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We provide analytic expressions for the Green’s functions in position-frequency space as well as for the
tunneling density of states of various Luttinger liquids at zero temperature: the standard spinless and spinful
Luttinger liquids, the helical Luttinger liquid at the edge of a topological insulator, and the Luttinger liquid
that appears either together with an ordering transition of nuclear spins in a one-dimensional conductor or in
spin-orbit split quantum wires in an external magnetic field. The latter system is often used to mimic a helical
Luttinger liquid, yet we show here that it exhibits significantly different response functions and, to discriminate,
we call it the spiral Luttinger liquid. We give fully analytic results for the tunneling density of state of all the
Luttinger liquids as well as for most of the Green’s functions. The remaining Green’s functions are expressed by

simple convolution integrals between analytic results.
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I. INTRODUCTION

Helical conductors have received much attention recently.
They consist of one-dimensional (1D) conductors exhibiting
spin-filtered transport, for instance, of right-moving modes
carrying spin up, (R 1), and left-moving modes carrying
spin down, (L |). Such conductors appear on the edges
of two-dimensional (2D) topological insulators (where spin
should more correctly be addressed as Kramers partner),'
in nanowires made of tree-dimensional (3D) topological
insulators,*= in 1D semiconductor wires with strong spin-orbit
interaction in an external magnetic field (with approximate
spin-filtering),®"'* or in carbon nanotubes, where the combi-
nation of spin-orbit interaction and strong external electric
fields can cause helical conduction.!*!> Perfect spin-filtered
conduction modes can also appear in regular 1D conductors
in the presence of nuclear spins as explained in further
detail below. Aside from the spin filtering, if a helical
conductor is brought in the proximity of a superconductor, it
supports Majorana bound states at its ends.'®->* Such Majorana
end states have attracted much interest recently as parts of
elementary excitations with non-Abelian statistics that may be
useful for topological quantum computation.?323-2

While much of the discussion of these systems in the
literature is focused on the fundamental physics and the
possible applications of the helical conductors, it is still a
challenge to provide a unique experimental proof of the
existence of the helical states. In this paper we show that
probing the spectral properties of 1D conductors provides
an extra tool to investigate experimentally the differences
between helical and nonhelical systems. This complements
recent proposals to probe spin-dependent transport properties
in helical conductors using, for instance, a quantum-point-
contact setup or a scanning tunneling microscope (STM).30-33

Using the Luttinger liquid (LL) theory, which allows
us to take into account the effects of the electron-electron
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interactions, we compute the position-frequency-dependent
Green’s functions for the helical conductors proposed in the
literature and, for comparison, for the regular spinless and
spinful LLs. This allows us to obtain information about the
spectral properties of these systems. In particular, we give
explicit expressions for the local (or tunneling) density of
states (DOS) that may be probed directly, for instance, by
STM experiments. Most of our results are fully analytic which,
to our knowledge, has not been achieved before, even for
regular LLs. We show that electron-electron interactions play
a central role and determine much of the spectral properties. In
particular, we show that the interactions cause a substantially
different response of the conduction modes in 1D quantum
wires as compared with the conduction modes at the edge of a
topological insulator.

Furthermore, our results provide a handle to detect nuclear
spin order in a 1D conductor. As mentioned above, it has
recently been shown that the presence of nuclear spins in
an electron liquid can lead to new physics at low-enough
temperatures. In a semiconductor, such as GaAs, nuclear
spins and electrons interact via the hyperfine interaction. This
generates a long-ranged interaction among the nuclear spins
mediated by the electron gas, which is of Ruderman-Kittel-
Kasuya-Yosida (RKKY) type. In 2D and 1D conductors,
electron-electron interactions increase the long-range nature
of the RKKY interaction (for the 1D case, see Ref. 34) and
can trigger a finite temperature ordering of the nuclear spins
in systems of finite size.’>° The nuclear magnetic ordering
has only little effect on the electron state in 2D,3336 which
may hinder a possible detection of this order via electronic
transport or spectroscopy.

The situation differs in 1D metallic systems, where
electron-electron interactions have a dramatic effect. The
Fermi liquid description breaks down and the physics is dom-
inated by collective low-energy excitations. The appropriate
description of this scenario is known as LL theory (see, for
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instance, Refs. 40 and 41 for reviews). Signatures of the LL
physics have been observed nowadays in many systems such
as in semiconducting GaAs quantum wires,*>* in metallic
single wall carbon nanotubes,***° in fractional quantum Hall
edge states,’® in bundles of NbSe; nanowires,”' in polymer
nanofibers,>” in MoSe nanowires,>* in conjugated polymers at
high carrier densities,* and in atomically controlled chains of
gold atoms on Ge surfaces.>

On a spinoff from the LL theory, it has been shown in
Refs. 37 and 38 that in the presence of a lattice of nuclear
moments and of the hyperfine interaction, an exotic ordered
phase emerges at low temperature in which the magnetic
moments of the nuclei and the conduction electrons of a 1D
conductor are bound together due to the RKKY interaction.
The nuclear spins order in form of a helimagnet. In turn,
the resulting magnetic Overhauser field strongly affects the
conduction electrons, much in contrast to the 2D case. It
induces a gap for one half of the low-energy modes, which
yields a partial electron spin polarization that follows the
nuclear spiral polarization. The rest of the low-energy modes
remains gapless and can be described by an effective LL model
with perfectly spin-filtered left- and right-moving modes. We
call this LL state a “spiral Luttinger liquid” (SLL). A similar
SLL model has been shown to describe the quantum wires
with spin-orbit interaction in the presence of an external
magnetic field, in which the spin-dependent band shift induced
by the spin-orbit interaction is commensurate with the Fermi
momentum kg.'?> The latter type of LL corresponds, thus, to
a special point in the general LL description of interacting
quantum wires with spin-orbit interaction.>¢-°

The SLL should not be confused with the helical Luttinger
liquid (HLL), which has been introduced to describe the
edge states of 2D topological insulators.”’ The HLL is also
spin-filtered but differs from the SLL, the most important
difference being that the SLL describes the bulk properties of a
1D system, while the HLL describes the edge of a 2D system or
the surface of a nanowire made of a 3D topological insulator.
For noninteracting electrons, the low-energy physics of HLLs
and SLLs is equivalent and, as mentioned, this equivalence
has been of much interest very recently because both HLLs
and SLLs support the Majorana bound states at their ends if
they are brought in the proximity of a superconductor.'®->* For
interacting electrons, the proximity induced superconductivity
and the shape of the Majorana end states is subject to
strong renormalization and can deviate strongly from the
noninteracting limit.”'~"* Here we add a further element of
caution: We show that the assumed equivalence of HLL and
SLL breaks down for any interacting electron system and
that major differences arise in the response functions. These
differences persist if the systems are brought in the proximity
to a superconductor and may lead to a different response of
the bulk as well as of the Majorana properties in both types of
systems.

Because of the specific magnetic ordering in the SLL, we
find that its electronic excitations can be divided into a regular
sector that exhibits a typical LL- (or HLL-) type behavior, as
well as an irregular sector that exhibits a more special type
of physics. In the noninteracting limit the quasiparticles in the
regular sector are typical chiral-propagating modes, while the
irregular sector is gapped. There is still some propagation in
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this sector because the left-moving spin-up (L 1) and right-
moving spin-down (R |) modes, characterized by the boson
fields ¢; 4 and ¢g |, are not separately gapped; instead, they are
pinned together through ¢, = ¢, . In this sense, the gapped
sector exhibits similarities to the LL edge states, for which the
reflection of the quasiparticles at the end of the wire pins the L
and R movers together.”>8! The difference between the two is
that the pinning of ¢4 and ¢ for the irregular sector of the
SLL is a bulk property, while for the edge of the LL the pinning
of the L and R modes is local and happens only at the end of
the wire. Thus, the modification of power-law exponents in
the SLL irregular sector is similar to the modification of the
end-tunneling exponents for a LL. In contrast, this physics is
absent in a HLL.

In this paper, we analyze the spectral properties of a SLL
in comparison with those of the regular LLs and the HLL.
In particular, we analyze the dependence of the two-point
retarded Green’s function on position and frequency, as well
as the dependence of the DOS on frequency.

Our first result is a closed and simple analytical form for the
frequency dependence of the local retarded Green’s functions
for the spinless LL, the HLL, as well as for the regular sector
of the SLL. While the analytical expressions of the Green’s
function of a LL in position-time (x,f) space as well as
momentum-frequency (k,w) space are well known,*0:41-82-84
the position-frequency (x,w) dependence has been either
calculated directly numerically by Fourier transform®> or has
been obtained by an efficient recursion method.’® However,
to our knowledge, an explicit analytic expression has not
been provided yet. Here we succeed in directly evaluating
the Fourier transform of the position-time-dependent Green’s
function, and we obtain a closed compact form for the
position-frequency dependence of the imaginary-time and
retarded Green’s functions. For the spinful LL as well as for
the irregular sector of the SLL, we cannot provide such a
closed form. Instead, we give the results in form of simple
convolution integrals.

Second, we use the obtained results to derive the frequency-
dependent local (or tunneling) DOS. We compare the results
for the SLL to that of the standard LL and of the HLL.
For HLLs and regular LLs the irregular contributions are
absent. The DOS does not show a gap and follows the usual
power-law dependence. The DOS of the SLL is given by
the sum of the contributions for the regular sector and the
gapped irregular sector and therefore exhibits a pseudogap.
Inside the pseudogap the DOS shows a power-law dependence,
characteristic of the regular sector. However, at the gap edge,
the DOS is dominated by the irregular sector and depends
on the value of the interaction parameter, such that for weak
interactions it exhibits a typical divergence, while for strong
interactions this divergence goes to zero. Consequently, we
propose to use the dependence of the DOS on frequency to
test the apparition of a magnetically ordered phase due either
to the hyperfine interaction with the lattice of nuclear spins or
to the spin-orbit interactions. The measurement of the DOS
can provide a direct access to the size of the pseudogap,
while the form of the gap-edge singularity may allow to infer
the strength of the interactions. A similar behavior of the
DOS can be found in 1D systems with charge density wave
order.?”-%
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We note, finally, that our work has been followed-up
by Ref. 90, which contains a computation of the spectral
properties of the SLL in (k,w) space, and a derivation of
the DOS near the pseudogap edge beyond the harmonic
approximation used in the present work.

The plan of the paper is as follows: In Sec. II, we introduce
the various models under consideration, corresponding to the
standard LL, the HLL, and the SLL. Section III constitutes
the core of the paper. In this section we present our results
for the two-point (x,w) Green’s functions. In Sec. IV, we
compute the DOS of the various LLs. We provide a summary
of our results in Sec. V. Three appendices are also included,
containing details of the Green’s functions calculations (Ap-
pendix A), the DOS calculations (Appendix B), as well as the
derivation of an important identity (Appendix C).

II. MODELS

We start by introducing the models that we will consider
in our analysis. These models consist of different variations of
the L. model. We summarize here only the main features of
these models, and for a thorough discussion of the LL physics
we refer the reader, for example, to Refs. 40 and 41. Our
notations and normalizations for the bosonic fields follow the
conventions of Ref. 41. We consider the following three types
of LLs: the standard spinless and spinful LL; the helical LL
appearing on the edge of topological insulators; and the spiral
LL obtained by the self-ordering transition due to the hyperfine
coupling to nuclear spins or due to a commensurability
transition in systems with spin-orbit interactions.

A. Standard Luttinger liquids

Interacting spinless electrons in a 1D conductor can be
described by the LL Hamiltonian

d 1
Hy, = / ﬁv[?(kumvmz} (1)

where ¢ and 6 are bosonic fields such that —V¢/m measures
the electron density fluctuations in the system and V6/mx
is canonically conjugate to ¢. We set i = 1 throughout the
paper. The x integral is performed over the system length
L. We assume £ to be much longer than the width of the
low-energy wave packets, Lkr < 1, where kr is the Fermi
momentum, which allows us to use a continuum description.
The LL parameter K incorporates the effects of the electron-
electron interactions, K = 1 corresponds to noninteracting
electrons, and 0 < K < 1 corresponds to repulsive electronic
interactions. The quantity v is the velocity of the bosonic
model, which for an ideal LL is given by v = vg/K, with
vr being the Fermi velocity.

In this theory, the electron operator i is written as ¥ =
Y1 + Y¥g, where ¥ corresponds to the left-moving modes
with momenta close to —k and ¥y to the right-moving modes
with momenta close to kr. These fermion operators are related
to the boson fields as

_ W irkex —irg,(x)
Yr(x) = ——=€'""""e , 2
V2ma

PHYSICAL REVIEW B 85, 035136 (2012)

with r = L, R = —,+, and with the chiral boson fields

¢r(x) = ¢p(x) —r0(x). 3

The quantity a in Eq. (2) is a short-distance cutoff, limited from
below by the lattice constant, and 7, is the ladder operator, or
Klein factor, whose effect is to lower the r particle number
by 1.

For electrons with spin, the Hamiltonian of the 1D conduc-
tor in the LL regime takes the form H = H, 4+ H,, where H, ,
have the same form as Hyy in Eq. (1),

H= [ i(v > + K, (V6,) )
v_fZHUV[KV ¢\) + v v ]5

for v = c,s labeling the charge and spin degrees of free-
dom and v, = vp/K,. The decoupling of H, and H; is
the consequence of the spin-charge separation in 1D. Here
K.s = 1 corresponds to the noninteracting case, 0 < K, < 1
to repulsive electron interactions, and K; # 1 to a broken
spin SU(2) symmetry. The presented LL theory applies only
for K; > 1, as a value of K, smaller than 1 would lead
to the opening of a spin-gap and so to different physics.
The normalizations are chosen such that —Vd)w\/i/n
give the magnitude of the charge- and spin-density fluctua-
tions. The electron operators can again be separated into left
and right movers, ¥, = V1, + Yo, Where

_ Nro irkpx  —irg,,(x)
Vro(x) = ——=e""""e ) (%)
V2ma
with the additional spin index ¢ =% , | = +,— and the boson
fields
1

E{@(X) —rfe(x) + ogs(x) —rb;(0)1}.  (6)
This expansion of ¢, (x) contains both charge and spin fields,
indicating that an electron is a superposition of both spin and
charge degrees of freedom.

Pro(x) =

B. Helical Luttinger liquid

The quantum spin-Hall effect appears in various systems
with strong spin-orbit interaction and preserved time-reversal
symmetry. While the band structure has been long known,”!~%3
such systems have found much renewed interest recently
because it was recognized that the electron state indeed
describes the quantum spin-Hall effect, a topological state
of matter characterized by a bulk gap and gapless edges.'”
Recent experiments on HgTe quantum wells have provided
direct evidence for nonlocal transport in the quantum spin-Hall
regime in the absence of any external magnetic field, in
agreement with the theory.”*%> Due to the strong spin-orbit
coupling, the left and the right movers of the gapless edge
modes carry opposite spin. These edge chiral excitations
are described by a separate class of one-dimensional LLs,
the HLLs.”*® Contrary to the chiral LLs at the edges of
fractional quantum Hall systems, these edges states do not
break time-reversal symmetry.

The linearized Hamiltonian of the noninteracting HLL in
the fermionic language can be written as

Hipy = =vr [ dx Whyitaing = ] idn. )
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One can easily describe the interactions between fermions of
the same species, as well as the forward-scattering processes
in the bosonized language.’*327%979% Using Eq. (5) the
Hamiltonian in Eq. (7) can be written in a bosonized form.
Moreover, in a HLL, the spin and chirality indices coincide due
to the strong spin-orbit coupling, and, as one can see directly
in Eq. (7), the spin index is redundant. It is, therefore, more
convenient to treat the Hamiltonian of the HLL as an effectively
spinless LL by introducing the fields ® = (¢gy + ¢r})/ V2

and © = (¢ — d)RT)/\/E. When including the interactions,
the bosonized form of the Hamiltonian of the interacting HLL
becomes30-3270.97.98

dx 1 2 2
Hyp = 770 (VO)” + KuL(VO)~ |, (8)
7 | Kuo

where we have introduced the parameter Kypp, which is a
generalized LL parameter taking into account the interactions,
and v = vp/KyL, the velocity of the collective excitations.
Recent quantum Monte Carlo simulations have shown that
this HLL description of the helical conductor remains indeed
valid as long as the interaction strength remains smaller than
the band gap protecting the edge states from the higher-
dimensional bulk states.*!%0

C. Spiral Luttinger liquid

The presence of nuclear spins in a 1D conductor can
substantially modify the LL behavior. It was shown in Refs. 37
and 38 that the hyperfine interaction between the nuclear and
electron spins can indeed trigger a strong feedback reaction
between nuclear spins and the electron modes, leading to
ordered phases in both subsystems. This order is manifested
in the apparition of a nuclear helimagnet that is stabilized
by its coupling to the electron system. In turn, the resulting
spiral nuclear magnetic field generates a relevant sine-Gordon
perturbation for the electrons. The Hamiltonian that captures
this electron physics can be written as3’-38

dx
Hy = f b {;vx[(vm)z +(V6,)]

+ B;ff cos(v/ 2K¢+)} , 9)
with

v = (veK. + oK, ") /K, (10

vo = (veK; '+ vK.)/K, (11

where we have introduced
K=K.+K" (12)

In Eq. (9) we have neglected unimportant marginal terms
coupling the “+” and “—” fields.

The field B.g in Eq. (9) represents the effective Overhauser
magnetic field induced by the nuclear spiral order. The fields
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¢+ and O are related to the charge and spin boson fields

by37,38,101
1 K.
¢c = _K Kc¢+ - T¢— ) (13)

P s 14
s = —K[Eah + —S¢—], (14)
6 —L[e L } (1)
[ K + KL-KS -
1
, = ——I[6; + VK.K,6_]. 16
¢, ﬁ[ + ] (16)

An identical sine-Gordon renormalization was also identified
in low-density 1D electron conductors with spin-orbit inter-
action, such as GaAs or InAs wires,'? and can also appear in
carbon nanotubes.'*!> Promising candidates are, furthermore,
Ge/Si core/shell nanowires as they combine an unusually large,
controllable spin-orbit interaction,'>!% a good hole carrier
confinement in the core, and high mobilities. 04-107

The Overhauser field is then replaced in the semiconductor
wires by a uniform magnetic field and in the carbon nanotubes
by the combination of intrinsic spin-orbit splitting together
with an electric field. The relevant renormalization occurs as a
commensurability transition when the electron density is tuned
such that kp = kg, With kg, being the inverse spin-orbit length.

The cosine term in Eq. (9) is strongly relevant and the field
¢+ becomes pinned to a constant. Excitations in this sector are
characterized by a gap A. The nuclear Overhauser field binds
indeed one half of the electron modes into a spin and charge
mixing electron density wave with a spiral spin polarization
that follows the nuclear spin helix. Through the hyperfine
interaction the stability of the nuclear helix is further enhanced
by the SLL. The combined electron—nuclear-spin order was
predicted to be stable up to temperatures of 10-100 mK for
experimentally available GaAs quantum wires*>#+1% and 13C
substituted single-wall carbon nanotubes.'®-!12

The remaining half of the electron modes can be described
by a modified LL, characterized by a different LL parameter.
We have termed the resulting low-energy Hamiltonian the
“spiral Luttinger liquid” (SLL). Similarly to the HLL discussed
in Sec. II B, the SLL possesses spin-filtered left and right
movers, yet the SLL exhibits important differences with
respect to the HLL. We will discuss these differences in detail
in the following.

Let us mention that Hamiltonian (9) does not directly apply
to the case carbon nanotubes, as the latter require a two-band
description that captures the physics of the two Dirac valleys
of the nanotubes.!!>!1* However, as was shown in Ref. 38,
cosine terms such as in Eq. (9) open gaps in each Dirac
valley separately and overrule the otherwise strong intervalley
coupling caused by the electron-electron interaction. The SLL
physics of carbon nanotubes can be, therefore, captured by
two independent copies of Eq. (9), one for each valley. In
the following, therefore, we restrict entirely to the single-band
model of Eq. (9) and note that for most of the measurable
response functions the difference to nanotubes amounts in a
mere factor 2 in the results.
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D. Differences between spiral and helical Luttinger liquids

The main difference between the SLL and the HLL is
the origin of the spin-filtered conduction modes. While for
the HLL they are a consequence of the special 2D or 3D
band structure, for the SLL they result from the opening of
a spin-dependent pseudogap A in an otherwise conventional
spinful 1D bulk conductor. In the noninteracting limit the
separation between the gapless, spin-filtered modes (L | ),
(R 1) and the gapped modes (L 1), (R |) is perfect, and
for energies |w| < A the physics of the SLL, governed by
(L ]), (R 1), isidentical to the HLL. For interacting electrons,
however, parts of the gapless phase, described by the boson
modes ¢_ and 6_ affectthe (L 1), (R |) sector as well and lead
to what we call the “irregular” response even at low energies.

To see this in detail, let us project the initial electron
Hamiltonian onto the gapless (“—”) sector and rewrite the
Hamiltonian [Eq. (9)] in the standard form of a spinless LL
[Eq. (1)], reminiscent of the HLL. We start with rescaling the
fields ¢_,6_ as

2K, 0 KK 7
PEERk T WD

which allows us to rewrite the gapless sector of Eq. (9) as
dx 1
—v

757 USLL KoL

with the parameters

Hsiy, = (Vo)* + KSLL<ve)2], (18)

Ksip = 2K /(KK + 1), vsip = v_. (19)

If we neglect the “+” fields for the time being, the boson fields
are projected onto the gapless sector as

1
= —0, > —, 20
L) - ﬁ¢ (20)
0, — ﬁe, Q@1
KK,
V2K,
s > ———0, (22)

and the left and right movers become

¢, —> ¢ +0, (23)
$rr —> ¢ — 0, (24)
K
Oy = —Pr, —> —?97 (25)

where K = K, — K.

While the form of ¢, | and ¢4 is similar to that in Eq. (3),
the presence of the propagating 6 field in the expression of ¢ |,
and ¢4 is, at first glance, surprising, since the exponentials of
these boson fields correspond to the nonpropagating fermion
operators of the pinned spiral density wave. However, such a
single-electron picture is inappropriate for an interacting sys-
tem. Instead, for an interacting system, a left-moving electron
corresponds to a superposition of left-moving particle-like and
right-moving hole-like bosonic modes that together carry unit
charge and spin. Only in the noninteracting limit does the
amplitude of the right-moving excitations vanish. Moreover,
the gap A builds up from the elementary bosonic modes, which
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carry only a fraction of the electron charge. The connection
between ¢4 and ¢4 is, therefore, a natural consequence of
electronic interactions. A similar connection holds between
¢ry and ¢, . Since ¢pr, = —¢r4 (after projection), only the
antisymmetric part 6 between the gapless ¢z and ¢, can be
excited, which is encoded in Eq. (25).

This peculiar 6 dependence is the major difference between
the SLL and the HLL and leads to the irregular contributions
to the response functions that are detailed below. It is a
pure interaction effect and, indeed, the prefactor K of the
irregular 6 correlators of the fields in Eq. (25) vanishes in the
noninteracting limit.

III. GREEN’S FUNCTIONS IN (x,w) SPACE

This section describes the derivation of one of the main
results of the paper, the form of the two-point Green’s functions
in (x,w) space, which constitutes the basis for the description of
the spectral single-particle properties of the conductors. While
much is known about the Green’s functions in position-time
(x,t) (and imaginary time T = it) space,’**! as well as in
momentum-frequency (k,w) space,?>%* to our knowledge the
correlators in the (x,w) space have been, to date, determined
only numerically.®>% Here we provide analytical, closed
expressions for the spinless LL, the HLL, and the regular
sector of the SLL Green’s functions. For the spinful LL as
well as for the irregular sector of the SLL we provide integral
formulas in form of convolution integrals. We focus here on
imaginary-time ordered Green’s functions and on real-time
retarded Green’s functions, yet our calculations can be easily
repeated for all other types of Green’s function.

We define in the standard way the imaginary-time (Matsub-
ara) Green’s function in (x,7 = it) space for a translationally
invariant stationary system as

Grp(x,7) = —(Te ) (x,0)9(0,0)), (26)

where 7 = (r,0,...) describes the chirality, spin, and any
other quantum number characterizing the electron operators
and T; is the usual time order operator. The real-time Green’s
functions are expressed using the elementary greater and lesser
functions

GZ(x,1) = =i (Y1 (x,)Y7(0,0)), 27)
G (x,1) = +i (Y (0,009 (x,1)). (28)

which allow us, for instance, to express the retarded Green’s
function as

G (x,1) = O (O[GZ 1 (x,1) — GE(x,0)], (29)

with 9(¢) the unit step function. The Fourier transforms to
frequency space are given by

[o¢]
Grp(x,iwy) = / dr e Grp(x,7), (30)
=
G‘;’j/(x,a))zf dte'” G7 .(x,1), (31)
-0

where « € {>, < ,ret}. We restrict our analysis to zero
temperature.
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A. Standard Luttinger liquids
1. Spinless Luttinger liquid

For the standard LL, the calculation of imaginary-time
fermionic correlators reduces to calculating the correlators
between the boson fields ¢ and 6. To this end, it is convenient
to introduce left- and right-moving eigenmodes

~ 1
¢ = —=(® — rKo), (32)
" V2K
which commute with each other. The evaluation of their
correlators in (x,7) space is well described in textbooks.**#!
At zero temperature, for a translationally invariant system
described by the Hamiltonian in Eq. (1), we have
~ ~ X —irvt
([¢r(x,7) = $+(0,0)*) = —1In [—] (33)
ira
This result is valid in the limit |x|,v|t| > a,in which bosoniza-
tion applies. The electron correlators are then evaluated using
the relation

(ei[M)(X,T)+H9(X,f)le*ilk¢(0q0)+ﬂ9(0,0)l)
— e%([W(XJ)-&-MO(Lr)—)~¢(0,0)—u9(0,0)]2> (34)
for arbitrary constants A and . Using Egs. (2) and (3), for the
spinless LL this leads to

’

5 girkpx —ia Yr ia Yr
Grr ) = - 5 35
(57 2ma I:x—ivr:| |:x+ivr:| (35)
with
, K+K'=2r
Vo=V =T (36)

Note that |y, — y,| = 1. Cross-correlators G,, with r £ 71
vanish as they do not preserve the number of left and right
movers.

The Fourier transformation to G,,,(x,i w,) can directly be
evaluated using standard integral tables [Ref. 115, 3.384.9]
and leads to a Whittaker function. Yet since the properties of
the Whittaker function might be unfamiliar to the reader, we
propose here a modified calculation that expresses the result
in terms of the more commonly known Bessel functions in a
combination that is equivalent to the Whittaker function.

Since this calculation yields one of the main results of
this paper, we provide here the details for the imaginary-time
Green’s function calculation. The analogous calculation for
the retarded Green’s function can be found in Appendix A.
As explained below, the correspondence between these two
Green’s functions, usually given by the Wick rotation, is
actually problematic here (and would be even more obscure
if we would use the Whittaker function), and an independent
calculation for the two Green’s functions is necessary.

We start by rewriting the imaginary-time Green’s function
as

5 ) eirk,.-x a a Y
G (x,1) = 14_(arx + Ojvr) : : ,
Ty rx —IvT rx +1ivt

(37)

with y = yg = (K + K~' —2)/4. We use differentiation to
reduce the exponent of the singularity in the integrand, which
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provides us with an elegant way to regularize the unphysical
ultraviolet divergences. Indeed, we have 0 < y < 1 for K >
0.17, which will assure convergence of the integrals below.
For smaller values of K, we can use an analytic continuation
of the result in y and neglect any occurring divergence, or we
can use again the regularization by further applications of the
differentiation. We, thus, need to calculate the integral

00 v
I(x,ia),,):/ dte”‘”[L} , (38)

o0 x? 4+ (vr)?

which can be done using standard integral tables [Ref. 115,
8.432.5]. The result is given by

2a\/m ( 2lx|v Y
vF(y)(—> K, _1(lxwal/v),  (39)

|wn|a2
where K,(z) is the modified Bessel function and I'(z) Euler’s
I" function. To obtain the Green’s function we need to evaluate
also the derivatives in Eq. (37). The time derivative yields
a factor —w, /v, while the derivative with respect to rx is
evaluated using the identity

I(x,iw,) =

d —o —o
—Z Kot(Z) =z 0[+1(Z)’ (40)
dz

from which we obtain the result

Gr,r(x’iwn)
B —elkrx jwaa f 2|x|v i
S 2JAT(y +1) v \|wgla?
X [Kyf%(|an|/v) - Sgn(ran)Ky+%(|an|/U)]- (41)

This expression of the Green’s function holds for a real w,.
The analytic continuation to the retarded Green’s function
by the Wick rotation is, however, not well defined, due to
the nonanalytic dependence on |w,|, which arises because
taking the zero-temperature limit and the analytic continuation
do not commute. We circumvent this problem by directly
computing G™'(x,w) using contour integrations. The details
are summarized in Appendix A. The result is

Gy (x,w)
_ —etrkex wia (2i)|x|v 1Y
S 2/al(y + 1) 0?2 \ w,a?

% [K,_1(xlws/iv) — sgn(ro)K,,, 1 (Ko /iv)], (42)
with wy = w 4+ 10. As a function of w, the Bessel functions
have branch cuts along the negative imaginary axis, i.e., at the
Matsubara frequencies w, < 0. This shows that, indeed, the
analytic continuation between the real- and imaginary-time

Green’s functions via the Wick rotation cannot be naively
used, justifying the independent calculation.

2. Luttinger liquid with spin

The LL model for true, spinful electrons can be obtained
by considering two copies of the LL model (for the charge and
spin fields), as described by the Hamiltonians in Eq. (4). The
electron operators are given by Eq. (5), together with Eq. (6).
Since the charge boson fields commute with the spin boson
fields, the evaluation of the bosonic correlators as expressed
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in Eq. (34) factorizes into two exponentials, each of them
depending only on one of the charge and spin fields. Thus
Eq. (35) can be replaced by

y eirk;x —ia Vre ia Ve
G o 9 = -
ra,la(x T) 2ma |:_x — iUCT:| |:-x + iUCT:|
. Vos . Vis
[T
X —ivT X+ it
with
K, + K ' =2
Yoy = ylr,u — VT", (44)

where v = ¢,s. As before, the cross-correlators with (r,0) #
(r',0’) vanish, and |y, — ¥/,| = 1/2. Generally, we have
V. # vy, and the Fourier transform cannot be calculated using
Eq. (38). To our knowledge, a general solution to this Fourier
transform has not yet been found. However, it can be evaluated
exactly in the special cases of v, = v; and of x = 0. If the
velocities coincide, the Green’s functions can be obtained
by the same type of calculation as the Green’s functions
for a spinless LL and are given by Egs. (41) and (42), on
the replacements r — (r,0) and y — yr..+ vrs = [(K: +
Ky)+ (K" + K ') — 4r]/8. The limit x = 0, important for
the calculation of the DOS in Sec. IV, can be obtained in a
similar manner, noting that one needs to evaluate an integral
of the same type as the one in Eq. (38), on the additional
replacement v — /v, v, and on taking the limit x — 0.

For general velocities and for x # 0, we note that Eq. (43)
can be viewed as the product of two spinless Green’s functions
with labels ¢ and s. Hence, its Fourier transform can be written
as the convolution

e i c 310
roro (X, 1) =
’ 4rvevsD'(ye + DI(ys + 1)

X /dw;fr,c(x,iw;)fr,s(x,iwn —iw)),

45)
with
frv(x,ioy)
1
wpd |wn|a w2
- vl) ( vv ) [Kyv*%("xa)nl/vv)
_ sgn(rxa)n)Kyﬁ%ﬂan|/vv)]. 46)

While Egs. (45) and (46) do not provide direct insight into
the analytic shape of the Green’s functions of the spinful
LL, due to the exponential convergence of the integrals, they
are convenient for numerical evaluation. A similar expression
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holds for G5 ., (x,w), yet with a slower convergence because
of the power-law decay of the Bessel function along the

imaginary axis.

B. Helical Luttinger liquid

The helical edge states arise from the special band struc-
ture of a topological insulator. They are described by two
counterpropagating edge modes with opposite spin (Kramers
doublets), say (L |) and (R 1). In the noninteracting system,
an electron with spin 1 tunneling into the system has to move
to the right and cannot enter into a coherent superposition of
(R 71) and the (nonexisting) (L 1). In the interacting system,
however, chiral electrons are no longer the good eigenstates
and the tunneling electron excites a coherent superposition
of particle-like excitations of (L 1) and hole-like excitations
of (R |), together carrying unit charge and unit spin 1.
The resulting theory is a fully regular LL as described
by the Hamiltonian in Eq. (8). The Green’s functions are,
consequently, given by Egs. (41) and (42) with the replacement
y = yaL = (K + Ky — 2)/4.

C. Spiral Luttinger liquid

The SLL corresponds to the low-energy theory of conduc-
tion electrons in the presence of the pseudogap A. Contrary to
the HLL, the number of degrees of freedom is doubled, with
one gapless sector and one gapped sector. If the SLL is caused
by the nuclear spin ordering, there are two intrinsic energy
scales in the system, the nuclear spin ordering temperature
T* and the pseudogap A of the electrons, fulfilling for most
of the semiconductor quantum wires kg T* < A, with kp the
Boltzmann constant. We will assume, henceforth, that the
temperature 7 satisfies 7 < T* such that the SLL state remains
stable. We will also consider only frequencies |w| > kpT, at
which our zero-temperature analysis remains valid. For the
SLL in spin-orbit interaction split semiconductor quantum
wires, only the condition |w| > kpT is imposed as the scale
T* is absent. The distribution of energy scales allows us, thus,
in particular, to explore the regime |w| ~ A, which will be of
much interest below.

In order to calculate the Green’s function Gm,m (x,7) in
imaginary time, we first use Eqgs. (5) and (6) to write the
electron operators in terms of the charge and spin bosonic
fields and then use the change of basis given by the set of
Egs. (13)—(16) to write them in terms of ¢_,0_,¢,0,. After
these manipulations, the Green’s function takes the form

irkpx

2ma

Gra,ra(xvt) = -

Fo(OFL(x1)., @)

where

1 K. 2
F _(x,7)= exp<ﬁ<|:—(l +or) /?(¢>,(x,r) — ¢_(0,0)) + (ﬁ + a\/KCK5>(9(x,r) — 0(0,0))] >> (48)

and

1 2
F(x,7) = eXp<R<[<Kc - %)(aﬁ(x,f) = ¢+(0,0) + (o = r)(0+(x,7) — 9+(0,0))} >) (49)
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1. Regular sector

Let us, first, consider the Green functions associated with
the modes (L |) and (R 1), which corresponds to ro = 1. In
this case, only the correlator ((¢,(x,7) — ¢+(0,0))2) enters
in F1+. Since the field ¢, is gapped, ((¢,(x,7) — ¢, (0,0))?)
decays exponentially on the scale +/x2 + v212 ~ v/A, which
implies that F 1+ (x,7) &~ 1. The correlation functions between
the modes (L |) and (R 1) are, therefore, described by a
standard spinless LL theory. This corresponds to the “regular
sector” of the SLL. The Green’s functions of the regular
sector are given by Egs. (41) and (42), on the replacements
r=L— (L]), r=R— (R1*), and the new parameters
v — vsr L = v_ as defined in Eq. (11) and

Ksip + Kg 'y —2

4 9
with Kg11 = 2K./(K.K; + 1). Cross-correlators between the
(L ) and (R 1) modes vanish.

Y ™ Yreg = (50)

2. Irregular sector

The correlation functions between the modes (L 1)or (R |)
correspond to ro = —1. The expression for these correlators
is more complicated since Ffl in Eq. (47) can no longer be
approximated by unity due to the presence of the 6 field in
Eq. (49), which is conjugated to the pinned ¢, field and so
strongly fluctuates. We denote this as the “irregular sector”
since the correlation functions cannot be inferred from a
standard spinless LL analysis.

The Green’s function G; #(x,iw,), with 7 € {(L 1),(R })},
requires the calculation of the Fourier transform of the product
F-o,(x,0)F fl (x,1), for which we, unfortunately, have not been
able to find an analytical, closed form. We can, however,
evaluate Ffl (x,iw,) individually and express G;,;(x,ia)y,) in
form of, again, a convolution integral similar to Eq. (45). In
addition, we will see in the next section that the knowledge
of F_i1 (x = 0,iw,) is sufficient to obtain a closed form for
the DOS. Therefore, we will focus here on the individual
evaluations of F' fl (x,iwy). While an analytic expression can be
found for F~,(x,iw,) for all x, this is possible for Ffl (x,iwy)
only at x = 0 (as shown in the next section). For x # 0 we
provide the result in form of a convolution similar to Eq. (45).

Let us start with F_*, (x,iwy,). In order to compute the
asymptotic behavior of the associated Green functions, one
needs to make a number of approximations. Following
Ref. 116, we first replace the sine-Gordon term in Eq. (9) by its
quadratic expansion, i.e., Beft cos(«/ﬁ ¢1) = BerK ¢i. The
calculation of Ffl becomes then similar to the one performed
in Ref. 116. The result is (see also Refs. 117 and 118)

2402 2
1 1 X 4viT m 2 22
— % L5 In( )+ A/ X2 4viT?]

Ffl(x,r) ~e K L2K% a2 2K + , (51)

where m? = B K /avy, K = K. + 1/K; as defined before,
and K is the strong coupling LL constant of the “+4” sector
of the model defined by Eq. (9). Contrary to Ref. 116, K7 is
only little renormalized by the renormalization group flow of
the cosine term in Eq. (9),® and we can use K3 ~ 1.

Since the quadratic expansion of the cosine term in Eq. (9)
may seem a rather crude approximation, one can check that
Eq. (51) makes sense by comparing it to the noninteracting
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result obtained for K. = K; = 1. In this limit the cosine

term in Eq. (9) is equal to cos(2¢;) and corresponds to

the backscattering of (R |) and (L 1) fermions (the ones

associated with the “+” sector). Moreover, F';" (x,7) is

proportional to the Green’s function of these massive fermions

and, therefore, can be written as

—iw, —vq

w2 + A? +v2g?’

(52)

with A «/Beffv/a and v=v, =v_. At x =0, we can
evaluate F fl"” (0,7) analytically and find

dw" dq eiwn T+igx

Fhn =2ra | S

+,ni . é
F177(0,7) = 2UK1(AITI), (53)

where K, is the modified Bessel function. Since K (z) ~
e~?//z for z >> 1, the asymptotic behavior of F£7,(0,7) in the
noninteracting limit is consistent with the behavior described
in Eq. (51). This indicates that the rather crude approximation
used to calculate F fl (x,7) fora given K captures correctly the
asymptotic limit for the Green’s function.

The full (x,iw,) dependence of Ffl cannot be determined
analytically. We can, however, give a solution in terms of
a convolution integral, similar to Eq. (45), if we write
Ffl(x,r) = fi(x,7) fu(x,7), with f; the irregular part from
the gapless sector, f;(x,7) = [a*/(x? + vitH)]'/*X, and f,

the massive part, f,(x,7) = e %V ¥ +vit? The gapless part
fi(x,iw,) is identical to I(x,iw,) in Eq. (38) with the
replacements y — 1/2K and v — v; and the solution given
by Eq. (39). The t integral for the massive part f,,(x,i®,) can
be evaluated through standard integral tables (Ref. 115, 3.914)
and we find

o0
. _m 2.2
fn(x,iow,) = 2/ dt cos(w, ) e VT
0

= B (w18 ), (54)
vip

2,2
with 8 = v4+1?2 + 2. Using the latter expressions,

Fjl(x,l.(l)”) = /da)//1ﬁ(xvia);l)fm(xvia)n - lw;,)7 (55)

which is again well suited for numerical evaluation because of
the exponential convergence of the Bessel function K.

The second factor for the Green’s function in Eq. (47),
F~,(x,7), is entirely evaluated within the gapless LL sector
and is given by

7 Virr H Virr
Fo(x,7) = —sgn(r)[ “ } [ - ] (56)
X —Iiv_T X +iv_T

with

K, (K. — K1)

R

> RK,
8K.K — 8K.(K.+K;")

T 4Kq K2

Yire (37
The sgn(7) factor in Eq. (56) is necessary to ensure the correct
fermion statistics, which is no longer enforced by the form of
the power-law factor, since it depends now only on x? + v2 72
(the sign can also be verified by an analytic continuation of
the independently calculated real-time Green’s function). In
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contrast to the regular LL, both exponents in Eq. (56) are
identical, expressing the fact that the left and right movers are
pinned to each other [see Eq. (25)].

The Fourier transform resembles closely the integral
I(x,iw,) of Eq. (38), with the supplementary factor sgn(z) in
the integrand. The result can again be evaluated using standard
integral tables [Ref. 115, 3.771.1, Ref. 119, 12.2.3]. It is less
compact than for /(x,iw,) and given by

ZT( = yire) | 2002 |77
F:l (xviwn) = —isgn(a),,)a“/_ Z(U Vlrr) )C:)va
) [Iyirr_%(|xa)’l|/v—) - 7_ylrr(|'xa)”|/v )]

(58)

where L,(z) is the modified Struve function and 7,(z) the
modified Bessel function.

We again perform an independent calculation for the
retarded Green’s function associated with F_|, denoted by
F~;™, for which the sign sgn(t) — sgn(#) leads to the further
terms described at the end of Appendix A. The result is

F ret(x a))
1
2a/7 1 2ilxv_\ 2 "
= s S ()
- F(Virr) wia
1
] L1 — Vi) | 2x0_ |2 70"
X K%—Vin(|x|a)+/lv,) — Trr =

x [Hi_, (lox|/v2) = Y1_, (jox]|/v- )]} (59)

where H,(x) denotes the Struve function, Y,(x) the Bessel
function of the second kind, and w; = @ +i0. The part
depending on the Bessel function K 1 corresponds to
I(x,w) given in Eq. (AS), while the other terms are parts of
the integral that cancel for I (x,w) but contribute here because
of the additional factor sgn(z). They are given by Eq. (A7).
We notice, however, that the latter terms are all purely real
so mainly the complex K %_M"-dependent term contributes
to the spectral properties of the system. The properties of
the Struve functions are described in Ref. 119, Sec. 12. The
Struve functions are related to the modified Struve functions
by Ly (z) = —ie " 7%H,(iz). The asymptotic behavior of the
Green’s functions at large z is determined by noting that
Hy @)=Yy, @~ O@™27) and I,_1(z) = Li_,() ~

Oz~ > ), so Eq. (58), as well as the last terms in Eq. (59)
have the large-distance nonoscillating decays |x|~'|w|~! and
|x|~'|w| =2, respectively. For z — 0, the Struve functions
go to zero, while 7, -1 and Y] _, have divergences that
are regularlzed by the ultrav1olet cutoff. The convolution of
the F7 (x,iw,) times the prefactor —e~""k** /27 a yields the
Green’s function G4 4 (x,7).

Let us, finally, note that cross-correlators 7 # 7' in the
irregular sector, with 7,7 € {(L 1),(R |)}, are nonzero. The
corresponding Green’s functlons <T1¢,~()€,‘L’)I/ff,(x ,7')) actu-
ally depend on the two position variables x and x’. This is
because, for the cross-correlators, the response is no longer
translationally invariant due to the phase factors e®kr@+x)
This spatial variation is the only difference between the
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autocorrelators and the cross-correlators. Hence, the result
for the cross-correlators is identical to the result of the
autocorrelators determined above, on the replacement x —
x — x’ everywhere, except in the phase factor e/"***, where we
make the change x — x + x'.

IV. DENSITY OF STATES
The DOS per unit volume a (or tunneling DOS), p(w),

can be obtained from the imaginary part of the retarded local
Green’s function as

1
o(w) = ——ImG™'(x — 0,w), (60)
T

where G™ = )" G™

ro,ro*
r,o

A. Density of states for the Luttinger liquid and the Helical
Luttinger liquid

The calculation of the DOS for a spinless LL is detailed in
Appendix B. Starting from Eq. (42) one obtains

/A
p(w) = 2—2 , (61)
aul'(1+2y)

withy = (K + K~ —2)/4and A, = v/a on the order of the
bandwidth. The prefactor 2 arises from the sum overr = L, R.
Here we have dropped a divergent, frequency-independent
contribution to the DOS. The latter is a well-known artifact
from the LL theory in the short-distance limit x — 0 and
must, in practice, be limited by the value of the short-distance
cutoff a. The form of the DOS in Eq. (61) corresponds to
the results known in the literature.*>*! For noninteracting
electrons, y — 0 and the DOS becomes a constant, reflecting
the fact that a linear dispersion is assumed in LL theory. On
the replacement K — Ky in the expression of y, the result

[Eq. (61)] holds as well for the HLL.
For a spinful LL, we have noticed in Sec. III A2 that the
x — 0 limit can be evaluated using the Green’s functions of
a spinless LL while replacing y — y. + ¥, = (K. + K. ' +
K, + K;l —4)/8 and v — ,/v.vy. Since v.; = vp /K5, We
can incorporate this rescaling of velocities by redefining A, =

JVevs/a = vp/av/ K K. This yields

|a)/Aa|2(Vf+V‘)
w)=4 , 62
p@) 27 vl (1 + 2(Ye + ¥5)) 62)
where the four channels (r,0) contribute identically to the
DOS.

B. Density of states for a spiral Luttinger liquid

For a SLL, the DOS is the sum of the contributions from
the regular and irregular sectors. The spin-resolved DOS is

1
P (@) = _;Im[fo},(x — 0,0) + G (x = 0,@)].  (63)

Independently of o, one of the two contributions in Eq. (63)
arises from the regular sector, and the other one from the
irregular sector, therefore,

P (0) = Preg(@) + pirr(@). (64)
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For comparison, we consider, first, the noninteracting limit,
since in the absence of interactions simple expressions can
be obtained for the DOS. In this limit yiy = yreg = 0, and the
DOS associated with the irregular sector does not couple to
the gapless fields. It is given by the DOS of the gapped system
only,

ne ey |l
Pip(w,x =0) = %ﬁﬂaﬂ - A)«/ﬁ'

Since ,ofe"g(a),x =0) = 1/27vF, the total DOS exhibits a
pseudogap for || < A corresponding to the pinning of half
of the degrees of freedom.

Let us now consider the general interacting case. In
Sec. IIIC1 we have seen that the Green’s function of the
regular sector coincides with the Green’s function of a spinless
LL with the substitutions v — vsp1, and y — ¥i.. Hence, the
corresponding DOS can be read off from Eq. (61) and is given

by

(65)

-2
o/ A [P

, (66)
2w vSLLF(l + ZVreg)

preg(a)) =

where A, =wvsi1/a = v_/a. Note that the prefactor 2 in
Eq. (61) is absent because pr, refers here to a single mode
(L {)or(R1).

The irregular part of the DOS can, following Ref. 116, be
expressed by

1 w
Pirr(w) = T/ delm[ FF™(0,6)|Im[ F;"(0,0 — )],
T-a Jo
(67)

,ret

which is proved in Appendix C. The function F_;™ (x,w) is
given by Eq. (59). The only part that is not purely real and
contributes to Im[F~;"(0,w — €)] is the part depending on
the Bessel function K1 _, . Expanding the Bessel function for
small x (see Appendix B) leads to

2¥inr—1
T Y

AT (2¥irr)

w

Im[FZ;"(0,0)] = — ~ (68)

The function F_*1 (x,iw,) was given in Eq. (55) in form of
a convolution integral and so is, in principle, more difficult
to evaluate. However, for the DOS only the x — O limit
is required, for which we can solve the Fourier integral
for Ffl (x =0,w,) directly. Indeed, at x = 0, the Fourier
transformation of Eq. (51) reduces to the standard integral
of the I' function and we obtain

Fjl(x =0,iw,)
a\¥ 1
-() (%)
Uy K

muy ! muvy !

With the analytic continuation iw, — . we then find

Im[ F1"(0,0)] = —sgn(@)?(jo| — A)

i <|(U|_A>é1 (70)
AT (%) \ Ad ’
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where we have used sin(%)I'(1 — %) =x/ F(%) and defined

A} =vy/aaswellas A = mv; /2K = \/Ber Af /4K . From
the step function ¢ in the latter equation follows that pi(w) =
0 for |w| < A. For w > A we then have

1
wa(A7)P i (ADFT Ryl (L)

Pir(@) =

x / de(w — e (e — Ayx !,
A

1
ma(A7 (AT TRyl (%)

1
x (0 — A)ZVi"ﬂ—lB(zym,E), (71)

with B the Beta function. This result can be simplified by

using 2y + 5 = ﬁ and B(x,y) = T'(x)['(y)/ T (x + y).

Extending it, furthermore, to all v we find

ey = 2001 = 2) (ol - N
" M) ma(AgPe(AD)F

(72)

Note that even though p;, contains the gapless part ImF_,
the threshold behavior of the massive sector o ¥ (Jw| — A) is
preserved in p;,. The power law at |w| > A, however, is the
combination of the massive and the gapless contributions and,
curiously, turns out to be given by the LL parameter Kgi,
of the gapless fields ¢_,6_ only, which is a behavior found
also for the DOS of the gapped sector in charge density wave
systems.88

In the noninteracting limit, Ks;;, — 1 and y;; — O, the
frequency dependence of p!' in the vicinity of |w| ~ A is
recovered. However, there is a difference to Eq. (65) by a
numerical prefactor of order 1. This is an artifact from the
high-energy cutoff procedures and just reflects the unavoidable
uncertainties with numerical prefactors in LL theory.

8
K.=05
(J’
- |
=
£ 4
g
Q 3
2,
l,
“ 2 | [ 8 10

hw [meV]

FIG. 1. The local DOS as a function of energy for the SLL
appearing through nuclear spin order in GaAs quantum wires (solid
line). The LL parameters are chosen as*® K, =0.5 and K, = 1.
Further system parameters as well as the size of the pseudogap
A (after renormalization by electron interactions) are determined
according to Ref. 38. Below A, the DOS is described only by pr,
while at w 2 A the DOS is dominated by the singular behavior of pj;.
For comparison, the dashed line shows the DOS of a regular spinful
LL with the same parameters K. and Kj.
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FIG. 2. Same as in Fig. 1 but for the reduced value K, = 0.3.
Since K. < 1/3, the power-law singularity of p;; atw = Aisreplaced
by pir — 0. Yet, p, still dominates the DOS at @ = A. Note that
A takes here a different value than in Fig. 1 because of the different
renormalization by the stronger interactions.?®

The total DOS is subsequently obtained as the sum p(w) =
p1r(@) + py (@) = 2[ preg(@) + pir(w)], where the 2 arises from
summing over the two regular {(L |),(R 1)} as well as the two
irregular {(L 1),(R |)} contributions to the DOS.

Let us note that since cross-correlators in the irregular
sector between (L 1) and (R |) modes are nonzero, the
spin-polarization densities of state o,(w) or oy(w) probe

directly pjiy, as they are linear combinations of (1//11& 1) and

(wI Y4). This is a consequence of the partial electron ordering
in form of a spiral electron spin density wave, pinned to the
nuclear spin spiral or of the transverse ferromagnetic electron
order aligned with the external magnetic field for the quantum
wires with spin-orbit interaction at commensurability.

In Figs. 1 and 2 we plot the DOS as a function of
energy for the SLL appearing through nuclear spin ordering
in typical GaAs quantum wires*® for K, = 1 and K, > 1/3
as well as K, < 1/3. For K; = 1 the value K, = 1/3 marks
the point at which Kgp = 1/2 and at which the exponent
in Eq. (72) changes its sign. For K, > 1/3 the irregular
contribution diverges at |w| = A, while for K. < 1/3 it goes
to zero. In both cases, however, Figs. 1 and 2 show that
pir dominates the DOS at |w| 2 A. A similar effect is
observed when calculating the tunneling current between a
LL and a superconductor,'”® which is not surprising, since
both calculations involve convolutions between a LL-type
power-law decaying component and a gapped component. It
needs to be stressed, furthermore, that our analysis is valid
only in the vicinity of A, as further fluctuations of the gapped
fields are not taken into account. However, as shown in a very
recent complementary study of the SLL,” the inclusion of
such fluctuations does not change the overall behavior of the
DOS close to A but leads to modified power-law exponents.

V. CONCLUSIONS

In this paper we have computed the position-frequency-
dependent Green’s functions and the local DOS for various
LLs. Most of the results are given in closed analytical form,
to our knowledge, for the first time. These Green’s functions
are necessary for any local spectral characterization of the
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LLs, and, in particular, we have used them to derive analytic
expressions for the local DOS of all the investigated LLs.
While the latter is a well-known result for the standard LLs,*0*!
we have put special attention to the HLL appearing at the edge
of topological insulators and the SLL that appears in systems
that are often used to mimic HLL behavior. We have shown that
while HLL and SLL are indeed equivalent for noninteracting
electrons, they have substantially different spectral properties
for interacting electrons. While the HLL behaves as a standard
spinless LL, the SLL shows with the appearance of the irregular
parts of the Green’s functions entirely different response
functions. The main reason for this striking difference is that
the SLL exhibits the response of a standard gapless LL together
with that of a gapped system with a dynamically created
gap. The response therefore exhibits a pseudogap. Close to
the pseudogap, the strong fluctuations of the fields conjugate
to the gapped fields lead to the strong irregular response
that dominates the spectral properties. Below the pseudogap,
the local response described by the DOS shows a regular
LL behavior, yet with modified exponents. Interestingly, the
irregular behavior has an effect even below the pseudogap
when considering the nonlocal response described by the
Green’s functions at x # 0. This behavior is entirely absent
in any HLL. Hence, any analysis of the system properties and
application that is based on the apparent equivalence of HLL
and SLL needs to take this important difference into account.

Concerning the detection of the discussed SLL properties
it should be stressed that the SLL physics arises only when the
chemical potential is kept near the center of the pseudogap.
This occurs naturally in the nuclear-spin-ordered phase, in
which the gap opens symmetrically about the chemical
potential. It requires, however, a fine-tuning of the electron
density to kp = ko for the spin-orbit split quantum wires. This
means it is not possible to probe SLL physics by modulating
the chemical potential, and techniques such as STM need to
be used.

The systems that can exhibit the SLL physics are 1D
conductors in the nuclear ordered phase such as GaAs
quantum wires® or carbon nanotubes*’*® grown entirely from
13C isotopes to provide the nuclear spins.'”>-'> In these
systems, the particular spectral properties of the SLL could
be used to indirectly prove the existence of the nuclear spin
order. Furthermore, SLL physics is expected to arise in 1D
conductors with strong spin-orbit interaction such as GaAs
quantum wires, InAs nanowires, or Ge/Si core/shell nanowires
in the presence of an external magnetic field,%'31927197 a5 well
as carbon nanotubes in strong electric fields.'*!3
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APPENDIX A: RETARDED GREEN’S FUNCTIONS IN (x,)
SPACE FOR THE REGULAR SPINLESS LUTTINGER
LIQUID

In this Appendix we provide the details of the calculation
of the real-time Fourier transform of the retarded Green’s
functions.

The greater and lesser functions can be inferred directly
from the imaginary-time Green’s function. Indeed, since the
latter is given by power laws in x & ivt, the real-time Green’s
functions can be obtained by a simple analytic continuation of
the fime variable,"'2! G[x,7 — i(t — i0)] = —iG> (x,1),and
Glx,T — i(t +i0)] = iG=(x,t). Due to the power-law forms,
this substitution is equivalent to the usual Wick rotation in fre-
quency space and is valid as long as the analytical continuation
does not lie on a branch cut. From Eq. (35) we have

G ~(x,1)

N

’

) eirkpx —ia Yr ia Yr
= Ti
T ora |x+ocFi0)| | x—vaFi0)

eirkrx a Y a y+1

~ 2ra |:rx+v(t:FiO)i| |:rx—v(t:|:i0)] ’
(AD)
with y = min(y,yg) = (K + K~!' —2)/4.Since y + 1 > 1,
the singularity at rx — vt = 0 requires regularization, which

can be done in the same way as in Eq. (37) by reducing the
exponent to y by derivation with respect to ;—;(8” — 0yr). We

apply this directly on the retarded Green’s function G| (x,1) =
P(OIG;,(x,1) — G, ] and obtain for the Fourier transform

_ irkpx

Gll(x,w) = [a,x + lw—+]l(x,a)), (A2)
’ v
with w; = w + 10 and
o0 .
I(x,w) = / dt e'“+!
0

a Y a Y
x { [xz—i-vz(t Z iO)Z} _[xz—i-vz(t T iO)Z} }
(A3)

The term depending on (¢ — i0) has branch cuts starting at
£|x|/v 410 running to oo slightly above the real axis,
and the term depending on (¢ + i0) has the same branch cuts
shifted slightly below the real axis [see Fig. 3(a)]. Since w is
real, we have I(x, — w) = —I"*(x,w), allowing us to focus on
o > 0. We can then deform the integration contour as shown
in Fig. 3(b). The only nonzero contribution comes from the
two straight lines above and below the branch cut from |x|/v
to +oc. This leads to (with y =t 4 |x|/v)

I(x,0) = —2isin(ry) Sin(ny)ei””x‘/” ~
(v/a)* 0

elo+y
[y +2lx|/v))7”
(A4)

Due to the 4+i0 in w, this integral is convergent and very
similar to Eq. (38). In fact, if the integration contour in
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(b)
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~[a] /v
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x| /v

FIG. 3. Branch cuts and integration contours for Eq. (A3) in the
complex ¢ plane. (a) The first term in Eq. (A3) has the upper right
and lower left branch cuts, and the second term the upper left and
lower right branch cuts. The integration runs along the real axis from
t =0 to oco. (b) Since w > 0, the integrand converges in the upper
half plane and can be deformed to a part running along the positive
imaginary axis, and a part running around the upper right branch cut.
Along the imaginary axis, both terms in the integrand are identical
and cancel each other. The contribution from the circular contour
around the branch point at |x|/v 4 i0 vanishes. The two legs above
and below the branch cut give Eq. (A4), where —2i sin(;r ) captures
the phase difference between the upper and lower legs.

Eq. (38) is deformed such that it runs around a branch cut, the
integral becomes identical to Eq. (A4) under the replacement
|w,| — —iw,. This integral can be evaluated using Ref. 115,
3.383.8, and produces a result equivalent to Eq. (39),

-V
) K},f%(|x|a)+/iv).

2a/m (2i|x|v
Ix,w)=—i—| ——
vI(y) \ wia?

(AS)

This form also holds for w <0 as it satisfies

I(x,w) = —I*(x, — w). The branch as a function of w
runs along the negative imaginary axis. Therefore, the Wick
rotation w; — iw, is indeed problematic for w, < 0, which
explains why separate calculations were necessary for the
real- and imaginary-time Green’s functions.

The final formula for the retarded Green’s function is
obtained in the same way as in Sec. IIl A using Eq. (40).
We find

Gl (x,0)
=Y awy (2ilx|v 1y
S 2/al(y + 1) 0?2 \ w,a?
X [Ky_%(|x|w+/iv)—SgH(VX)Ky+%(|x|w+/iv)], (A6)

which is the result reported in Eq. (42).

To finish this section, let us calculate the contribution of
the vertical contour on the positive imaginary axis in Fig. 3(b).
While this integral has dropped out for I(x,w), it actually
contributes to the Green’s function of the irregular sector of
Eq. (56), which is of the form of Eq. (A3), yet with a 4 sign
between the two power laws. We denote this contribution by
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IV, Using the standard table, Ref. 115, 3.387.7, we see that
it evaluates to

2 Y
""" (x,0) = 2i / " dreon| 4
’ 0 x2 4+ 22

o () o (2]

with H,, the Struve function and Y,, the Bessel function of the
second kind. This function, in combination with the solution
I(x,w) of Eq. (AS), provides the result of Eq. (59).

APPENDIX B: DETAILS FOR THE CALCULATION OF THE
DENSITY OF STATES

We evaluate in this Appendix the limit x — 0 for the
retarded Green’s function required for the DOS p(w). Letting
x — 0 and rescaling Eq. (Al) or (35) by t — wt we see
that p(w) o< w?¢ for the regular LL. However, we see also
that taking the x — O limit before evaluating the Fourier
integral over ¢t makes the integral divergent. Taking the limit
x — 0 after integration does not cure this problem, and the
power-law divergences that arise from the extrapolation of
the long-wavelength LL theory into the short-distance x — 0
regime are still present. This is, however, an artifact of the
lack of small distance cutoff in the model and should have
no influence on the DOS; thus, these terms can be safely
neglected. In fact, they can be entirely suppressed by the
regularization via a further differentiation of the integrand as
in Eq. (37).

The goal of the present appendix is to evaluate the prefactors
of the ®?” terms for a typical LL. This analysis is based on an
expansion of the Bessel functions K, at small argument (see
Ref. 119, 9.6.9),

=0 1 2\“ *
Ko(2) NOE[F((X)<;> +F(—0t)<§> ][1+O(Z2)]-
(BI)

Introducing this expansion into Eq. (42) for a regular spinless
LL and neglecting the divergent parts, we obtain

Thon) oo}
4/aT(1+y) v2 \ 2iv

¢ x—0
Gy (x,0) ~
SO

1
pr(@) = ——ImGS (x — 0,w)
- :

1 cos(ry)I (5 —v)|wal?

T 2mv 2 ATy + D) | v

(B3)

Using the doubling theorem of I functions [Ref. 119, 6.1.18],
['(2z) = 2m) 222730l (z + D withz = 1 — , we can
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further simplify this result to

1 1 2z

27v (1 +2y)

wa

pr(@) = (B4)

v

APPENDIX C: PROOF OF EQ. (67)

In this Appendix we derive the identity given by Eq. (67). To
this end, it is useful to change to a finite temperature description
with discrete Matsubara frequencies. In this case, the Green’s
function of Eq. (47) has the generic form

Gliwn) = ) Fylion)F-(io, — o),

iwy

(ChH

where we omit all prefactors and indices that are not necessary
for the current calculation. We are here confronted with an
ambiguity of how to choose the Matsubara frequencies in
the bosonization formulation, as iw, should, in principle, be
a fermionic frequency. Independently of the choice of iw,,
one of the Fy would then depend on a bosonic and the
other one on a fermionic Matsubara frequency. In the limit of
zero temperature, however, all Matsubara frequencies become
continuous, and so we make here the most convenient choice of
bosonic iw, = 2nmw/B and fermionic iw,, = 2m + 1)/ for
integers n and m and B, the inverse temperature. This choice
guarantees an equivalent treatment of both F. and allows us
to avoid unnecessary complications with poles on the branch
cuts. In a standard way, we can replace the Matsubara sum by
the integral

Gliwy) = / gtanh (ﬁ)F+(Z)F_(iw,1—z), (C2)
Cc &1 2

with C a contour surrounding all Matsubara frequencies i w,,.
Since F(z) has a branch cut at Im(z) =0 and F_(iw, — z)
has a branch cut at Im(z) = iw,, the contour C takes the form
shown in Fig. 4. Each branch cut separates the retarded and
advanced parts of the corresponding F... Since i w, is bosonic,

Fadv
— = =
| i )
Lret iwn
Frct
R A
1 ‘ ~ 0
adv
F+

C

FIG. 4. Integration contour C for Eq. (C2). The black dots
indicate the Matsubara poles. The wiggled lines mark the branch
cuts at Im(z) = O separating retarded and advanced parts of F. and
at Im(z) = iw, separating retarded and advanced parts of F_.
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there is no pole on the branch cuts, and the contour integral
reduces to the evaluation along the cuts,

Gliw,)
_ / A (ﬁ d )[Ff‘(a)’) — FMY(e)]

oo 2T 2
o0 d / . " /
X Fiet(la)n _ C()/) +/ _a).tanh [w]

oo 2T
x Fi'(iw, + o )[F*"(—0') — F*'(—)].

(€3)

We now perform the analytic continuation iw, — w4 = w +
i0. Here we need to emphasize that the analytic continuation is
ill defined for the tanh, as it is periodic in i w,. To maintain the
uniqueness of the analytic continuation, we must first drop the
iw, dependence of the tanh and then perform the analytic con-
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tinuation for the functions Fy only. The imaginary part of the
resulting retarded Green’s function can then be written as (after
shifting the integration variable in the second integral by w),

% da / o

ImG™(w) = / 99 ) tanh B _ tanh G

o T 2 2

x Im[Fi* () Im[F™ (& — )]. (C4)
At zero temperature 8 — oo and the difference of tanh
restricts the integration to the interval (0,w) for w > 0 or
(w,0) for @ < 0 and provides a factor 2sgn(w). The result is

2 w
ImG™(w) = —/ dw’Im[Ff‘(a/)]Im[Fiet(w — )], (C5)

T Jo

which corresponds to Eq. (67).
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