
PHYSICAL REVIEW B 85, 035201 (2012)

Phonon-assisted luminescence of polar semiconductors: Fröhlich coupling versus
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S. Lautenschläger, B. K. Meyer, and M. Eickhoff
I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, D-35392 Gießen, Germany

(Received 1 August 2011; published 4 January 2012)

The origin of exciton-phonon interaction in polar semiconductors is investigated. The relative contributions of
Fröhlich coupling and deformation potential scattering are identified by analyzing experimentally measured
phonon-assisted luminescence using a rigorous many-body approach. Our experiment-theory comparison
demonstrates that phonon scattering is significantly influenced by many-body interactions. Fröhlich interaction
can be strongly suppressed for excitons even when it dominates electronic single particle scattering. The results
show that deformation potential scattering dominates the exciton-phonon interaction in ZnO, whereas Fröhlich
interaction prevails in CdS, and both coupling mechanisms yield almost equal contributions in ZnS.
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I. INTRODUCTION

Scattering between charge carriers and lattice vibrations
is one of the elementary interactions in semiconductors. The
microscopic understanding of this process is crucial for the
analysis of a wide range of phenomena like cooling of a hot
carrier system,1–3 light–matter interaction,4,5 and dephasing
of coherent excitations,6–8 to name only a few. Fröhlich
interaction is presumably the most prominent carrier-phonon
scattering mechanism.9–11 It involves the direct coupling of
the polarization of the lattice vibrations to the electron charge
[Fig. 1(a)]. The dependence of the coupling strength on the
quasimomentum k is qualitatively shown by the dark-gray area
in Fig. 1(c). This interaction decays for large k and is, there-
fore, most efficient at transferring small momenta between
electrons and phonons. In inorganic semiconductors, Fröhlich
scattering is known to be of central importance in compound
materials such as GaAs and GaP with polar contributions to
atomic bonds,12,13 and it is particularly strong in wide-gap
materials, like CdS, ZnO, and GaN. Additionally, Fröhlich
interaction is commonly applied to describe surface-related
phonon scattering,14 vibrational properties of low-dimensional
systems,15 and coupling to polarons.16,17

Generally, carrier-phonon interaction has to be considered
in the presence of carrier-carrier Coulomb scattering. This
leads to the formation of electron hole pairs, i.e., excitons,18

observed in a wide range of materials such as organic and anor-
ganic semiconductors,13,19 polymers,20 and many more. Also,
in the case of the excitons, the Fröhlich interaction is com-
monly used to describe coupling to phonons.21–24 However, the
attractive electron-hole interaction should introduce significant
modifications to the phonon scattering. While the Fröhlich
coupling is strong for a single carrier, it may be much less
efficient for a correlated many-body state. Thus, polar interac-
tion between phonons and excitons should be at least partially
canceled due to the opposite charges of electrons and holes
within excitons. Indications for this behavior are observed

and suggested in previous literature studies, e.g., on exciton-
phonon scattering in confined quantum-dot systems.25–27

A second carrier-phonon scattering mechanism is based
on the deformation of the atomic lattice by a phonon,
leading to the indirect interaction with an electron via the
modulations of the periodic lattice potential. This process is
known as deformation potential scattering.13,28,29 It dominates
the electron-phonon coupling in nonpolar materials like Si or
Ge.12,30 The strength of the deformation potential scattering
is essentially constant in k and leads to a relatively weak
dependence of the coupling on the transferred momentum,
see Fig. 1(c). Nevertheless, for small k values, the absolute
interaction strength is considerably smaller compared to the
Fröhlich interaction. However, this nonpolar coupling is only
marginally changed for excitons or other correlated many-
body states compared with the individual carrier interaction.

In this paper, we investigate the exciton-phonon scattering
in three different polar semiconductors that are known for
strong Fröhlich interaction between single charge carriers and
phonons. We demonstrate that phonon scattering is signif-
icantly influenced by many-body interactions. Surprisingly,
the Fröhlich coupling can be partially or even completely sup-
pressed for exciton-phonon interactions, leaving deformation
potential scattering as the dominant mechanism.

We have studied the phonon-assisted luminescence in
order to identify the nature of the exciton-phonon interaction.
This process is shown schematically in Fig. 1(d) in the
polaron picture. The radiative recombination of excitons leads
to the so-called zero-phonon line (ZPL) in the emission
spectrum. The phonon-assisted radiative recombination, i.e.,
the simultaneous emission of a photon and one or several
optical phonons, yields additional distinct spectral signatures,
the so-called phonon sidebands (PSBs).31,32 We exploit the
differences between the two coupling mechanisms with respect
to the interaction strength dependence on the transferred
momentum by altering the carrier distribution in the reciprocal
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FIG. 1. (Color online) Schematic illustration of electron-phonon
interaction mechanisms: polar Fröhlich coupling (a) and deformation
potential scattering (b). The corresponding interaction strength is
shown in (c) as a function of transferred quasimomentum k. Sketch
of a phonon-sideband emission process in the polaron picture (d):
The lower polariton branch is plotted on the right-hand side, the
photoluminescence spectrum on the left.

space. Investigating the temperature dependence of the relative
sideband ratios thus allows us to identify the role of Fröhlich
versus deformation potential contributions to the exciton-
phonon scattering processes.

II. THEORY

The Fröhlich-type carrier-LO phonon interaction stems
from the relative displacements of oppositely charged ions
within a unit cell, which produces a macroscopic polarization

P (r) = h̄�LOε0

e

∑
p

gλ
p

p
|p| ei p·r(D†

p − D
†
−p). (1)

Here, p
|p| (D

†
p − D

†
−p) describes the quantized form of induced

displacement containing the Boson creation and annihilation
operators D

†
p and D

†
p for phonons with wave vector p.

The associated polarization creates a macroscopic field via
a Coulombic term. It is customary to express this via the
band-independent Fröhlich matrix element9

∣∣gλ
p

∣∣2 = e2

ε0L32h̄�LO

1

|p|2
[

1

ε(∞)
− 1

ε(0)

]
, λ = {c, v},

(2)

where c and v represent conduction and valence band,
respectively, and L3 is the normalization volume while ε0

denotes the vacuum permittivity. It is also convenient to
include dielectric constants for both high-frequency ε(∞)
and low-frequency ε(0) into gλ

p . The transferred momentum
between the electron and LO phonon is denoted by p, and

h̄�LO is the respective energy of the phonon. These lattice
vibrations couple with λ electrons having momentum k, which
is described by the phonon-carrier interaction

Hphon = h̄�LO

∑
λ,k,p

gλ
p a

†
λ,k−pa

†
λ,k(D†

−p − D†
p), (3)

where a
†
λ,k is a Fermion operator describing carriers.

The deformation-potential coupling originates from the
variations of the bond lengths and angles that locally change
the electronic band energies and lead to strongly band-
dependent matrix elements. The resulting carrier-phonon
interaction has the same form as Eq. (3); one just needs to
replace gλ

p by the deformation potential matrix element33

|gλ,def|2 = 1

2ρL3h̄�3
LO

(M1 + M2)2

2M1M2

|dλ|2
a2

, (4)

where ρ is the density of the material, M1 and M2 are the
masses of the two different base atoms, dλ is the optical
deformation potential constant, and a is the lattice parameter.

In general, the deformation potentials are strongly band de-
pendent. It can be shown that there is no deformation-potential
interaction between conduction-band electrons and optical
phonons in direct semiconductors, based on symmetry.12,34

Therefore, dc vanishes while dv has a finite value in the
range of some 10 eV and is also often denoted as d0 ≡ dv

in the literature. The authors of Ref. 35 have used a tight-
binding approach to calculate the deformation potentials for
several semiconductors in diamond and zincblende structures
and obtained a value of dv = 39.8 eV for ZnO and dv =
23.7 eV for CdS. The respective values must be converted
from zincblende- to wurtzite-structure parameters for the
comparison to our experimental data. These are derived using
the relations of Ref. 36 where the authors have presented a
general derivation of the deformation potentials in zincblende-
and wurtzite-type semiconductors as well as a relation that
connects both systems. The coupling constants for optical
deformation potential scattering used in this work are dv

ZnO =
49.7 eV and dv

CdS = 29.6 eV.
The phonon sideband emission stems from phonon-assisted

three-particle correlations that are systematically included
with the semiconductor luminescence equations37 as presented
in the appendix. The resulting steady-state luminescence
spectrum in free space follows from photon flux that is
proportional to

IPL(ω) = IZPL(ω) + IPSB1 (ω) + IPSB2 (ω), (5)

where the ZPL, PSB1, and PSB2 contributions are simply
summed over. When the 1s-exciton populations dominate over
electron-hole plasma sources,38 the ZPL spectrum follows
from

IZPL(ω) = Im

[
NZPL − δN

(1)
ZPL − δN

(2)
ZPL

E1s,0 − h̄ω − iγ0

]
, (6)

where the strength of the 1s emission —as in the case of our
experiment— is defined by the exciton population 
N1s,p at
the vanishing momentum, i.e.,

NZPL = 
N1s,0. (7)
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The emerging sidebands yield further corrections

δN
(1)
ZPL =

∑
Q

∣∣∣∣∣ G
1s,1s
Q

h̄� − ECoM
Q

∣∣∣∣∣
2


N1s,Q, (8)

δN
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ZPL = −

∑
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p G
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Q−p 
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2h̄� − ECoM
Q

)2

E

ν,1s
p,0

×
[(

G1s,ν ′
p G

ν ′,1s
Q−p

)∗


E
1s,ν ′
Q,p

+
(
G

1s,ν ′
Q−pG

ν ′,1s
p

)∗


E
1s,ν ′
Q,Q−p

]
. (9)


N1s,q defines the center-of-mass distributions of 1s excitons
and is assumed to follow the Bose-Einstein distribution. The
corresponding exciton energy Eν,Q = Eν + h̄2Q2

2M
is a sum of

the exciton eigenenergy Eν and the center-of-mass energy
ECoM

Q = h̄2Q2

2M
with the total electron-hole mass M = me + mh.

We also have identified the transition energy


E
ν,ν ′
Q,p ≡ h̄� − Eν,Q + Eν ′,p, (10)

between the exciton state (ν,Q) and phonon-assisted transition
to the exciton state (ν ′,p).

The exciton-phonon matrix elements are defined by

Gν,ν ′
p = h̄�LO

∑
k′

φν(k′ + pe)
[
gc

p φν ′(k′ + p) − gv
p φν ′(k′)

]
,

(11)

where pe = me
me+mh

p and φν(k) is the low-density exciton wave
function. In case phonon-matrix elements for the conduction
and valence bands are equal—as it is for the Fröhlich
interaction—Eq. (11) becomes

GFröhlich
p =h̄�LOgp

∑
k′

φν(k′ + pe)[φν ′(k′ + p) − φν ′(k′)].

(12)

This easily shows that one observes only a weak Fröhlich
contribution of the phonon interaction especially for small
phonon momenta p. Since deformation potential has dc = 0
and dv �= 0, it does not produce a reduction of phonon interac-
tion for excitons. Therefore, the Fröhlich interaction couples
excitons with phonons less efficiently than the deformation
potential does.

We see from Eq. (6) that NZPL defines the strength of
ZPL emission with phonon-assisted processes. Therefore,
δN

(1)
ZPL and δN

(2)
ZPL provide corrections due to the presence

of higher-order phonon-assisted processes. Since the ZPL is
several orders of magnitude larger than the phonon sidebands,
the introduced corrections have only a very slight influence on
the ZPL emission. Furthermore, the energy denominators in
Eqs. (8) and (9) depend only weakly on the phonon momenta,
because the optical phonon energy is large compared with the
energetic distance between the relevant excitonic resonances.
It can be shown that the (ν,ν ′) combinations (1s,1s) and (1s,2p)
especially show a significant scattering probability |Gν,ν ′

p |2.39

The phonon-sideband contributions up to the second side-
band are similar to Eq. (6):

IPSB1 (ω) = Im

[ ∑
Q

NPSB1,Q − δN
(2)
PSB1,Q

E1s,Q − h̄� − h̄ω − iγ1

]
, (13)

IPSB2 (ω) = Im

[∑
Q

NPSB2,Q

E1s,Q − 2h̄� − h̄ω − iγ2

]
. (14)

The magnitude of the PSB resonances are defined by

NPSB1,Q =
∣∣∣∣∣ G

1s,1s
Q

h̄� − ECoM
Q

∣∣∣∣∣
2


N1s,Q, (15)

δN
(2)
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∑
p

G
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Q G1s,1s
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Q+p
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, (16)
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]
. (17)

It is straightforward to show that the total PL,
∫

IPL(ω) dω,
is not altered by the phonon-assisted processes. Therefore,
δN (1) and δN (2) in Eqs. (6) and (13)–(14) just redistribute
emission among the ZPL and PSBs through the phonon-
assisted processes.

We also see from Eqs. (6)–(9) that phonon-assisted contri-
butions change the ZPL via both δN

(1)
ZPL and δN

(2)
ZPL stemming

from single- and two-phonon assisted processes, respectively.
At the same time, the PSB2 alters the PSB1 via the δN

(2)
PSB1,Q

contribution. The PSB2 itself has only one phonon-assisted
scattering source NPSB2,Q, since we include effects up to
the second sideband, see Appendix A. Both the PSB1 and
PSB2 spectra consist of a sum over exciton momentum in the
Lorentzians. Therefore, the PSBs exhibit a broader spectrum
at the high-energy tail than the ZPL. In particular, the slope
of the high energy flank of the PSB1 reflects the momentum-
dependence of the carrier-phonon interaction, temperature of
the system, available phase-space for the scattering process,
and the dephasing constant γ0. Due to nontrivial mixing of
these effects, this slope is generally different for various PSBs.
Therefore, the carrier temperature cannot be extracted from
the fitting of the high-energy tail of a PSB by the Boltzmann
function.

The intensities of PSB1 and PSB2 depend on the phonon-
matrix elements G in the second and fourth power, respec-
tively. Thus, the ratio between PSB2 and PSB1 emission is
determined by the carrier temperature and by the dependence
of G on the transferred momentum. As a result, one expects
the PSB2/PSB1 ratio to decrease with increasing temperature
for the momentum-dependent Fröhlich interaction since the
corresponding phonon-matrix elements decrease for increas-
ing momenta, c.f. Fig. 1. In the case of the momentum-free
deformation potential, however, the phonon-matrix elements
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are independent of the p and Q sums and become constant
factors in Eqs. (15)–(17). Hence, the ratio PSB2/PSB1 does not
depend on the transferred momenta and, therefore, on carrier
temperature. Consequently, we expect a strongly temperature-
dependent second-to-first sideband ratio for the Fröhlich
scattering mechanism, while PSB2/PSB1 remains constant
if deformation-potential coupling prevails. Thus, the carrier
temperature dependence of the PSB-emission ratios offers an
experimentally accessible method to identify the nature of
the exciton-phonon interaction. In an experiment, the carrier
temperature is easily controlled via lattice temperature and/or
the excitation conditions.

III. EXPERIMENT

We perform lattice temperature-dependent measurements
of the first and second PSB emission spectra for three different
materials: ZnO, ZnS, and CdS. These are typical represen-
tatives for polar wide-gap semiconductors exhibiting strong
electron-phonon and Coulomb-interaction effects.12,13,32 The
ZnO and ZnS samples are epitaxially grown 0.3-μm and 1-μm
layers, respectively; for CdS, a chemically synthesized flake of
about 10-μm thickness is investigated. Applying short-pulse
interband excitation, we measure the time-resolved PL to
ensure that only incoherent emission sources contribute to the
signal. The second and third harmonic of a 100-fs Ti:sapphire
laser with a repetition rate of 80 MHz are used for excitation.
The photon energy is set to 2.9 eV in the case of CdS and
to 4.1 eV for both other samples. The PL was spectrally
and temporally dispersed in a standard streak camera setup,38

obtaining resolutions of 0.4 nm and 5 ps, respectively. The
phonon-sideband emission from the samples was studied as a
function of lattice temperature and carrier density.

IV. RESULTS AND DISCUSSION

The time-integrated PL spectra of the CdS (a) and the
ZnO (b) samples are shown in Fig. 2 at two different lattice
temperatures of 10 K and 90 K in the spectral range of the
first two PSBs. The well-known polariton propagation in bulk
crystals leads to a strong dependence of the near band-edge
PL on surface properties.13 Therefore, we neglect the zero
phonon line (ZPL) in our analysis and subtract it from the
measured spectra. The data are then normalized to the PL
of the second PSB for better comparison. As expected, the
observed sidebands are shifted to lower energies with respect
to the free exciton transitions at 2.553 eV and 3.378 eV
in CdS and ZnO, respectively. The corresponding spectral
intervals are multiples of LO-phonon energies of 38 meV in
CdS and 72 meV in ZnO.40 Additional weak signatures in
the 10 K spectrum of the ZnO sample are identified as PSBs
of donor-bound excitons.41 Time resolved PL traces of the
PSB2 emission are shown in the insets of Fig. 1(a) and 1(b).
The incident photon flux at the sample surface is set to n0 =
1011 photons/cm2 per pulse. Taking into account the pump
geometry and the absorption coefficients,13,40 this corresponds
to initially injected carrier densities of 3 × 1015 cm−3 and
2 × 1015cm−3 for ZnO and CdS, respectively. All values are
well below the respective Mott densities,13,42 thus favoring the
formation of excitons. In both samples, the emission dynamics

FIG. 2. (Color online) Time-integrated PL spectra of the first and
the second PSB in CdS (a) and ZnO (b) at lattice temperatures of
10 K and 90 K. The inset shows the emission dynamics of the second
PSB. The excitation density was n0 = 1011 photons/cm2 per pulse.

are almost single exponential and do not change significantly
with rising temperature. The data thus confirms exciton-
related PL13 and excludes thermal activation of additional
recombination channels.

Our measurements clearly show that the ratio between
the second and the first PSB strongly decreases in CdS,
while it remains almost constant in ZnO when increasing
the lattice temperature from 10 to 90 K. To quantify these
differences, the measured temperature dependence of the
PSB2/PSB1 intensity ratios for ZnO, ZnS, and CdS are plotted
in Fig. 3(a). The corresponding theoretical results in Fig. 3(b)
are obtained by calculating the contributions of Fröhlich
and deformation-potential coupling. The comparison clearly
shows that Fröhlich coupling dominates PSB scattering in CdS,
whereas ZnO has the deformation potential coupling as the
main exciton–phonon scattering process. At the same time,
ZnS constitutes an intermediate case where both mechanisms
equally contribute to the PSB emission.

Our findings are corroborated by the pump power depen-
dence of the PSB luminescence. The carrier temperature rises
for increasing excitation densities due to the formation of a
nonequilibrium phonon population, leading to the well-known
hot-phonon effect.2 This provides an alternative way to alter
the exciton distribution in favor of higher k values, i.e.,
momenta. Figure 4(a) shows the PSB2/PSB1 intensity ratios
for ZnO (circles) and CdS (triangles) at 10 K as a function of
excitation power. The resulting carrier density for the highest
power applied is below 1×1018 cm−3 and, thus, still does not
exceed the Mott density in both materials.13,42 The PSB2/PSB1

ratio in ZnO increases only slightly for higher carrier densities.
At the same time, the relative intensity of the second sideband
decreases almost by a factor of two in the case of CdS. The
pronounced density dependence of the PSB ratio therefore also
influences the relative PL dynamics, see Figs. 4(b) and 4(c).
The decay rates for the first and second PSB deviate from
each other in the case of CdS [Fig. 4(c)] and are equal for
the ZnO sample [Fig. 4(b)]. These results are fully consistent
with temperature-dependent measurements, showing Fröhlich
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FIG. 3. (Color online) (a) Ratios of the second and first phonon
sidebands as a function of lattice temperature for ZnO (circles), ZnS
(squares), and CdS (triangles, top to bottom) for an excitation density
of 1011 photons/cm2 per pulse. The solid lines are given as guides
to the eye. The corresponding results obtained from the many-body
calculations are shown in (b).

behavior for the PSB emission in CdS and the deformation
potential scattering in ZnO.

V. CONCLUSION

In conclusion, the exciton-phonon interaction mechanisms
in polar semiconductors are studied theoretically and experi-
mentally. A theoretical many-body approach is used to develop
a straightforward way to identify the dominant scattering
processes by the evaluation of phonon-assisted emission. The
PSBs of ZnO, ZnS, and CdS are investigated by time-resolved
PL spectroscopy as a function of temperature and excitation
density. Fröhlich coupling governs the scattering in CdS, while
deformation potential scattering turns out to be the dominant
mechanism in ZnO. Both processes contribute about equally in
ZnS. It is important to notice that our theory clearly shows that

FIG. 4. (Color online) (a) Ratio of the second and first phonon
sidebands as a function of excitation density at T = 10 K for ZnO
(circles) and CdS (full triangles). Solid lines are guides to the
eye. n0 corresponds to the photon flux of 1011 photons/cm2 per pulse.
Normalized transients for ZnO (b) and CdS (c) of the first and second
PSB are shown by solid lines and gray areas, respectively.

the scattering between a single electron and an optical phonon
in all the studied cases is dominated by the Fröhlich interac-
tion. However, particularly for ZnO, these contributions are
suppressed by the strong Coulomb coupling of electrons and
holes in excitons, rendering deformation potential scattering
the overall dominant mechanism responsible for the sideband
emission.
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APPENDIX: LOW-DENSITY EXCITON-DOMINATED
PHONON SIDEBANDS

The description of phonon sideband luminescence is pre-
sented in Refs. 43 and 44 using the polaron picture and in
Ref. 39 using the electron-hole picture. Within the applied
theoretical approach, the semiconductor system as well as the
carrier-carrier Coulomb-interaction and light-matter coupling
mechanisms are treated microscopically using a quantized
continuum model for the phonons. Both polaron and electron-
hole treatments become rather cumbersome when resonances
beyond the first sideband are evaluated. Therefore, we study
here exciton-population dominated PSB1 and PSB2 when
carrier densities are low. In this limiting case, we may start
from a simplified system Hamiltonian

H = HX + Hvib + Hem + HX−vib + HX−em, (A1)

where the noninteracting part contains

HX =
∑
ν,q

Eν,qX
†
ν,qX

†
ν,q, (A2)

with exciton operator X
†
ν,q identified by state index ν and

center-of-mass momentum h̄q. For elevated densities, HX must
be supplemented with additional pure carrier contributions,37

and they can be ignored only at low densities. The free phonons
and photons are described by

Hvib =
∑

p

h̄�LO
(
D†

pD
†
p + 1

2

)
(A3)

and

Hem =
∑

q

h̄ωq
(
B†

qB
†
q + 1

2

)
, (A4)

where h̄�LO is the LO-phonon energy and ωq sets the
photon dispersion. Like always, phonon D

†
p and photon B

†
q

are bosonic, while Xν,q is bosonic only approximately. For
the low-density study performed here, we apply the bosonic
approximation

[X†
ν,Q,X

†
ν ′,Q′ ]− = δν,ν ′δQ,Q′ , (A5)

[X†
ν,Q,X

†
ν ′,Q′]− = 0 = [X†

ν,Q,X
†
ν ′,Q′ ]−. (A6)
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In this situation, the exciton-phonon and exciton-photon
interactions are described by

HX−vib =
∑
ν,ν ′

∑
Q,p

Gν,ν ′
p X

†
ν,Q−pX

†
ν ′,Q(D†

−p + D†
p), (A7)

HX−em = −
∑
ν,q

i[Fν,qX
†
ν,q + F 

ν,qX
†
ν ′,q]Bq + h.c., (A8)

respectively, where Gν,ν ′
p and Fν,q determine exciton-

phonon and exciton-light coupling matrix elements,
respectively.

Computing the Heisenberg equation of motion, the inco-
herent photon flux follows from

IPL(ω) = ∂

∂t

〈B†

qB
†
q〉 = 2

h̄
Re

[ ∑
ν

F 
ν,q�

(0)
ν,q

]
. (A9)

This equation contains the photon-assisted polarization
�

(0)
ν,q ≡ 
〈B†

qX
†
ν,q〉. The corresponding phonon-

assisted recombination correlations are �
(n)
ν,q;p1,...,pn

≡

〈D†

pn
· · ·D†

p1B
†
qX

†
ν,q+p1,n

〉, where p1,n ≡ ∑n
j=1 pj is

introduced to shorten the notation. The general equation of
motion for �(n) follows from

ih̄
∂

∂t
�(n)

ν,q;p1,...,pn
= (Eν,q+p1,n

− h̄ωq − nh̄�LO) �(n)
ν,q;p1,...,pn

+ i
∑
ν ′

Fν ′,q 

〈
D†

pn
· · · D†

p1
X

†
ν ′,qX

†
ν,q+p1,n

〉
+

∑
ν ′,p

Gν,ν ′
p �

(n+1)
ν ′,q;p,p1,...,pn

. (A10)

Equations (A9) and (A10) have the structure of the semicon-
ductor luminescence equations.37 As an additional feature,
phonon-assisted processes are now also included.

To solve ZPL, PSB1, and PSB2, we need to solve Eq. (A10)
for n = 0,1, and 2, respectively:

ih̄
∂

∂t
�(0)

ν,q = (Eν,q�
(0)
ν,q − h̄ωq − iγ (0)) �(0)

ν,q

+ iF 
ν,q 
〈X†

ν,qX
†
ν,q〉 +

∑
ν ′,p

Gν,ν ′
p �

(1)
ν ′,q;p,

(A11)

ih̄
∂

∂t
�(1)

ν,q;p1
= (Eν,q+p1 − h̄ωq − h̄�LO − iγ (1)) �(1)

ν,q;p1

+ i
∑
ν ′

F 
ν ′,q 


〈
D†

p1
X

†
ν ′,qX

†
ν,q+p1

〉
+

∑
ν ′,p

Gν,ν ′
p �

(2)
ν ′,q;p,p1

, (A12)

ih̄
∂

∂t
�(2)

ν,q;p1,p2
= (Eν,q+p1 − h̄ωq − 2h̄�LO − iγ (2)) �(2)

ν,q;p1,p2

+ i
∑
ν ′

F 
ν ′,q 


〈
D†

p2
D†

p1
X

†
ν ′,qX

†
ν,q+p1+p2

〉
,

(A13)

where we have added dephasing γ (n) to describe scatter-
ing processes phenomenologically. For elevated densities, a
f ef h source also appears, giving rise to plasma-initiated
emission at the excitonic ZPL and PSBn resonances, c.f.
Ref. 38.

The spontaneous-emission source terms that appear in
Eqs. (A11)–(A13) take the form

ih̄
∂

∂t

〈
D†

pn
· · · D†

p1
X

†
ν ′,qX

†
ν,q+p1,n

〉 = [
Eν,q+p1,n

− Eν ′,q − nh̄�LO − iη(n)
X

]〈
D†

pn
· · · D†

p1
X

†
ν ′,qX

†
ν,q+p1,n

〉 − ∑
ν ′′,ν ′′′

∑
Q

n∑
j=1

(
Gν ′′′,ν ′′

pj

)

×
〈(

n∏
i �=j

D†
pj

)
X

†
ν ′′,Q+pj

X
†
ν ′′′,QX

†
ν ′,qX

†
ν,q+p1,n−pj

〉∑
ν ′′

∑
Q

〈
D†

pn
· · · D†

p1
(D†

Q + D
†
−Q)

× [
G

ν,ν ′′
Q X

†
ν ′,qX

†
ν ′′,q+Q+p1,n

− (
G

ν ′,ν ′′
−Q

)
X

†
ν ′,q−QX

†
ν,q+p1,n

]〉
, (A14)

where we again have added a dephasing η
(n)
X for each replica. We only consider those contributions to a given replica that are of

the lowest order in the electron-phonon coupling constants. Therefore, we can neglect the last line of Eq. (A14) in the following
analysis. Applying the cluster-expansion scheme37,45–49 and solving Eq. (A14) in steady state, we obtain the form for phonon
sidebands of arbitrary order

〈
D†

pn
· · · D†

p1
X

†
ν ′,qX

†
ν,q+p1,n

〉 =
∑

μ1,...,μn−1

n∑
j1=1

n∑
j2 = 1
j2 �= j1

· · ·
n∑

jn = 1
jn �= j1, . . . ,jn−1

(
Gν ′,μ1

pj1

)(
Gμ1,μ2

pj2

) · · · (Gμn−1,ν
pjn

)

Nν,q+p1,n

×
{

n∏
l=1

[
Eν,q+p1,n

− Eμl,q+pj1 ,jl
− lh̄�LO − iη(l)

X

]}−1

, (A15)

where we set μn = ν ′. This expression identifies the exciton population


〈X†
ν,qX

†
ν,q〉 = 
Nν,q (A16)
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as the source for the ZPL. In the same way, we find the PSB1

and PSB2 sources



〈
D†

p1
X

†
ν ′,qX

†
ν,q+p1

〉 =
(
Gν ′,ν

p1

)

Nν,q+p1

Eν,q+p1 − Eν ′,q − h̄�LO − iη(1)
X

(A17)

and



〈
D†

p2
D†

p1
X

†
ν ′,qX

†
ν,q+p1+p2

〉
=

∑
μ


Nν,q+p1+p2

Eν,q+p1+p2 − Eν ′,q − 2h̄�LO − iη(2)
X

×
[ (

G
ν ′,μ
p1

)(
G

μ,ν
p2

)

Eν,q+p1+p2 − Eμ,q+p1 − h̄�LO − iη(1)
X

+
(
G

ν ′,μ
p2

)(
G

μ,ν
p1

)

Eν,q+p1+p2 − Eμ,q+p2 − h̄�LO − iη(1)
X

]
. (A18)

Respectively, these sources drive �(n) as indicated in
Eq. (A10). We see that �(0) is coupled to �(1) and �(2). As we
determine the steady state, we can determine the steady-state
spectra (6), (13), and (14) defining ZPL, PSB1, and PSB2

spectra when the analysis includes 1s and 2p states. It is
numerically confirmed that these contributions dominate the
spectra under the conditions studied.
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