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Centered-rectangular lattice photonic-crystal surface-emitting lasers
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We investigate the effects of lattice structure on the properties of photonic-crystal surface-emitting lasers. We
analyze a general type of crystalline geometry known as the centered-rectangular lattice, which includes both
square and triangular lattices. We theoretically and experimentally investigate the laser cavity characteristics of
devices based on such photonic crystals, including the band structure and beam patterns, in order to explore the
feasibility of two-dimensional (2D) lasing oscillation. The more general type of crystalline geometry represented
by the centered-rectangular lattice should enable a comprehensive understanding of the 2D cavity characteristics
to be achieved and also lead to further possibilities in the field of 2D photonic-crystal lasers.
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I. INTRODUCTION

Two-dimensional (2D) photonic-crystal (PC) lasers, whose
operation is based on the band-edge effect, provide spatially
coherent beams over a broad area and for various wavelength
ranges.1–5 Coherent surface emission from the large cavity
enables the construction of high-power single-mode lasers
with various kinds of beam patterns.6–8 The characteristics
of a PC laser largely depend on the cavity design, i.e. the
lattice-hole shape and lattice structure. The lattice-hole shape
determines the output beam pattern; for example, circular
holes produce a doughnut beam, and triangular holes produce
a single-lobed beam.6 Furthermore, the depth of the lattice
holes greatly influences the output power.9 The lattice structure
determines the photonic band structure and hence the resonant
mode properties at the band edges. It should be possible to
utilize PCs with a range of 2D lattice types, but thus far only a
few specific lattices have been analyzed.1–14 Here, we examine
a wider range of 2D PC lattice structures and analyze their
cavity mode characteristics.

Most research involving 2D PCs has concentrated on
triangular and square lattices [Figs. 1(a) and 1(b)], both
of which are highly symmetric and give rise to a number
of useful properties.15,16 These two lattice structures are
also typically utilized for 2D PC lasers. Both lattices fall
within a more general type of 2D crystalline geometry,
the centered-rectangular lattice. This lattice consists of two
primitive translation vectors with the same size and arbitrary
angles between them [Fig. 1(c)], which possesses a greater
degree of structural flexibility. It is therefore interesting to
study and obtain a comprehensive understanding of the basic
characteristics of centered-rectangular 2D PCs as a function of
structure, such as optical coupling phenomena, band structure,
near- and far-field patterns, and the feasibility of achieving
2D lasing oscillation. Analysis of this expanded crystalline
geometry might lead to cavities with novel properties and
widen the possibilities of 2D PC lasers.

In this paper, we comprehensively investigate the cavity
characteristics of centered-rectangular lattice PCs using both
theory and experiment. In Sec. II, we describe the optical
coupling phenomena in the reciprocal lattice space and
calculate typical electromagnetic (EM) field distributions to

demonstrate the presence of a 2D cavity mode. We analyze in
detail cavity characteristics such as the photonic band structure
and the diffraction process that gives rise to surface emission.
In Sec. III, we describe the fabrication of devices with
various centered-rectangular lattice structures and investigate
their properties with an emphasis on beam patterns, spectra,
and band structures. We then compare our experimental and
theoretical results and discuss them in terms of 2D oscillation,
lasing band-edge identification, and single-mode operation.
Finally, concluding remarks are given in Sec. IV.

II. THEORETICAL ANALYSIS

Figure 2 shows a schematic picture of the PC laser structure,
where the PC is used as a laser cavity. Previously, two typical
types of lattice structures have been used in these devices, the
square and triangular lattices shown in Figs. 1(a) and 1(b).
The angle (ψ) between the two primitive translation vectors
is 90◦ for the square lattice and 60◦ for the triangular lattice.
Figure 1(c) shows the centered-rectangular lattice, in which ψ

can vary from 0◦ to 90◦ (the dotted line indicates a centered
rectangle). Therefore, by adopting ψ as a variable parameter,
we can investigate the potential of a much wider range of lattice
structures than the square and triangular lattices alone. We used
the plane wave expansion method to obtain the EM field dis-
tributions and band structures described below. The dielectric
constants of the air holes (εa) and the background (εb) were
assumed to be 10.3 and 11.8, respectively, following Ref. 17.

A. Fundamental modes in centered-rectangular lattice structure

Figures 3(a)–3(c) show the reciprocal lattice space corre-
sponding to the real space in Fig. 1. The arrows represent
fundamental wave vectors, which have the same wave number
at the � points. Four equivalent wave vectors exist for the
square lattice [Fig. 3(a)] and six for the triangular lattice
[Fig. 3(b)]. These wave vectors couple with each other and
produce cavity modes.11,12 In a similar way, the centered-
rectangular lattice possesses four equivalent fundamental wave
vectors that couple with each other. These four vectors form
a 2D plane; therefore, the cavity modes should also be
distributed in the same plane.18
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FIG. 1. Lattice structures of two-dimensional photonic crystals:
(a) square lattice, (b) triangular lattice, and (c) centered-rectangular
lattice. The angle (ψ) between the primitive translation vectors is 90◦

for the square lattice and 60◦ for the triangular lattice.

We calculated typical EM field distributions in the PC plane
to confirm the formation of two-dimensionally oscillating
modes, for which the field distribution has a two-dimensional
periodicity (both in the x and y directions), because one-
dimensionally oscillating modes, for which the field distri-
bution has a periodicity only in a specific direction, may be
formed even in 2D lattice.2,11 Figures 4(a)–4(d) show the EM
field distribution for four fundamental modes in the case of
ψ = 50◦, arranged from the lowest frequency mode (a) to
the highest frequency mode (d). The four corresponding band
edges are indicated by the black arrow in Fig. 5(e). It is clear
that all four modes are 2D mode, which was also confirmed for
various other values of ψ . From this result, we can conclude
that the centered-rectangular lattice structure is suitable for
operation as a 2D PC laser.

B. Photonic band structure

In this section, we investigate the band structure, the number
of band-edge cavity modes, and their frequency gap widths as
a function of ψ . Figures 5(a)–5(f) show the band structures
of PCs with ψ varying from 90◦ to 40◦ in steps of 10◦.
The enlarged band structure diagrams in the insets show the
fundamental cavity modes at the � point, indicated by the
black arrows, which are produced by the fundamental wave
vectors in Fig. 3.

The number of fundamental cavity modes depends on the
lattice structure. In the range of ψ considered here, six modes
are found only for ψ = 60◦ and four for all other values
of ψ . This observation can be schematically understood by
focusing on the two modes indicated by the blue circle in
each diagram, which move to lower frequency as ψ decreases.
When ψ = 60◦, these modes almost coincide with the other
four fundamental cavity modes, increasing the mode number

FIG. 2. (Color online) Schematic pictures of (a) a photonic crystal
laser structure and (b) the bottom side of the device. The laser beam
is emitted from the surface of the device.

FIG. 3. Reciprocal lattice space corresponding to the real space in
Fig. 1. Two-dimensional cavity modes are formed by the coupling of
(a) four equivalent wave vectors for the square lattice, (b) six for the
triangular lattice, and (c) four for the centered-rectangular lattice.
The inset shows the special cases of centered-rectangular lattice,
where the number of equivalent wave vectors becomes six according
to Eq. (1).

to six. The mode number corresponds to the number of
fundamental waves, which is six for the triangular lattice
[Fig. 3(b)] and four for the square lattice [Fig. 3(a)]. In
the case of the centered-rectangular lattice in Fig. 3(c), the
number of fundamental waves is generally four but increases
to six when the wave number of the two � points in the
horizontal direction (indicated by the dotted arrow) matches
that of the other four � points. Analytically, the number of
fundamental waves becomes six when ψ satisfies the following
condition:

ψ = 2 sin−1

(
1

2l

)
, (1)

where l is an integer, which is the order of the � points in the
horizontal direction. Accordingly, the mode number becomes
six when ψ = 60.0◦ (l = 1), 29.0◦ (l = 2), 19.2◦ (l = 3),. . ., of
which the fundamental wave distribution are shown in the inset
of Fig. 3(c). In these conditions, two waves in the horizontal
direction interfere with the original four waves; therefore, six
cavity modes are produced, and their properties specifically
differ from the original four modes.19

FIG. 4. (Color online) Electromagnetic field distributions in the
PC plane for four fundamental modes, (a) the lowest frequency mode
to (d) the highest frequency mode, in the centered-rectangular lattice
with ψ = 50◦. The white circles are lattice holes. Shading represents
the magnetic field intensity, and arrows represent the electric field
vectors. The electromagnetic field is distributed in two dimensions.
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FIG. 5. (Color online) Band structures of centered-rectangular
lattice PCs with ψ ranging from (a) 90◦ to (f) 40◦ in steps of 10◦.
The left-hand side of the plots shows the �-X axis, and the right-hand
side shows the �-Xp axis (perpendicular to �-X). The fundamental
cavity modes at the � point are indicated by the black arrow in each
case and shown in greater detail in the insets. The blue/medium gray
circle in each plot indicates two modes that move to lower frequency
as ψ decreases and coincide with the other four �-point modes at
ψ = 60◦. Red/dark gray arrows indicate the lasing band edges.

The band-edge frequencies and their corresponding gap
widths at the � points are also closely dependent on the lattice
structure. The band-edge frequencies (ωA,B,C,D) of the four
fundamental modes can be analytically expressed as follows,
according to coupled wave theory (see Appendix):

ωA = c/n[β0 − κ3 − cos ψ(κ2a − κ2b)]

ωB = c/n[β0 − κ3 + cos ψ(κ2a − κ2b)]

ωC = c/n[β0 + κ3 − cos ψ(κ2a + κ2b)]

ωD = c/n[β0 + κ3 + cos ψ(κ2a + κ2b)].

(2)

Here, n is the refractive index, and c is the speed of light
in vacuum. The parameters κ2a , κ2b, and κ3 are coupling
constants defined in Eqs. (A4)–(A6). Figure 6 shows a
schematic plot of the band-edge frequencies and gaps, as well
as the Bragg frequency β0, where c/n is normalized as 1.
The gap width between two band edges is determined by the
coupling constant and lattice angle ψ , where ψ is a particularly
significant parameter because cos ψ varies from 0 to 1. The gap
widths also strongly depend on the strengths of the respective
light wave couplings. The constant κ3 represents the coupling
of waves in opposite directions, as shown in Fig. 7(a). This is

FIG. 6. (Color online) Gap widths for band-edge frequencies
ωA-ωD . The gap widths depend on the coupling constants κ and
the lattice angle ψ .

the same as the backward scattering in second-order distributed
feedback lasers. The constants κ2a and κ2b represent the 2D
coupling of waves that are at oblique angles to each other
[Figs. 7(b) and 7(c)]. Therefore, the gaps between ωA and
ωB and between ωC and ωD are related to the 2D coupling
strength, whereas the gap between the center of ωA and ωB

and the center of ωC and ωD is related to the backward coupling
strength.

In this manner, the lattice structure strongly influences both
the entire and local band structure, including the mode number
and the band gap. Tuning the lattice structure may thus enable
more flexible control of the band structure and allow the
restriction of unwanted band edges or the generation of new
band edges.24,25

In this coupled wave model for the centered-rectangular
lattice, we have performed our analysis using four fundamental
waves. However, a more advanced coupled-wave model
should be used if appropriate. For example, in the case of
ψ = 90◦, at least eight waves should be considered in order
to express the 2D coupling.11 In the four-wave model, cos ψ

is 0, and 2D coupling cannot be expressed. Furthermore, in
the case of ψ = 60◦, the number of fundamental waves is
six by symmetry. Therefore, at least six waves are needed to
formulate the basic coupling model.12

C. Radiation effect

We now describe the diffraction process that gives rise to
surface emission, and we study the dependence of the output
beam directions on ψ . A fundamental wave at a � point is
coupled to waves at the other � points by the diffraction effect
of the PC.9 If one or more � points is inside the light cone, then

FIG. 7. Diffraction diagrams for coupling constants of (a) κ3,
(b) κ2a , and (c) κ2b. Shaded arrows indicate pairs of wave vectors, and
black arrows indicate the corresponding reciprocal lattice vectors.
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FIG. 8. (Color online) Schematic picture of radiation processes
for two representative cases. The fundamental waves are diffracted
via coupling constant κ1. (a) There is only one � point inside the
light cone, at the center, and the output beam is radiated in the normal
direction. (b) There are three � points inside the light cone, one at
the center and two at either side. The output beam is radiated in three
different directions.

surface emission occurs. The directions of the output beams
are determined by the in-plane wave numbers of the � points
in the light cone, which can be controlled by the angle ψ .

For example, in Fig. 8(a), there is only one � point inside
the light cone, at the center, and the in-plane wave number
is zero. In this case, by the diffraction of κ1 [Fig. 16] to the
central � point, the output beam propagates in the normal
direction. In the case of Fig. 8(b), where ψ is much smaller
than in Fig. 8(a), there are � points both at the center of the
light cone and within the cone on the right- and left-hand sides.
The output beams propagate in three directions: the vertical
direction (0th order) and at an oblique angle to the left and
right (±1st order). The ±1st-order beams are emitted when
the condition ψ < 2 sin−1(1/2rn) is satisfied; the direction
can be varied with ψ . The beam angle (θ ), as referred to the
normal direction, is expressed as

θ±1 = ± sin−1 [2rn · sin (ψ/2)] , (3)

where rn = neff/nclad. neff is the effective refractive index in
the core, including the active and PC layers, and nclad is the
refractive index of the cladding layers. As ψ is decreased
further, the number of � points in the light cone increases,
adding ±2nd- and ±3rd-order beams. The mth-order beam
angle (θm) can be expressed as

θm = sin−1 [2rnm sin (ψ/2)] , [ψ < 2 sin−1(1/2rnm)].

(4)

In this manner, ψ determines the directions of the output
beams.

III. EXPERIMENTAL RESULTS

We next fabricated devices with various lattice structures
and evaluated properties such as their far- and near-field
patterns, spectra, and photonic band structures. As shown in
Fig. 2(a), the PC and active layers are sandwiched by cladding
layers for the confinement of both light and carriers. This
structure was fabricated using the wafer-fusion technique after
the PCs, as a laser cavity, were made in the 300-μm square
field.23 The current is injected from the bottom side through a
circular electrode with a 50-μm diameter shown in Fig. 2(b),
which is 1 μm away from the PC layer and restricts the area
of current flow. We designed six kinds of lattice structures in

FIG. 9. (Color online) Scanning electron microscope (SEM)
images of six fabricated PCs with ψ ranging from (a) 90◦ to
(f) 40◦ in steps of 10◦.

which ψ ranged from 90◦ to 40◦ in steps of 10◦. The scanning
electron microscope (SEM) images of the devices are shown in
Figs. 9(a)–9(f). The lattice holes were circular in shape, and the
filling factor was fixed at 12%, except for the ψ = 60◦ structure,
where it was 9%. When we injected a pulsed current (1 kHz,
500 ns), we successfully obtained lasing for all the lattice types.
A near-field pattern and its spectra, showing �-point oscillation
for a typical device with ψ = 80◦, is presented in Fig. 10.
Single-mode lasing was observed throughout the 2D plane.
This represents the first demonstration of 2D single-mode
oscillation from 2D PC lasers with the centered-rectangular
lattice structure. Figure 11 shows the far-field patterns for
our devices. In all cases except the ψ = 70◦ structure, a
doughnut beam or two-lobed beam radiating in the normal
direction (�-point oscillation) was obtained. In contrast, the
device with ψ = 70◦ emitted twin beams tilted at an angle of
4◦ (non-�-point oscillation).

First, we will examine the case of �-point oscillation, which
was obtained from all the devices except for the ψ = 70◦
structure. Although the devices with ψ = 50◦ and 40◦ produce
oblique ±1st-order beams according to Eq. (3), they are not
emitted from the device due to total internal reflection at the

FIG. 10. A near-field pattern and its spectra for a typical fab-
ricated device with ψ = 80◦, demonstrating �-point lasing. A
single-mode oscillation was observed throughout the 2D plane.
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FIG. 11. Far-field patterns for our fabricated devices with
centered-rectangular lattice PCs with ψ ranging from (a) 90◦ to
(f) 40◦ in steps of 10◦. The device with (c) ψ = 70◦ emitted twin
beams tilted at 4◦, corresponding to a non-�-point mode; all the other
devices emitted a doughnut beam or two-lobed beam in the vertical
direction. The beam divergence angle is ∼1◦, indicating 2D large-area
oscillation in the PC plane.

surface of the GaAs substrate (air-semiconductor interface
above the cladding). Therefore, an output beam is obtained
only in the vertical direction for all the devices discussed
here. The beam divergence angle is ∼1◦, which indicates
large-area oscillation in the PC plane. The oscillated mode
can be identified from among several band edges by angle-
resolved electroluminescence subthreshold measurement.17

Figure 12(a) shows the measured band structure of the
centered-rectangular lattice with ψ = 50◦, together with
the lasing spectrum. Figure 12(b) shows the corresponding
calculated band structure. By comparing Figs. 12(a) and
12(b), we can determine that the laser oscillation occurs at
the third band edge from the bottom, indicated by an arrow.
Furthermore, the correspondence of the beam pattern to the
EM field distribution in the PC plane supports the assignment
of laser oscillation to this band edge. Figure 13(a) shows the
beam pattern and its polarization for the ψ = 50◦ structure, and
Fig. 13(b) shows the EM field distribution over one unit cell
inside the PC layer. The beam patterns is basically determined
by the symmetry of the mode at the symmetry point when the

FIG. 12. (Color online) (a) Measured and (b) calculated band
structure of the PC with ψ = 50◦. The lasing spectrum is shown on
the right-hand side of (a) by a red/dark gray curve. The lasing band
edge is indicated by the arrow.

FIG. 13. (Color online) (a) Beam pattern and its polarization
for the fabricated device with ψ = 50◦. (b) Calculated EM field
distribution of the third band-edge mode over one unit cell inside
the PC layer. Because the electric-field component in the horizontal
direction is dominant, the polarization of the two-lobed far-field
pattern is also horizontal.

envelop of the cavity mode is a Gaussian-like (single-lobe)
spacial distribution, excited from the center part of the PC
region away from the boundary, which also correspond to
the lowest longitudinal mode requiring the smallest threshold
gain.11 The electric field components are antisymmetric with
respect to the center of the lattice hole. When the light is
diffracted normal to the PC plane, the antisymmetric nature
of the electric field causes destructive interference, giving rise
to zero intensity at the center of the output beam. This is a
similar scenario to the azimuthally polarized doughnut beams
described in Refs. 24 and 25, although in the present case,
the horizontal component is dominant. Similar considerations
allowed the lasing band edges of our other devices to be
identified; the relevant modes are indicated by red arrows in
Fig. 5. Figures 14(a)–14(e) show the corresponding EM field
distributions. These lasing modes appear to have the same
origin, giving rise to similar symmetric field distributions,
where magnetic field antinodes are located in the centers of the
lattice holes, and the electric field components rotate around
the lattice holes.

In this paper, although we have not calculated the radiation
loss of centered-rectangular lattice cavities, we can discuss the
mode selection among �-point modes by referring to Ref. 11,
the case of the square lattice. First, the vertical radiation loss
plays a key role for determining the selection of the lasing

FIG. 14. (Color online) EM field distributions in the PC plane
corresponding to the modes indicated by red/dark gray arrows in
Fig. 5 with ψ = (a) 90◦, (b) 80◦, (c) 60◦, (d) 50◦, and (e) 40◦.
The symmetry of these distributions is similar for all modes, with
magnetic field antinodes at the centers of the lattice holes and electric
field components rotating around the lattice holes.
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FIG. 15. (Color online) (a) Measured and (b) calculated band
structures for the non-�-point oscillation in the ψ = 70◦ structure.
The oscillated mode is at the non-�-point on the �-Xp axis (flat band)
indicated by the arrow.

band edge. In Fig. 4, the electric field of the modes (a) and
(c) are antisymmetric, causing the destructive interference in
the vertical direction. This means that the radiation from these
modes should be inefficient (dark mode), and the vertical loss
is suppressed compared with the other two modes (b) and (d).
Therefore, we can predict the mode (a) or (c) will contribute
the lasing in terms of the modal symmetry. Secondly, the
in-plane radiation loss has an influence on the mode selection
among those two dark modes. For the case of square lattice,
the EM field distribution, similar to that shown in Fig. 4(c),
provides lower radiation loss than the mode with the EM
field distribution, as in Fig. 4(a), because the difference of the
envelope of the considered modes produces the difference of
the in-plane radiation loss. In fact, all the devices with �-point
oscillation in this paper can be estimated to be lased with the
EM field distribution shown in Fig. 14, and these EM fields
possess the same symmetry with the modes shown in Fig. 4(c).

Finally, we examine the non-�-point oscillation arising in
the device with ψ = 70◦. In a similar way to Fig. 12, the
lasing mode was determined to be the mode at the non-�-
point on the �-Xp axis indicated by the arrow in Fig. 15(a).
There is always a slow-group-velocity band (flat band) on the
�-Xp axis, as shown in Fig. 5; and a band edge, which is a
zero-group-velocity point, is often found on this flat band, as
shown in Fig. 15(b).20,22 As a result of the higher Q factor at
the band edge on the flat band compared to the other �-point
band edges, non-�-point oscillation occurs in this case. We
note that a flat band on the �-Xp axis also exists in the band
structure of the ψ = 50◦ device in Fig. 12(b), but not with a
band edge. This may suggest that varying ψ also allows the flat
band characteristics to be altered, which would enable �-point
or non-�-point oscillation to be selected.

IV. CONCLUSION

We have comprehensively investigated the cavity charac-
teristics of PC lasers based on the centered-rectangular lattice
structure, which spans a general class of lattice structures that
includes the conventionally analyzed square and triangular
lattices. We have theoretically confirmed the presence of a 2D
cavity mode in the centered-rectangular lattice by considering
the optical coupling phenomena and calculating the EM field
distributions. We have closely analyzed cavity characteristics

such as the photonic band structure and the diffraction process
that gives rise to surface emission. These characteristics are
strongly influenced by the lattice structure, allowing control
of the number of band edges and their gaps, as well as the
directions of the output beams.

We have also evaluated the properties of fabricated
devices with different centered-rectangular lattice structures,
with emphasis on the far- and near-field patterns, spectra,
and band structures. Two kinds of lasing were obtained,
resulting from �-point and non-�-point oscillation and
were compared with theoretically obtained band structures
and polarizations for the same lattice structures. We have
demonstrated that 2D, single-mode lasing oscillation can be
obtained from most devices with the centered-rectangular
lattice. The expansion in available structural degrees of
freedom provided by the centered-rectangular lattice, as well
as the comprehensive understanding of cavity characteristics
as a function of structure provided by our study, will lead to
further possibilities in the field of 2D PC lasers.
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APPENDIX: DEVIATIONS OF BAND EDGE FREQUENCY
IN CENTERED-RECTANGULAR LATTICE PHOTONIC

CRYSTAL WITH TE POLARIZATION

Below we use coupled mode theory to derive the equation
for the band-edge frequency at the � point for the centered-
rectangular lattice. The basic derivation is given in Ref. 11.
Here, we only show the parts of the derivation that have been
modified, such as the definition of the fundamental lattice
vectors and the coupling model.

Two fundamental lattice vectors a1 and a2 in a centered-
rectangular lattice can be written as

a1 = [a cos(ψ/2),−a sin(ψ/2)]

a2 = [a cos(ψ/2),a sin(ψ/2)]
(A1)

where a is the lattice constant, and ψ is the angle between
the fundamental lattice vectors. The fundamental reciprocal
lattice vectors b1 and b2 are written as

b1 = [β0 sin(ψ/2),−β0 cos(ψ/2)]

b2 = [β0 sin(ψ/2),β0 cos(ψ/2)]
(A2)
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FIG. 16. Definition of (a) fundamental wave vectors and
(b) coupling constants considered in this paper.

where β0 = 2π/(a sin ψ).
We consider the z component of the magnetic field (Hz) as

a basic wave vector for transverse electric (TE) polarization.
The fundamental wave vectors are shown in Fig. 16, and we
define Hz as

Hz (r)

= H1e
−iβ0[sin(ψ/2)x−cos(ψ/2)y] + H2e

iβ0[sin(ψ/2)x+cos(ψ/2)y]

+H3e
iβ0[sin(ψ/2)x−cos(ψ/2)y] + H4e

−iβ0[sin(ψ/2)x+cos(ψ/2)y]

(A3)

where Hi are the magnitudes of the respective fundamental
waves.

We also define the coupling constants that express the
coupling of the wave vectors. The coupling constants for |G| =
2β0·sin(ψ/2), 2β0·cos(ψ/2), and 2β0 contribute significantly.
These coupling constants are shown in Fig. 16, and we list
them as:

κ2a ≡ κG(±1,±1) = κG||G|=2β0 sin(ψ/2), (A4)

κ2b ≡ κG(±1,∓1) = κG||G|=2β0 cos(ψ/2), (A5)

κ3 ≡ κG(±2,0) = κG(0,±2) = κG||G|=2β0 sin(ψ/2), (A6)

where κG is defined as,11,12

κG = − π

λε
1/2
0

εG, (A7)

where εG is the Fourier coefficient of the modulated dielectric
constant ε(r). The coupling constants can be real numbers
because we assume a symmetric structure such as that given
by circular lattice holes.

Using Eqs. (A4)–(A6) and solving Maxwell’s equations
[Eqs. (5)–(9) in Ref. 11, we obtain four equations of the form:

δH1 = κ3H3 − cos ψκ2aH4 + cos ψκ2bH2

δH2 = κ3H4 − cos ψκ2aH3 + cos ψκ2bH1

δH3 = κ3H1 − cos ψκ2aH2 + cos ψκ2bH4

δH4 = κ3H2 − cos ψκ2aH1 + cos ψκ2bH3

(A8)

where δ is the deviation from the Bragg condition.
The above set of equations expresses the coupling of waves

propagating in the centered-rectangular lattice PC structure.
For example, the first expression in Eq. (A8) describes the
coupling of waves H1 and H3 that travel in opposite directions;
the intensity of the coupling is given by κ3. The same equation
also describes the coupling of waves that propagate at an
oblique angle to each other. That is, wave H1 couples to
waves H4 and H2 with an intensity of cos ψκ2a and cos ψκ2b,
respectively. These oblique couplings provide 2D optical
feedback, which gives rise to coherent 2D oscillation.

Solving Eq. (A8) as an eigenequation, the eigenvalue δ is
given as

δ =

⎧⎪⎪⎨
⎪⎪⎩

κ3 + cos ψ(κ2a + κ2b)
κ3 − cos ψ(κ2a + κ2b)

−κ3 + cos ψ(κ2a − κ2b)
−κ3 − cos ψ(κ2a − κ2b)

. (A9)

From Eq. (A9) and the relation ω = (c/n)β = (c/n)(δ +
β0), the expression for the band-edge frequencies in Eq. (2) is
derived.
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tronic Science and Engineering, Kyoto University, Noda lab.
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