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Band engineering in silicide alloys
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A relatively low conductivity of PtSi is one of the impediments to its application as a contact material in
semiconductor technology. In this paper, we discuss a possible strategy to control the conductivity of PtSi by
manipulating the density of states at the Fermi level through alloying. Using density functional theory, we
demonstrate theoretically that alloying PtSi with Ti substantially increases the number of conducting electrons
and suggest possible ways to increase the Ti solubility limit. We identify a tertiary compound with the conducting
electron concentration almost three times larger than that of bulk PtSi. We analyze the effect of Ti alloying on
the work function of PtSi and its Schottky barrier height to Si, and we examine the effect of alloy scattering on
PtSi conductivity.
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I. INTRODUCTION

Continuous scaling of complementary metal oxide semi-
conductor devices drives the search for new metal silicide
contact materials to the source, drain, and gate of a field
effect transistor.1 Typically, monosilicides are preferred over
higher-order silicides, such as disilicides, due to a lower
Si consumption. Nickel and platinum monosilicides have
recently attracted significant interest.2,3 Metal silicides are
formed by heat treatment of a metal–semiconductor contact.
Because of the formation mechanism, silicide–silicon inter-
faces are essentially free of contamination. Contacts formed
in this manner generally show stable electrical characteristics,
such as low line and contact resistance, and exhibit excellent
mechanical adhesion.4 Most importantly, however, the use of
metal silicides allows the formation of self-aligning contacts,
whereas in metallic conductors, their precise location usually
depends on the fabrication process.

In this paper, using PtSi as an example, we employ first
principles calculations to identify a strategy of improving
electrical properties of silicide alloys via band engineering.
The electronic structure and elastic constants of PtSi and
Pt2Si were previously investigated theoretically using density
functional theory.5–7 Our group has reported theoretical studies
of the surface energy and work function (WF) of bulk PtSi8

and the electronic, optical, and surface properties of PtSi thin
films.9 PtSi is attractive because of its relatively low (0.2 eV)
Schottky barrier to the valence band of Si (001) and excellent
thermal stability.10 However, as a contact material, PtSi suffers
from relatively low conductivity (e.g., when compared with
Pt), which can be traced to the low electronic density of states
(DOS) at the Fermi level in bulk PtSi. A look at the PtSi
DOS (Fig. 1) reveals that the Fermi level “misses” the high
DOS region corresponding to Pt d states. A naı̈ve integration
of the electronic DOS suggests that in a unit cell of bulk
PtSi, ∼7.5 electrons need to be removed to shift the Fermi
level down in energy toward the high DOS region of the
spectrum. To achieve this, we suggest doping PtSi with Ti
substitutionally on the Pt site. Both PtSi and TiSi monosilicides
can be stabilized in a primitive orthorhombic structure with
space group Pnma (No. 62 in the International X-Ray Tables),
where PtSi crystallizes in a MnP-type lattice and TiSi in a
FeB-type lattice, as shown in Figs. 2(a) and 2(b), respectively.

Moreover, Ti and Pt atoms are almost equal in size (the atomic
radius of Ti of 1.4 Å is only 5% larger than that of Pt), but Ti
contributes only 4 electrons per atom to the total amount of
valence electrons, versus the 10 electrons per atom contributed
by Pt. In a primitive unit cell of PtSi, this means that 1.25 out of
4 Pt atoms need to be replaced by Ti. We test this idea by means
of first principles density functional theory calculations. Our
calculations suggest that Ti doping may result in a significant
increase of the DOS at the Fermi level, followed by an increase
in the number of conducting electrons (those in the interval
−kBT + EF � E � kBT + EF ). We predict an increase of up
to 2.7 times in the number of conducting electrons compared
to bulk PtSi. Importantly, we find that on average, the Schottky
barrier to Si is rather insensitive to Ti doping. Using a simple
ideal mixture theory to estimate the entropic effect of mixing,
we find the solubility limit of Ti in bulk PtSi (on the Pt site) at
500 K to be ∼0.5 at.%. Unfortunately, this is not sufficient to
realize the gains in the electron density in practice. To circum-
vent this problem, we find that additional alloying with gallium
or aluminum can significantly increase the solubility limit of
Ti in PtSi. We also estimate the effect of alloy scattering on the
conductivity.

The rest of the paper is organized as follows. We summarize
computational details in Sec. II. In Sec. III, we discuss the
electronic structure of TixPt1−xSi alloys, estimate the carrier
density, and analyze the effect of Ti doping on the WF and
Schottky barrier height (SBH) with Si (001). Using Boltzmann
transport formalism, we calculate the change in conductivity
due to introduced Ti impurity scattering. In Sec. IV, we discuss
the solubility limit of Ti in bulk PtSi and consider possible
routes to increase the solubility limit of Ti via stabilizing
TixPt1−xSi alloys by additional doping with boron, carbon,
gallium, and aluminum.

II. COMPUTATIONAL DETAILS

All calculations are done using density functional the-
ory within the local density approximation and ultrasoft
pseudopotentials,12 as included in the Vienna ab initio
simulation package (VASP) code.13–17 We use the valence
configurations (3d3, 4s1) for titanium, (6s1, 5d9) for platinum,
and (3s2, 3p2) for silicon. The 300-eV kinetic energy cutoff
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FIG. 1. (Color online) DOS of bulk PtSi in a 2 × 2 × 2 supercell.
The zero of energy is set to the Fermi level. The arrow indicates how
the Fermi level has to be moved to a hypothetical energy (dashed
line) to provide a large carrier concentration accessible for electrical
conductivity.

yields 1 meV/cell convergence for bulk PtSi. To investigate the
effects of doping with Ti on the DOS and number of carriers at
the Fermi level for different Ti concentrations, we consider 2 ×
2 × 6, 2 × 2 × 3, 2 × 2 × 2, 2 × 1 × 2, and 1 × 2 × 2 supercells
and the primitive cell. For the Brillouin zone integration of
these cells, we use the following Monkhorst-Pack18 k-point
meshes: 4 × 4 × 2, 4 × 4 × 4, 4 × 4 × 6, 8 × 14 × 12,
14 × 8 × 12, and 13 × 13 × 17. All structures are optimized

FIG. 2. (Color online) (a) Primitive cell of bulk PtSi. PtSi
crystallizes in the primitive orthorhombic structure with a MnP-type
lattice with space group Pnma (No. 62 in the International X-Ray
Tables). The lattice constants are a = 5.922 Å, b = 5.575 Å, and
c = 3.586 Å (Ref. 11). The smaller balls are Pt, and the bigger
balls are Si atoms. The exact positions of all atoms are summarized
in Table II. (b) Primitive cell of bulk TiSi. TiSi crystallizes in the
primitive orthorhombic structure with a FeB-type lattice with space
group Pnma. The lattice constants are a = 6.544 Å, b = 4.997 Å, and
c = 3.638 Å.

with respect to ionic positions, cell shape, and volume until
the forces on all atoms are less than 20 meV/Å. The energy is
converged to 10−3 meV/cell. The relaxation is not constrained
by symmetry.

We consider TixPt1−xSi and TixPtSi1−x alloys with 0.52,
1.04, 1.56, 3.13, 6.25, and 12.5 at.% Ti substitution. For the
two lowest concentrations, we use the 2 × 2 × 6 and 2 × 2 × 3
supercells of PtSi (in each case, we replace only one Pt atom
with Ti). We use a 2 × 2 × 2 supercell of PtSi for the Ti
concentrations of 1.56 and 3.13 at.%, where 1 and 2 out of
the 32 Pt atoms are substituted with Ti. We analyze all 31
possibilities to substitute two Pt atoms with Ti (3.13 at.%).
Alloys with 6.25 at.% Ti can be realized using 2 × 2 × 2
supercells of PtSi, where four Pt atoms are replaced by Ti.
That yields 4495 possibilities to arrange the Ti atoms in the
cell. With 12.5 at.% Ti (eight atoms in a 2 × 2 × 2 supercell),
there are 2 629 575 possibilities. Because such a large number
of calculations is not realizable, we analyze smaller 2 × 1 ×
2 and 1 × 2 × 2 supercells for 6.25 at.% Ti. In each case,
that yields 15 structures with the Ti concentration of 6.25 at.%
(including symmetrically equivalent structures). In alloys with
12.5 at.% Ti, we limit our studies to a primitive cell of PtSi
and replace one Pt atom with Ti, resulting in only one possible
structure. For this high concentration, in principle we could
use a bigger simulation cell with a quasirandom distribution
of Ti; however, the solubility limit makes this case difficult to
realize in practice. To calculate the WF and SBH, we use slab
geometry with simulation cells of the size ∼10 × 10 × 45 Å
(the side lengths vary slightly depending on the models used,
as described later), along with a 4 × 4 × 2 Monkhorst-Pack
k-point mesh for Brillouin zone integration.

III. ELECTRONIC AND THERMODYNAMIC PROPERTIES
OF TixPt1−xSi ALLOYS

A. Influence of Ti doping on the DOS

The high DOS at the Fermi level is one of the main
requirements for having high electrical conductivity. By
integrating the DOS within the 2kBT energy window around
the Fermi level (e.g., at T = 300 K) the carrier density n

can be determined. To analyze the effect of Ti doping on
the DOS and n, we consider Ti concentration of 0.52, 1.04,
1.56, 3.13, 6.25, and 12.5 at.%. For concentrations of 3.13 and
6.25 at.%, we consider 61 possible Pt substitutions in total.
Here, we only focus on the most stable configurations. Our
results for the DOS at the Fermi level and the carrier density
n are summarized in Table I. For comparison, we included the
results for Ti substitution of Si. As expected, the effect on the
carrier concentration is minimal. In Fig. 3, we show the DOS
of TixPt1−xSi for the Ti concentrations of 1.56, 3.13, 6.25, and
12.5 at.%. Contrary to our original intention to shift the Fermi
level toward the region of high density of Pt d states, we find
that it moves little yet produces a noticeable change in the
number of states at the Fermi level. Figure 4 (the partial DOS
of the alloy with 12.5 at.% Ti) shows that the increase is due to
the introduction of Ti d states that appear just above the d states
of Pt in energy (the energy difference of the atomic d-levels is
ETi−d − EPt−d ≈ 5.42 eV19), rather than to a shift of the Fermi
energy. Therefore, though the “rigid band” assumption has
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TABLE I. DOS at the Fermi level and carrier density in TixPt1−xSi and TixPtSi1−x alloys for different Ti concentrations. The DOS is given
per 2 × 2 × 2 cell. For Ti concentrations higher than 1 at.%, we observe an increase in both DOS and carrier density for doping on either site.

Ti on Pt site Ti on Si site

DOS at EF n Tcrit DOS at EF n Tcrit

Ti (at.%) (electron/eV × VCell) (1020 electron/cm3) (K) (electron/eV × VCell) (1020 electron/cm3) (K)

0.00 14.5 7.9 0 14.5 7.9 0
0.52 14.9 7.7 0 13.2 6.6 1814
1.04 15.1 8.6 879 16.6 9.2 1508
1.56 15.9 9.1 905 14.8 8.6 1337
3.13 18.0 9.4 1532 13.5 7.6 618
6.25 17.0 13.8 2809
12.50 25.2 21.5 3618

proved to be an oversimplification, we find that doping with
Ti increases the number of carriers in PtSi. We also find that
substituting Si with Ti does not affect the carrier concentration
significantly. Later, we analyze the thermodynamic stability of
Si- and Pt-substituted TiPtSi alloys.

B. Influence of Ti doping on the WF and SBH

One of the key characteristics of any contact material is its
SBH to Si. Thus, it is important to understand how Ti doping

FIG. 3. (Color online) DOS of (a) bulk PtSi, (b) TiPt31Si32,
(c) Ti2Pt30Si32, (d) Ti4Pt28Si32, and (e) Ti8Pt24Si32 corresponding to
0, 1.56, 3.13, 6.25, and 12.5 at.% Ti, respectively. EF is at 0. The
DOS is calculated with respect to a 2 × 2 × 2 cell of bulk PtSi.

may affect the barrier height. We start by considering the effect
of doping on the WF ϕm of PtSi, which is defined as a difference
between the vacuum energy in the immediate vicinity of its
surface and the Fermi level. To simulate the silicide surface,
we use slab geometry. The thickness of the TixPt1−xSi slab is
∼25 Å, and it is followed by 15 Å of vacuum to minimize the
slab–slab interaction introduced through the periodic boundary
conditions. We calculate the local electrostatic potential of
the cell and average it over the x–y plane along the z-axis
(direction normal to the surface). A typical plot of this
planar-averaged local potential is shown in Fig. 5(a). We
approximate the vacuum energy level with the value of the
electrostatic potential in the vacuum region of the simulation
cell. The WF is then easily extracted. We compare the WF of
TixPt1−xSi with 3.13 at.% Ti (Ti on Pt site) to the bulk PtSi for
the surface orientations (001), (010), (100), (101), (011), and
(110). We consider three surface terminations (Pt, Si, and Ti

FIG. 4. (Color online) Total DOS and d states of (a) bulk PtSi and
(b) Ti8Pt24Si32 (12.5 at.% Ti). The zero of energy is set to the Fermi
level. The Ti d states appear at the Fermi level, thus increasing the
carrier concentration considerably from that of PtSi.
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TABLE II. Experimental and theoretical internal in-plane coordi-
nates in the orthorhombic Pnma cell of PtSi. Pt atoms are located at
[uPt, vPt, 1/4], [1/2 − uPt, vPt − 1/2, 1/4], [1 − uPt, 1 − vPt, 3/4],
and [1/2 + uPt, 3/2 − vPt, 3/4], whereas Si atoms are located at
[uSi, vSi, 1/4], [3/2 − uSi, 1/2 + vSi, 1/4], [uSi − 1/2, 1/2 − vSi,
3/4], and [1 − uSi, 1 − vSi, 3/4]. The positions are given in fractional
coordinates.

uPt vPt uSi vSi Ref.

Experiment 0.1922 0.9956 0.583 0.177 11
Theory 0.1920 0.9980 0.585 0.178 This work

termination), as depicted in Fig. 6 for the (100) surface. For
the (001) orientation, a stoichiometric surface is constructed,
because cleaving in this direction always yields a surface with
an equal amount of Pt and Si in the surface plane rather than Pt
or Si rumpling out of it (as is the case for all other orientations).
Our results are summarized in Table III and plotted in Fig. 7.
First, with the exception of the Si-terminated (010) surface,
Ti slightly increases the WF compared to equivalent PtSi
surfaces. Second, with the exception of the (101) orientation,
Ti-terminated surfaces always have a lower WF than PtSi
surfaces with the same orientation and any termination. The
highest difference (0.45 eV) is found for the (010) surface when
comparing the Ti-terminated TixPt1−xSi with Pt-terminated
PtSi. This can be traced to Ti 3d states being higher in energy
than the d states of Pt. Within the Schottky model, these
changes in the WF should greatly influence the barrier height
between the metal’s Fermi level and the semiconductor’s

FIG. 5. (Color online) (a) Local potential and planar-averaged
local potential of a (100) TixPt1−xSi surface. The difference in energy
between the vacuum level and the highest occupied level in the
metal (i.e., the Fermi level) is the WF of the calculated surface.
(b) Local potential and planar-averaged potential of a (001)/(110)
TixPt1−xSi/Si interface. Indicated also are the top of the valence band
and the bottom of the conduction band of the Si bulk. The difference
between the top of the valence band and the Fermi level of the system
is the p-type SBH.

FIG. 6. (Color online) Surface models with Si termination (Si on
top of the surface), Pt termination, and a termination with Ti atoms
at the surface. All surfaces shown are (100) oriented.

valence or conduction bands. In the following, we analyze
two theoretical silicide/Si interface models to gain insight in
the dependence of the SBH on Ti doping.

The SBH of a metal to a p-type semiconductor is defined
as the energy difference between the top of the valence band
of the semiconductor and the Fermi level of the metal,

ϕp = EV B − ϕm, (1)

where EV B is the energy of the semiconductor’s valence band
top with respect to the vacuum level and ϕm is the metal WF.
Conversely, the n-type SBH is the energy difference between
the Fermi level of the metal and the bottom of the conduction
band of the semiconductor.

To estimate the effect of Ti doping on the SBH, we
construct two model interfaces—Si(001)/TixPt1−xSi(001) and
Si(001)/TixPt1−xSi(110)—using superlattice geometry. We
calculate the SBH for 0 and 3.13 at.% Ti while substituting Ti
at the interface directly as that yields the largest change in the
WF. The ∼35-Å-thick Si slab is used as a substrate; i.e., the
silicide layers are laterally lattice matched to it. The silicide is
∼15 Å thick. The substrate and metal are initially separated
by 1.8 Å (determined by a quadric fit of the binding energy).
The lateral dimensions are 11.5 × 11.5 and 7.6 × 15.3 Å
in our (001)/(001) and (110)/(001) models, respectively. We
apply 3.0 × −2.9 and 6.2 × −5.9 % lateral strain to the metal

TABLE III. Theoretical WFs for TixPt1−xSi with 3.13 at.% Ti
and bulk PtSi. Ti-terminated surfaces have a lower WF compared
to the corresponding PtSi surfaces, with the exception of the (101)
orientation.

ϕ (eV)

(hkl) Termination TixPt1−xSi PtSi

001 stoichiometric 5.28 5.22
Ti 5.14

010 Pt 5.40 5.39
Si 5.10 5.24
Ti 4.94

100 Pt 5.11 5.11
Si 5.02 5.02
Ti 4.73

101 Si 5.15 5.03
Ti 5.25

011 Pt 5.23 5.18
Si 5.26 5.12
Ti 5.00

110 Pt 5.06 4.96
Si 5.35 5.29
Ti 4.88
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FIG. 7. (Color online) Calculated WFs of PtSi (diamonds) and
TixPt1−xSi alloys (squares). The (101) orientation of the WF of
TixPt1−xSi decreases by up to ∼0.5 eV compared to that of PtSi.

layers to match them with the Si substrate and relax the ionic
positions while keeping the lattice constants and simulation
cell shape constant. After relaxation, the residual stress is less
than 0.6 GPa in the (001)/(001) model and less than 1 GPa in
the (001)/(110) model.

We extract the p-type SBH from the calculated local
electrostatic potential. Again, the potential is averaged over the
x–y plane for each z value. A typical plot of the planar-averaged
local potential is shown in Fig. 5(b). Deep inside the Si
and metal regions, we expect to find bulklike conditions in
both materials. Within the bulk regions, the planar-averaged
microscopic potential is also macroscopically averaged along
the z-axis. The top of the valence band of Si in the bulk
region is placed with respect to the averaged potential in the Si
slab using a separate bulk calculation. The SBH is then easily
extracted, as shown in Fig. 5(b). Our results are summarized in
Table IV. For our (001)/(001) model, we find a SBH of 0.13 eV
for both PtSi and TixPt1−xSi. For our (110)/(001) model,
we find 0.11 and 0.08 eV for PtSi and TixPt1−xSi contacts,
respectively. The calculated barrier heights for PtSi contacts
are in fair agreement with our previously reported value of
0.16 eV for the PtSi(001)/Si(001) interface,8 where a smaller
cell (higher stress) was used to reduce the computational time.
It is somewhat smaller than the experimental value of 0.2 eV.10

Equation (1) suggests a linear increase in the SBH for
decreasing WF. Although in the previous section we found that
Ti doping reduces the WF of PtSi by ∼0.1 eV for the (001)
and (110) Ti-terminated surfaces, our calculated barrier heights
are rather insensitive to this change. To gain more insight, we
apply the metal-induced gap states (MIGS) theory20 for SBHs
and compare with our results:

ϕp = Eg − S × (ϕm − ϕCNL) − (ϕCNL − χ ). (2)

Here, Eg is the band gap of the semiconductor (1.1 eV for
Si), ϕm is the metal WF, ϕCNL is the charge neutrality level
(CNL) of the semiconductor, and χ is its electron affinity. The
pinning parameter S is believed to be an intrinsic property of
the semiconductor surface. In the Schottky limit (S = 1, i.e., no
Fermi level pinning), Eq. (2) gives “maximum dependence”
on the WF. In the Bardeen limit (S = 0, i.e., strong Fermi
level pinning), the SBH does not depend on the metal WF.
Equation (2) is a linear interpolation between the Schottky and
the Bardeen limits. In practice, S can be approximated by21

S = 1

1 + 0.1 × (ε∞ − 1)2
, (3)

where ε∞ is the high frequency limit of the dielectric constant
of Si. Using ε∞ = 11.7, the pinning parameter of Si is
0.08, indicating little dependence of the SBH on the WF.
According to Bardeen, the CNL is the intrinsic property of the
material and is essentially the Fermi level at the surface. In
the literature, theoretical values of the Si CNL vary between
∼0.3 and ∼0.36 eV above the valence band top, somewhat
depending on the method of calculation.22–24 For a CNL of
0.3 eV above the valence band top and electron affinity of
4.1 eV25 in the Bardeen or strong pinning limit, the SBH
is always 0.30 eV. In the Schottky limit, the barrier height
averaged over our (001)/(001) and (110)/(001) models
is 0.13 eV for PtSi/Si interfaces. For our TixPt1−xSi/Si
interfaces, it is 0.21 eV—0.08 eV higher than for the PtSi/Si
interfaces. This shift reflects the linear dependence of the
SBH on the change in WF in the Schottky limit. However,
our calculations indicate the difference between the SBH of
TixPt1−xSi/Si and that of PtSi/Si interfaces of only 0.01 eV,
suggesting little dependence of the SBH on the metal WF.
Thus, our results are in qualitative agreement with the Bardeen
model, i.e., the change in the WF does not influence the SBH,
as reflected by a small value of the pinning parameter S.

C. Impurity scattering in TixPt1−xSi alloys

Thus far, we have demonstrated that doping PtSi with
Ti can increase the number of carriers without significantly
altering the Schottky barrier to Si. However, doping typically
is accompanied by an increase in scattering that may adversely
affect mobility. To analyze the change in carrier mobility with
increasing Ti concentration in bulk PtSi, we use Boltzmann
transport formalism.26,27 Assuming that collisions of electrons
with substitutional Ti atoms are elastic and spin conserving,
we can calculate the collision term in the Boltzmann equation
and estimate the change in carrier mobility of a system due

TABLE IV. Comparison of the SBHs extracted from local potential plots with MIGS theory and Bardeen and Schottky models. The Ti
concentration in the TixPt1−xSi alloys is 3.13 at.%. BL stands for Bardeen limit and SL stands for Schottky limit.

Interface VASP SBH (eV) MIGS SBH (eV) BL (eV) SL (eV)

(metal/Si) PtSi TiPtSi PtSi TiPtSi PtSi TiPtSi PtSi TiPtSi

001/001 0.13 0.13 0.28 0.28 0.00 0.08
110/001 0.11 0.08 0.30 0.30 0.30 0.30 0.26 0.34
001/001a 0.16 0.29

aUltra soft. pseudopotentials (Ref. 8).
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to impurities. Similar calculations were recently performed by
Evans et al., who analyzed the channel mobility degradation
in a field effect transistor caused by interface defects.28

To calculate the probability for an electron in band n with
the wave vector �k to scatter into band m with the wave vector
�k′, we compute the impurity scattering potential �V and its
scattering matrix element,

Tmn(�k′,�k) = 〈n�k|�V |m�k′〉, (4)

where the unperturbed wave functions |m�k′〉 and |n�k〉 are
the Bloch states of undoped PtSi normalized to unity; i.e.,
the absolute square of the wave function integrated over the
primitive cell equals 1. The impurity scattering potential �V

is calculated from first principles within density functional
theory by subtracting the local potentials computed for a
simulation cell of PtSi and TixPt1−xSi. Due to the metallic
nature of PtSi, the perturbation |�V | is short ranged and the
integration in Eq. (4) can be reduced to an integral over the
simulation cell, provided it is sufficiently large. To ensure
that the potential is fully contained in the simulation cell, we
calculate carrier mobility in a 2 × 2 × 2 cell with one Ti
impurity. In our approach, we only relax the ionic positions
in the perturbed and unperturbed cells, keeping the cell shape
and volume fixed. The impurity potential is shown in Fig. 8 in
the form of cross-sectional contour plots in three orthogonal
planes containing the impurity site. It ranges between −15
and 15 eV and is roughly on the order of the kinetic energy
of the fastest electron whose band velocity is 16 Å/fs (Fig. 9).
The peak energy values of the potential are contained within a
sphere with a radius of ∼3 Å around the Ti impurity; thus, it
is well contained in the simulation cell.

Using Eq. (4) and the Fermi golden rule, we calculate the
rate of scattering from state |m�k′〉 to state |n�k〉,

�mn(�k′,�k) = 2π

h̄
× nd × V × |Tmn(�k′,�k)|2δ(En(�k) − Em(�k′)),

(5)

where nd is the impurity density, V is the volume of
the simulation cell, and En(�k) and Em(�k′) are the energy
eigenvalues of the unperturbed wave functions |n�k〉 and |m�k′〉.
The total rate is then obtained by summing over the first
Brillouin zone, multiplied by the probability for the initial
state to be filled and the final state to be empty, and subtracting
the rates of backscattered carriers. The inverse scattering time
for a state |n�k〉 is then given by

1

τn(�k)
=

∑
m,�k′

�mn(�k′,�k)(1 − cos(
�k,�k′)), (6)

where the sum only runs over states within the range −kBT +
EF � E � EF + kBT , because only these states contribute to
scattering.

In Eq. (5), the δ-function ensures energy conservation. In
practice, we replace the δ-function by a properly normalized
window function. Then, scattering is only possible for states
satisfying |En(�k) − Em( �k′)| < ε. The width of the window
function is 2ε. In our study, we use the value ε = 10 meV
(the difference between using this and using ε = 15 meV in
the later calculated mobility is within 5%). Carrier mobility is

FIG. 8. (Color online) Contour plots of the scattering potential
of a Ti impurity in a 2 × 2 × 2 cell of bulk PtSi. The Ti is placed
substitutionally on a Pt site. The position of the impurity is indicated
by the cross. The impurity potential varies from −15 to 15 eV.

given by27

μαβ = −e
∑
n,�k

τn(�k)[�vn(�k)]α[�vn(�k)]β
∂f0(En(�k))

∂E
. (7)

In Eq. (7), the function f0(En(�k)) is the equilibrium Fermi-
Dirac distribution with the chemical potential set to the Fermi

FIG. 9. (Color online) Distribution of band velocities within
±kBT at room temperature around the Fermi level. The highest
calculated velocity is 16 Å/fs. The distribution peaks at 2 Å/fs.
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TABLE V. Carrier mobility and conductivity tensors of TixPt1−xSi due to impurity scattering. The considered Ti concentrations are 1.56,
3.13, 6.25, and 12.5 at.%. For comparison, the isotropic conductivity of silver is ∼63 × 106 Å/Vm.

Ti (at.%) μd (cm2/Vs) Principal values (cm2/Vs) σd (106 Å/Vm) Principal values (106 Å/Vm)

12.5

⎛
⎝ 12.0 −0.6 1.9

−0.6 10.2 −0.9

1.9 −0.9 14.3

⎞
⎠

⎛
⎝ 10.0

10.9

15.6

⎞
⎠

⎛
⎝ 0.41 −0.02 0.07

−0.02 0.35 −0.03

0.07 −0.03 0.49

⎞
⎠

⎛
⎝ 0.34

0.37

0.53

⎞
⎠

6.25

⎛
⎝ 24.0 −1.1 3.9

−1.1 20.5 −1.8
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energy of the system. The band velocity �vn is the derivative of
the energy En(�k) with respect to �k divided by h̄. Figure 9 shows
the probability density distribution of the band velocity within
±kBT of the Fermi level. We calculate velocity magnitudes
and normalize the sum to 1. The distribution peaks at 2 Å/fs.
The sum in Eq. (7) runs over 10 contributing bands at the Fermi
level. Using Eq. (7), the conductivity is given by

σαβ = enμαβ. (8)

For the electron density n in Eq. (8), we use our previously
estimated conduction electron density within the energy
interval −kBT + EF � E � EF + kBT (Table I).

We calculate the mobility and conductivity tensors of
TixPt1−xSi alloys for several Ti concentrations. Our calcu-
lations show that dense k-point meshes are crucial for accurate
convergence of the conductivity tensor. We use a 10 × 10 × 12
mesh for the 2 × 2 × 2 simulation cell. Our results are listed
in Table V. In this theory, no electron–phonon interaction or
other types of interactions, besides the impurity scattering, are
included. Thus, the result is not the absolute value for carrier
mobility but rather a correction to the unperturbed absolute
values. The total mobility and conductivity are calculated using
the following expressions:

1

μtot
= 1

μ0
+ 1

μd

→ μtot = μd

1 + μd/μ0
σtot = enμtot

(9)

The subscript d denotes the defect contribution calculated
in this work, whereas subscript 0 denotes the absolute values
without impurity scattering, for which we use the experimental
value. We use σ0 ≈ 3.3×106 Å/Vm29 and μ0 = σ0/en0 ≈
263.5 cm2/Vs.

In Fig. 10, we plot μtot and σtot. For μd and σd , we use the
average of the principle values of our calculated tensors. The
mobility and conductivity tensors for 1.56, 3.13, 6.25, and
12.5 at.% Ti are listed in Table V. Clearly, carrier mobility
decreases with the increasing number of impurities. Contrary
to what happens in doped semiconductors, the carrier density
rises too slowly to offset the decrease in mobility, and

conductivity decreases. However, for Ti concentrations below
0.5 at.%, the decrease in conductivity is less than 50% of that
of bulk PtSi.

D. Thermodynamic stability and solubility limit

The question now arises of whether we can incorporate a
sufficient amount of Ti on the Pt site in PtSi. Multicomponent
silicides can be produced by depositing layers of metals on
a Si substrate and subsequently heating until silicidation
sets in. Typically, four reaction outcomes are distinguished:
layer reversal, phase separation, solid solution, or ternary
compound formation. These reactions can occur successively;
for further details, refer to the work by Setton and van der
Spiegel.30 Because both Ti and Pt form silicide phases, we
could, in principle, encounter formation of TinSi, PtnSi,
PtTin, their mixtures, or a ternary compound. To the simplest
approximation, the alloy with the lowest formation energy
would form first, followed by the alloy with the next highest
formation energy, and so on. We calculate the heat of
formation of PtTi, PtSi, and TiSi to be �HPtTi = −1.72 eV,
�HPtSi = −1.43 eV, and �HTiSi = −1.72 eV, respectively,
per formula unit. Considering just these three compounds

FIG. 10. (Color online) μtot and σtot for μ0 ≈ 263.5cm2/Vs and
σ0 = 1

ρ0
≈ 3.3 × 106 Å/Vm (from Ref. 27). μ0 is obtained by

dividing σ0 by the elementary charge and carrier density. We find a
monotonic degradation of conductivity for higher Ti concentrations.
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FIG. 11. (Color online) Formation energy and cell volume of
the TixPt1−xSi and TixPtSi1−x alloys. For low Ti concentrations
(<1.8 at.%), Ti prefers to be mixed on the Pt site. Above this
concentration, it tends to mix on the Si site.

(not including higher-order silicides and titanides), the heats
of formation indicate that upon heating the Ti/Pt/Si system,
PtTi or TiSi would form first. TiPtn alloys are well known
experimentally.31–33 The formation of PtSi, TixPtySiz, or
TixPt1−xSi compounds would occur at a higher temperature.

The formation energy per formula unit of PtSi is higher than
that of TiSi, suggesting that the substitution of Pt with Ti in
PtSi would result in a stable TixPt1−xSi alloy. By analyzing the
changes in the internal energy after alloying, we identify the
energetically preferred substitution site. The formation energy
can be estimated by

PtSi + xTi
�E−→ TixPt1−xSi + xPt (10)

and

PtSi + xTi
�E−→ TixPtSi1−x + xSi (11)

for doping on the Pt and Si sites, respectively. The reaction
energy in Eqs. (10) and (11) and the cell volume V of the
alloys are plotted in Fig. 11 as functions of Ti concentration.
The cell volume V is used later. Doping on a Pt site, we find a
stable alloy with ∼0.5 at.% Ti. Above 0.5 at.%, the formation
energy increases linearly with the Ti concentration. Doping on
a Si site becomes energetically favorable over doping on a Pt
site for more than ∼1.8 at.% Ti. We find a linear increase in
the cell volume when doping on a Si site. However, mixing
up to 2 at.% Ti on a Pt site “shrinks” the cell. Above 2 at.%,
its volume starts increasing linearly. Interestingly, Ti’s atomic
radius is 5% larger than that of Pt yet produces a net volume
decrease in cell size compared to PtSi.

To estimate Ti’s solubility limit in PtSi, we calculate the
change in free energy after alloying:

�G = �E + p�V − T Sm. (12)

Here, �E is the change in internal energy, p�V is the
contribution due to the change in volume, and T Sm accounts
for the change in entropy. For �E, we use the values calculated
using the reactions in Eqs. (10) and (11). The p�V term
is calculated from the change in the volume after alloying
multiplied by p = 1 atm. The entropic contribution in Eq. (12)
is estimated using a simple theory of ideal binary mixtures:

Sm = −kB ln

(
N1! × N2!

Ntotal!

)
. (13)

FIG. 12. (Color online) Solubility limit of Ti in different alloy
compositions with and without codoping. While the x-fraction of Ti
in the alloy is variable, the y-fraction (codopants) is fixed to 1/32
(corresponding to 1.56 at.%). The best codopant is Al, yielding stable
alloys with up to 4 at.% Ti.

Assuming Ti is substituted for either Pt or Si, N1 is the
number of Ti atoms, N2 = NPt/Si − N1 is the number of
remaining Pt or Si atoms, and Ntot = N1 + N2. The entropic
term is stabilizing the alloys above the “critical temperature”
when �G becomes negative. The critical temperature is
determined by the condition �G = 0 in Eq. (12):

Tcrit = �E + p�V

Sm

, (14)

where the �E, p�V , and Sm terms depend on the Ti
concentration. Therefore, plotting Eq. (14) as a function of
the Ti concentration shows the solubility limit of Ti in PtSi at
a particular critical temperature.

Our results for Tcrit are summarized in Table I and Fig. 12.
Up to ∼0.7 at.% Ti mixes on the Pt site. Above ∼0.7 at.%, the
solubility limit of Ti increases linearly with temperature. At
500K, up to ∼0.9 at.% Ti can be mixed in PtSi (substituting Pt),
while at PtSi’s congruential melting temperature of 1500 K,
only up to ∼2 at.% Ti can be mixed on the Pt site. This can
be traced to a chemical difference manifested in the Pt–Si and
Ti–Si bond lengths. We find that the nearest neighbor distance
in TiSi is 2.6 Å, while in PtSi it is 2.4 Å, deviating by 7.5%.
Thus, alloying introduces significant local stress. However, up
to ∼3 at.% Ti can be mixed on the Si site at 500 K. We have
also considered a possibility of Ti clustering and find that it is
not energetically preferable. To obtain a notable gain in carrier
density with increasing Ti concentration, 1.8 at.% and more Ti
should mix on the Pt site. Thus, in Sec. IV, we analyze possible
routes to increase the Ti solubility limit at low temperature and
to stabilize TixPt1−xSi versus TixPtSi1−x alloys.

IV. CODOPING WITH BORON, CARBON,
GALLIUM, AND ALUMINUM

We can think of several ways to increase the solubility
of Ti in PtSi. The parameters in Eq. (14) that control the
solubility limit are the formation energy �E, the cell volume,
and the entropy of mixing. The solubility limit increases when
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TABLE VI. Reaction energy, carrier concentration, and critical temperature of Ti2Pt30XSi31 (3.13 at.% Ti) and Ti4Pt28XSi31 (6.25 at.% Ti)
alloys. Negative critical temperature indicates stable alloys as the numerator in Eq. (14) becomes negative. Codoping with Ga and Al yields a
large increase in the solubility limit at a given temperature compared to that of pure TixPt1−xSi alloys.

3.13 at.% Ti 6.25 at.% Ti

X �E (eV/atom) Tcrit (K) n (1020 cm−3) �E (eV/atom) Tcrit (K) n (1020 cm−3)

– 0.013 1532 9.4 0.021 2809 13.8
B 0.029 2211 10.0 0.042 3477 11.1
C 0.051 3933 8.3 0.063 5168 15.1
Ga 0.003 269 10.9 0.018 1474 11.9
Al −0.004 0 11.3 0.012 983 12.7

either the formation energy or the cell volume decrease, the
entropy of mixing increases, or any combination of these three
possibilities occurs. Our smallest 2 × 2 × 2 cell for 1.56 at.% Ti
is 2.3 Å3 smaller than bulk PtSi. Our largest 2 × 2 × 2 cell for
3.13 at.% Ti is 6.6 Å3 larger than PtSi. Assuming pressure of
1 atm, the p�V term in Eq. (14) ranges between −1.4×10−3

and 4.1×10−3 meV, less than 0.07% of the smallest energy
difference we calculate using Eqs. (10) and (11). Thus, the
p�V contribution is too small on the scale of �E to make a
significant difference in an alloy’s stability [Eq. (14)]. Instead,
we consider codoping TiPtSi with boron, carbon, gallium, and
aluminum ions (denoted as X later on) to increase the entropic
contribution and hopefully reduce �E. We use alloys with 3.13
and 6.25 at.% concentrations of Ti. First, we consider doping
Ti on the Pt site while codoping with one of the proposed
elements. For the energetically preferred codopant, we later
reevaluate the preferred doping site of Ti.

We use a 2 × 2 × 2 simulation cell and substitute one x

atom on either the Pt or the Si site. Despite the large difference
in the atomic radii of our codopants and Pt and Si, we find that
all proposed codopants prefer to mix substitutionally on the
Si site. The formation energy of TixPt1−xXySi1−y is estimated
using the following reactions:

32PtSi + 2Ti + X
�E−→ Ti2Pt30XSi31 + 2Pt + Si (15)

and

32PtSi + 4Ti + X
�E−→ Ti4Pt28XSi31 + 4Pt + Si (16)

for 3.13 and 6.25 at.% Ti, respectively. The formation energy
for all codopants, along with the carrier density at the Fermi
level, is summarized in Table VI. In all alloys, the carrier
density at the Fermi level is increased compared to that of
bulk PtSi. While codoping with boron and carbon increases
the formation energy of the alloy, gallium or aluminum lowers
the formation energy drastically. We find the largest decrease
in formation energy when using Al as a codopant and identify
a marginally stable TixPt1−xAlySi1−y alloy with 3.12 at.% Ti.

For this alloy, we also consider introducing Ti on a Si site
to identify the preferences of the mixing site. The formation
energy is calculated from

32PtSi + 2Ti + Al
�E−→ Ti2AlPt32Si29 + 3Si. (17)

It is −10 meV/atom, 6.5 meV/atom smaller than when
mixing Ti on the Pt site. The energy difference is very small,
suggesting that Ti will occupy both the Pt and the Si sites with

equal probability. Thus, independent of the site with which Ti
mixes, the alloy’s stability can be increased through codoping
with Al.

Using the formation energy calculated in Eqs. (15) and (16)
in Eq. (14), we recalculate the solubility limit of titanium. For
the entropic contribution, we assume that Ti only mixes on the
Pt site while the codopant x only mixes on the Si site. The
entropy of mixing is then 1.3 × 10−5 and 1.2 × 10−5 eV/K
in Ti2Pt30XSi31 (3.13 at.% Ti) and Ti4Pt28XSi31 (6.25 at.%
Ti), respectively. The critical temperatures are summarized in
Table VI, and the solubility limit of Ti is shown in Fig. 12.
Although B and C do not improve the solubility, Ga and Al
increase it significantly when compared to both TixPt1−xSi and
TixPtSi1−x . At room temperature, more than 4 at.% Ti can be
mixed in PtSi when codoping with Al. A linear interpolation
between Ti2Pt30AlSi31 and Ti4Pt28AlSi31 suggests a 1.5-fold
increase in carrier density for 4 at.% Ti compared to bulk PtSi.

So far, we have only considered reactions between PtSi and
other elements. To analyze the possible alloy decomposition,
we consider reactions competing with the formation of
TixPt1−xXySi1−y . To do so, we calculate the reaction energy
of two reactions,

Ti2Pt30XSi31
�E−→ 30PtSi + TiSi + TiX (18)

and

Ti4Pt28XSi31
�E−→ 28PtSi + 3TiSi + TiX, (19)

for 3.12 and 6.25 at.% Ti, respectively. The energies for
the PtSi, TiSi, and TiX are extracted from the respective
bulk calculations. To keep the analysis simple, we do not
consider reactions with higher-order silicides such as PtSi2 or
TiSi2. Negative reaction energy indicates thermodynamically
preferred decomposition. We find negative energy in all cases
except when codoping a 3.13 at.% alloy with aluminum. In
this case, the reaction energy is 8.2 meV/atom. Unlike other
alloys, this one does not have a thermodynamic preference to
decompose into a mixture of binary intermetallics PtSi, TiSi,
and TiAl.

V. CONCLUSIONS

We use theoretical band engineering to analyze and find
ways to control the electrical properties of the technologically
important contact material PtSi. We find that alloying PtSi
with Ti may considerably increase the number of carriers.
The improvement comes from the introduction of titanium d

035311-9



ALEXANDER SLEPKO AND ALEXANDER A. DEMKOV PHYSICAL REVIEW B 85, 035311 (2012)

states near the Fermi level. Moreover, we find that although
doping with Ti lowers the WF of PtSi by as much as 0.45 eV,
the SBH to Si is rather insensitive to this change. Using
a combination of density functional theory and Boltzmann
transport formalism, we show that the increase in carrier
concentration is accompanied by alloy scattering that ad-
versely affects conductivity despite a significant increase in
the number of carriers. For doping concentrations below
0.5 at.% the conductivity decreases by less than 50% of that
of bulk PtSi. The thermodynamic analysis indicates that under
equilibrium conditions at room temperature, only 0.7 at.% Ti
can be mixed in PtSi by substituting for Pt. The low solubility

is attributed to strain caused by Ti in the PtSi lattice. To achieve
higher doping concentrations, we suggest codoping PtSi with
gallium or aluminum. While aluminum is best, both increase
Ti solubility at room temperature to more than 3 at.%.
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