD EM for a model with Nb basis states
per unit structure. In transport simulations, one should choose
appropriate EMs in order to optimize computer performance
and ensure accurate results.

IV. EM IN ATOMISTIC TRANSPORT SIMULATIONS

The structure of the SiNWFETs used in our simulations
is depicted in Fig. 4. We consider NWs with d = 2.2, 3, and
4 nm along three main crystal directions. Other parameters are
VSD = 0.1 V, T = 300 K, εSi = 11.9,εSiO2 = 3.8, tox = 1 nm,
dopant concentration in the source/drain regions is 1020 cm−3

for n-Si and 2 × 1019 cm−3 for p-Si NWs. The length of the
wire is adjusted in order to have N blocks in the device, the
first (source) and the last (drain) blocks are used to form two
semi-infinite leads connected to equilibrium reservoir with
different Fermi levels μR = μL − eVSD. The source Fermi
level μL is fixed by the condition of zero average total
charge in the corresponding ideal wire. The low-dimensional
device Hamiltonian is obtained by the basis transformation. In
the ballistic regime, the one-particle Hamiltonian h is given
by Eq. (6) plus the basis-transformed potential term. More
generally, we perform the basis transformation in the second
quantization picture,

C = �̂c, C† = �̂c†, (21)

where C, C†, and (c, c†) are the arrays of the TBM (EM)
annihilation/creation operators in the entire device and �̂

is the block diagonal matrix with N diagonal elements �.
These notations should not be confused with the expansion
coefficients in the previous section. The corresponding relation
between the NEGFs reads

GR,A,>,< = �̂gR,A,>,<�̂T , (22)

and gR,A,>,< are to be obtained by solving the standard NEGF
equation,20,21

gR(ε) = (
ε − h − σR

ph − σR
c

)−1
; gA = gR†, (23)

x
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FIG. 4. (Color online) GAA SiNWFETs used in the simulations.
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g≷(ε) = gR(ε)
(
σ

≷
ph (ε) + σ≷

c (ε)
)
gA(ε), (24)

in the EM picture. The contact self-energies in two boundary
blocks are calculated as30

σR
cN = w−→χ R

−→
z R

−→χ −1
R

; σR
c1 = wT −→χ L

−→
z L

−→χ −1
L

, (25)

where −→χ L,R, −→
z L,R are the matrices of the outgoing/decaying

Bloch states and the Bloch factors in the corresponding (left
or right) leads. These states are obtained from the eigenvalue
problem akin to Eq. (3) with H0,W replaced with appropriate
Nb × Nb blocks of the EM Hamiltonian. σ

≷
c (ε) at each

contact are given by the fluctuation dissipation theorem.21 The
electron-phonon terms σph are discussed below.

The NEGF equations in the EM picture do not involve any
large quantities and can be solved easily. The electric current
is calculated directly from g≷, σ

≷
c without referring to the

tight-binging model. In self-consistent transport simulations,
the Poisson equation for the device electrostatics includes
atomistic distribution of the mobile charge. In the ballistic
regime, we use the R-matrix technique24–26 and calculate
the charge as a sum of partial contributions from separate
scattering states. Nb-dimensional unit structures of the EM
model are used as the “atoms” in the R-matrix propagation
scheme.26 After transforming scattering states back to the
tight-binding picture [Eq. (7)], the mobile charge at separate
atoms can be calculated. In the general case, we use Eq. (22)
to calculate diagonal elements of the lesser/bigger Green’s
functions, which never causes any time or storage problems.

A. Ballistic regime

Our first example is ballistic transport in a [100]
p-SiNWFET with d = 2.2 nm in the scope of the sp3s∗
tight-binding model. Four different EMs for this NW have
been constructed in the previous section (see Fig. 3). The
smallest EM is used to perform fast preliminary self-consistent
transport calculations. In this case, computing device state at
each realization of the electrostatic potential takes seconds

FIG. 5. (Color online) I -V characteristics of a p-SiNW FET with
d = 2.2 nm. The transport direction is aligned with the [100] crystal
axis. The solid line is the exact TBM results. The points represents
two EMs from Fig. 3. The lower part of the figure shows the relative
error in the self-consistent EM calculations.

FIG. 6. (Color online) An example of the mobile charge distri-
bution in one atomic layer of a p-SiNW. The left panel shows the
atomistic mobile charge in the 17D EM. The red points indicate
positions of 32 Si atoms in the wire cross section. The right panel
presents the absolute error of EM data.

on a 2.7-GHz workstation. The calculations are repeated with
larger EMs in order to check convergence and estimate the
accuracy of the computed drain current. Figure 5 presents our
results. The transport characteristics in two EMs are compared
with the exact TBM data. The lower part of the figure shows the
relative error in the EM calculations. The difference between
three I -V curves is ∼1% which is within the level of
convergence of the self-consistent calculations. In this sense,
the results are identical. We have also confirmed that even
in the smallest 17D EM, both the amplitude and the phase
of the scattering wave functions in the basis representation
reproduce the exact solutions at individual atomic orbitals. As
an illustration, we show in Fig. 6 the charge distribution in the
device steady state at VG = −0.1 V in one atomic layer near
the source contact. The right panel of the figure presents the
absolute error. The figure clearly demonstrates that the model
indeed reproduces atomistic details of the device state which
explains the high accuracy of the EM transport calculations.
The reliable energy interval �E in the EM band structure is
the main criterion which controls the transport model. At the
present bias conditions, �E ∼ 0.25 eV is likely to be enough
for accurate simulations.

We next consider ballistic transport in various n-SiNW
FETs in Fig. 4 using the sp3d5s∗ tight-binding model. The
largest TBM device Hamiltonian is for the 4 × 4-nm NWs
along the [111] directions (248 960 orbitals). Even in the
ballistic regime, transport simulations in these devices can be
rather challenging and there is no way for modeling inelastic
effects with our present computer resources. The problem is
eliminated by using the EMs. Again, we construct a set of
EMs for each device and use the cheapest model to perform
a major part of the self-consistent simulations. The EMs with
wider band structure are further used to test and improve the
accuracy. Figure 7 presents the conduction band structure in
three NWs with d = 4 nm (solid lines). The top panel also
shows geometry of the unit structures and the corresponding
number of atomic orbitals NTBM. The red points are for the
band structure in the largest constructed EMs. The energy
range up to ∼1.55 eV can be reproduced by using ∼1%–2% of
all the atomic orbitals which greatly reduces the computational
burden. Moreover, we do not actually need all the subbands
in Fig. 7 to obtain accurate transport characteristics. An ∼1 %
level of accuracy is achieved with twice smaller EMs. Figure 8
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FIG. 7. (Color online) Conduction band in n-SiNWs with d =
4 nm along the [100], [110], and [111] crystal directions. The red
points represent the largest EMs with Nb = 57, 68, 82, respectively.
The top panel shows the geometry of the NW unit structures with
NTBM atomic orbitals.

presents our results. The subthreshold swing in these nine
devices has been estimated as 67, 75, 84 for [100] NWs, 66,
75, 88 for [111] NWs, and 72, 77, 87 for [110] NWs (all in
mV/dec); smaller values are for thinner NWs. For the largest
4 × 4-nm [111] NWFET, computing the I -V curve with ∼1%
accuracy takes a few hours. These results are obtained with the
46D EM shown in Fig. 9 together with two other EMs. The
smallest 30D EM in this figure is constructed so as to reproduce
the lowest bunch of six nearly degenerate branches in the

FIG. 8. (Color online) I -V characteristics of n-SiNWFETs in
Fig. 4 with d = 2.2, 3, and 4 nm.

FIG. 9. (Color online) The conduction band in three EMs (Nb =
30, 46, and 64) for a [111] n-SiNW with d = 4 nm.

conduction band of Si. The 46D EM includes the next bunch
of six subbands and so on. The sequence of the EMs in Fig. 9
is reminiscent of the mode space approach in the effective
mass picture with different number of subbands taken into
consideration. In this sense, the lowest 30D EM is an analog of
the one-dimensional approximation in the continuous model.

Figure 10 illustrates convergence of the EM simulations.
Even the simplest EM provides reasonable estimates for the
drain current. Approximately 5% accuracy in this model
is what could be expected from our experience with the
mode space approach. Including the next bunch of subbands
(46D EM) yields convergent results which can hardly be
distinguished by eye from the 64D EM. Note that, similar to
our previous example, �E ∼ 0.2 eV seems to ensure enough
accuracy at the present bias conditions. Similar accuracy was
confirmed for other devices.

B. Electron-phonon scattering

Studying quantum transport in the presence of electron-
phonon coupling is much more complex. Full Green’s func-
tions and self-energies need to be computed and stored at
many energies. For realistic devices, such full-scale atomistic
NEGF simulations simply cannot be done, not even by running

FIG. 10. (Color online) Convergence of I -V function in EMs
from Fig. 9. The inset shows the relative difference with the largest
64D EM.
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highly parallelized computer codes on hundreds of cores.
Using equivalent models of small size offers a promising
way around this problem by reducing the computational time
and memory by factors of (Nb/NTBM)3 and (Nb/NTBM)2,
respectively. The above examples have demonstrated that one
can use only Nb/NTBM ∼ 1% of all the atomic orbitals and
reproduce the device physics in the ballistic regime. Here we
address the question on how the inelastic terms affect the
accuracy and convergence of the EMs. The main effect of
the electron-phonon scattering on the transport properties of
NWFETs comes from enhanced backscattering which reduces
the drain current and changes electrostatics in the source
region. Since the inelastic scattering processes mix electronic
states at different energies, accurate studies of nonballistic
transport may need wider band structure compared to the
ballistic calculations. This is especially so for the OFF states
with steep potential change in the gate region where the
backscattering is most important.

We have calculated the electron-phonon scattering in the
p-SiNWFET from our first example. In order to construct
the inelastic self-energy terms σ

R,>,<
ph , it is convenient to use

global numeration of the atomic orbital instead of the block
matrix notation. The electron-phonon coupling is introduced
by assuming the coordinate-dependent TBM matrix elements
Tij (|Ri − Rj |), where i,j are the numbers of individual atomic
orbitals and Ri,j stand for the positions of the corresponding
atoms. Without phonons, the atoms are fixed Ri = Ri0

and the matrix elements T 0
ij ≡ Tij (|Ri0 − Rj0|) define the

tight-binding Hamiltonian for ballistic transport. The lattice
vibrations Ri = Ri0 + ui(t) give rise to the electron-phonon
interaction term

He-ph =
∑
ij

δTijC
+
i Cj , (26)

where i, j run over all pairs of orbitals at two nearest
neighbors. Generally, it would be necessary to solve a separate
eigenvalue problem for the lattice vibrations in order to obtain
the electron-phonon Hamiltonian with quantized phonon
modes.18,36,37 In this work, we skip this part and restrict our
consideration to a simple physical model which suffices to
test the EMs. We assume Tij ∼ 1/(Ri − Rj )2 and consider
quasi-one-dimensional phonon modes ui = exui in the [100]
direction. In the lowest order δT ∼ u we obtain

δTij = 2T 0
ij

(Rj0 − Ri0)x
(Ri0 − Rj0)2

(ui − uj ) ≡ T̃ij (ui − uj ), (27)

where T̃ij = ± 8
3a0

T 0
ij and a0 = 0.5431 nm is the lattice con-

stant. The longitudinal phonon modes are approximated by
(h̄ = 1)

ui ≡ uaL =
∑
q,λ

faλ(q)√
2MSi�λ(q)N

(bλ(q) + b
†
λ(−q))eiqL,

(28)

where L numerates atomic layers along the wire, a runs over
the atoms within one layer, bλ(q)(b†λ(q)) is the annihilation
(creation) operator for the λth phonon mode with wave
number q, �λ(q) is the phonon frequency, and faλ(q) are
the normalized phonon amplitudes

∑
a faλ(q)faλ′(q) = δλλ′ .

In Eq. (28), we ignore the difference between atomic layers in

order to reduce the computational burden of constructing the
self-energies. Assuming some “average” amplitude distribu-
tion faλ(q) ≈ fa and dispersionless phonon modes we obtain
the layer-diagonal phonon Green’s functions in the Keldysh’s
picture,

−i〈TKuaL(t)ua′L′(t ′)〉 = δLL′
fafa′

2MSi

Nph∑
λ=1

1

�λ

��λ
(t − t ′),

(29)

where Nph is the number of effectively interacting phonon
modes and ��λ

are the usual equilibrium functions.20 In par-
ticular, the lesser/bigger functions in the energy representation
read

�
≷
� (ω) = −2πi[(N� + 1)δ(ω ∓ �) + N�δ(ω ± �)], (30)

where N� is the bosonic occupation factor.
The EM phonon self-energies can be derived from the

interaction term Eq. (26) in the basis representation Eq. (21)
or obtained directly from the TBM self-energies,

σ
≷
ph = �̂T �

≷
ph�̂. (31)

In the self-consistent Born approximation, the lesser/bigger
self-energies read

�
≷
ij (ε) = i

∫
dω

2π

∑
kl

T̃ikG
≷
kl (ε − ω)T̃lj

×[D≷
il (ω) + D

≷
kj (ω) − D

≷
ij (ω) − D

≷
kl (ω)], (32)

where the phonon Green’s function D
≷
ij are given by Eqs. (29)

and (30). The retarded self-energy σR
ph can be obtained by the

Hilbert transform.38 Here we follow the common approach
and approximate σR

c by its anti-Hermitian part,39

σR
ph = 1

2 (σ>
ph − σ<

ph). (33)

Equations (31) and (22) define the EM self-energies in terms
of the EM Green’s functions and give a closed set of the NEGF
equations. As follows from the tight-binding nearest-neighbor
connection and the localized phonon Green’s functions, the
EM self-energies have the same tri-diagonal block structure
as the one-particle device Hamiltonian. Thus, the EM NEGF
equations can be solved easily. The phonon energies and the
number of modes in Eq. (29) are free parameters of our
model.

We have performed the self-consistent NEGF simulations
using the one- and two-frequency models with the Green’s
functions,

D
≷
ij (ω) = δLL′Nphfafa′

2MSi

⎧⎪⎪⎨⎪⎪⎩
1

�
�

≷
� (ω),

1

2�1
�

≷
�1

(ω) + 1

2�2
�

≷
�2

(ω).
(34)

Nph has been taken as the number of atoms in one atomic
layer. We have calculated two one-frequency models with
�1 = 20 meV and �2 = 60 meV, which are likely to be the
main peaks in the realistic phonon spectrum of SiNW.18

The same frequencies have been used in the two-frequency
model. We mimic free-surface boundary conditions by setting
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FIG. 11. (Color online) I -V characteristics of a p-SiNW FET.
The black squares show ballistic current. Other marks refer to the
one-frequency and two-frequency models of the electron-phonon
scattering.

fa = f0ρa , where ρa is the radial distance of the ath atom from
the central axis of the wire and f0 is fixed by the normalization.
Figure 11 shows the calculated drain current in the presence
of electron-phonon scattering. The ballistic current is shown
for comparison. At each electrostatic potential, five to ten
self-consistent Born iterations of the Green’s functions and
phonon self-energies were enough to ensure convergence. The
self-consistent coupling of the hole density and the device
electrostatics is obtained though solving the Poisson equation.
One can see significant reduction of the ON current, especially
in the models with low-frequency mode (Iph/Iballist ∼ 0.5).
The calculations were repeated for the same models but
with constant phonon amplitudes fa = 1/4

√
2 and similar

results were found except for somewhat smaller ON current
(Iph/Iballist ∼ 0.4). The stronger electron-phonon scattering in

FIG. 12. (Color online) Nonballistic current in two EMs for the
same TBM Hamiltonian with single-energy phonons (�1 model in
Fig. 11). The 17D and 36D EMs start to diverge in the subthreshold
area VG > 0.05 V. The ballistic current agrees at all VG.

FIG. 13. (Color online) Self-consistent Born iterations for the
drain current in Fig. 12 at VG = 0.1 V. Comparison with the larger
46D EM confirms convergence of the EM calculations with respect
to the basis size.

this case is due to larger phonon amplitudes in the middle
of channel, where the major portion of current flows. The
obtained ballisticity and the requisite number of iterations
in the self-consistent Born approximation seem reasonable
and justify the choice of physical parameters in our simple
model. We have used the one-frequency model with the
strongest effect (red solid triangles in Fig. 11) to test the EM
convergence. To make a direct comparison, we have performed
the self-consistent Born iterations using three EMs of the
same TBM device Hamiltonian. Figure 12 shows the drain
current calculated in the 17D and 36D EMs. The electrostatic
potentials at different VG were taken from the 17D EM ballistic
simulations. In the nonballistic regime, the kinetic equation
[Eq. (24)] involves the whole retarded Green’s function. An
undercomplete basis cannot generally reproduce solutions of
the inhomogeneous Dyson equation, and one might expect
that convergent EM simulations would require much larger
EMs compared to the ballistic regime. This is not the case
in Fig. 12, which shows a remarkable agreement between
the two lowest models. In particular, at low VG we obtain
the same ∼1% agreement as in the ballistic regime. Note
that the ON current Iph is larger as compared to the full
self-consistent calculations (Fig. 11). This difference is due

FIG. 14. (Color online) Nonballistic current spectra at source and
drain contacts in three equivalent models.
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to a shift of the band edge in the full calculations caused by the
increased backscattering in agreement with earlier studies.18 In
the subthreshold region, the 17D and 36D EMs start to deviate
but the difference never exceeds ∼10% and even in the worse
case the 17D EM seems to give qualitatively correct results.
The calculations were repeated with the larger 46D EM in order
to verify convergence of the OFF current. As an illustration,
we present in Fig. 13 the Born iterations of nonballistic current
in three EMs at VG = 0.1 V. The figure clearly demonstrates
convergence with respect to the number of iteration steps
and the model size. The 0th iteration corresponds to the
ballistic regime where all three models are almost identical.
In the presence of electron-phonon interaction, the 17D EM
underestimates the current but the larger models agree very
well. We have confirmed that the current density and the
mobile charge in these two models coincide within a few
percent. Figure 14 shows an example of the current spectrum
at two contacts after the last iteration. The two spectra are
different since, unlike the ballistic regime, the current in the
presence of inelastic scattering is not conserved at each energy.
The 17D EM underestimate the nonballistic current at lower
energies due to not-wide-enough spectrum of scattering states
in this model. The current spectrum in the 17D EM is only
qualitatively correct, but the 36D and 46D EMs reproduce
each other very well. Interestingly, even the smallest EM gives
a correct phonon emission subband structure at the source
contact. In the drain region, these oscillations are smoothed out
giving rise to a shift of the right wing toward higher energies.
This reflects a general tendency of the current spectrum to
follow the contour of the electrostatic potential in the presence

of inelastic processes. The spectral changes along the wire are
more conspicuous in ON states.18

V. CONCLUDING REMARKS

We have reported a basis representation of the tight-binding
Hamiltonian in quantum wires. Starting from the individual
atomic orbitals, we have constructed a low-dimensional basis
of relevant functions which give correct physics of the NW
device. The numerical tests have confirmed that accurate
atomistic transport simulations can be performed using ∼1%
of the total number of orbitals in the nanostructure. This greatly
reduces the computational burden and allows inelastic effects
to be incorporated.

The present approach rests on the assumption that quantum
transport can be described in terms of transitions between
scattering states in an ideal wire. We can thus obtain the
EM basis by analyzing the Bloch Hamiltonian for a single
unit-structure in the ideal wire. Treating NWs with variable
diameter requires modification of this approach. Surface-
roughness-induced variability in NWs is another interesting
problem which can be reduced to constructing a scattering
self-energy in the EM Hamiltonian. Statistical properties of
this term and limitations of the EM approach in such a case
have not been studied yet. Finally, it is worth noting that the
variational method of Sec. III is quite general as it gives a
regular way to build a small quantum model which reproduces
physical properties of an arbitrary family of Hamiltonians
within an arbitrary energy window. This may find other
applications in problems of quantum kinetics and electronic
structure calculations.
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