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We propose trial wave functions for quasiparticle and exciton excitations of the Moore-Read Pfaffian fractional
quantum Hall states, both for bosons and for fermions, and study these numerically. Our construction of trial wave
functions employs a picture of the bosonic Moore-Read state as a symmetrized double layer composite fermion
state. We obtain the number of independent angular momentum multiplets of quasiparticle and exciton trial states
for systems of up to 20 electrons. We find that the counting for quasielectrons at large angular momentum on
the sphere matches that expected from the conformal field theory (CFT) that describes the Moore-Read state’s
boundary theory. In particular, the counting for quasielectrons is the same as for quasiholes, in accordance with the
idea that the CFT describing both sides of the Fractional Quantum Hall plateau should be the same. We also show
that our trial wave functions have good overlaps with exact wave functions obtained using various interactions,
including second Landau level Coulomb interactions and the three-body delta interaction for which the Pfaffian
states and their quasiholes are exact ground states. We discuss how these results relate to recent work by Sreejith
et al. on a similar set of trial wave functions for excitations over the Pfaffian state as well as to earlier work by
Hansson et al., which has produced trial wave functions for quasiparticles based on conformal field theory methods
and by Bernevig and Haldane, which produced trial wave functions based on clustering properties and “squeezing.”
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I. INTRODUCTION

The fractional quantum Hall plateau observed1,2 at filling
ν = 5/2 has recently been at the center of much excite-
ment, because it is expected that the elementary charged
excitations of this state may be non-Abelian anyons.3–7

Moreover, manipulation of these anyons potentially represents
an avenue to topologically fault tolerant and hence scalable
quantum computation.8–11 Various experiments have already
observed important signatures of these excitations, such as
their fractionalized charge12 and tantalizing interferometric
properties,13,14 which may provide a smoking gun detection of
non-Abelian anyonic statistics.15–18

Moore and Read’s Pfaffian wave function (MR) (Ref. 3)
and its particle-hole conjugate, the anti-Pfaffian19,20 remain
the leading candidates for the description of the electronic
ground state at ν = 5/2. However, since Hall plateaus are
probed through their excitations, it is of great importance to
understand not only the ground state but also the spectrum
of low-lying excitations, which are naturally associated with
Moore and Read’s proposal. Much effort has been devoted to
understanding the quasihole excitations, that is, the low-energy
states, which are appropriate in situations where there is more
magnetic flux piercing the sample than at the center of the
Hall plateau (or equivalently, the electron density is lowered
compared to the center of the plateau). A natural set of can-
didate wave functions exists for these, namely, the exact zero-
energy ground-state wave functions of the model three-body
Hamiltonian introduced in Refs. 4 and 21. This Hamiltonian
has the property that the Pfaffian state is its highest density
(or lowest angular momentum) zero-energy state. At lower
densities (when quasiholes are present), it has multiple zero-
energy states and one may conjecture that these states are good
trial wave functions for the low-energy Coulomb spectrum.

In fact, the trial wave functions for localized quasiholes for
the MR states, which are constructed using correlators in the
conformal field theory (CFT), are automatically zero-energy
eigenstates of the three-body Hamiltonian,6 and hence coher-
ent superpositions of its zero modes, because this Hamiltonian
encodes properties of the operator product expansion in the
CFT. Numerical studies6,22,23 on small systems have indeed
found that the zero modes of the three-body interaction provide
a reasonable description of the low-energy spectrum.

Much progress has also been made in gaining an analytical
understanding of the zero-energy states of this model
Hamiltonian and its generalizations with k-body interactions,
which play a similar role for the Read-Rezayi series of
states.24 Notably, it is known exactly how many independent
zero-energy states exist at any number of particles N and
flux quanta Nφ and even how many of these states exist with
any given angular momentum.25,26 These countings are an
important fingerprint of statistical properties of the excitations
and of the CFT, which describes the edge27 of a system with
a boundary in the thermodynamic limit.

Not nearly as much is known about the quasielectron
excitations, which occur at higher density or lower magnetic
field, and about the neutral excitations (excitons), which can
be viewed as combinations of quasiholes and quasielectrons.
Clearly, one may still conjecture (as done implicitly, e.g.,
in Ref. 6) that the low-energy states of the three-body
Hamiltonian are good trial wave functions, but these are now
no longer exact zero modes, and no exact expression is known
for them. The aim of this paper is to propose and study
an alternative set of trial wave functions for the neutral and
charged excitations of the fermionic and bosonic Moore-Read
Pfaffian states for which we can write down an explicit
analytical form. The fermionic wave functions we propose
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are very similar in construction to those recently studied by
Sreejith, Tőke, Wójs, and Jain in Refs. 28 and 29, which
appeared while the present work was being written. In fact,
though there are subtle differences between our construction
and theirs (see Sec. IV), which can cause differences in the
quality of the approximation of real systems, we believe the
two sets of wave functions should be able to describe the
same fractional quantum Hall universality class. Nevertheless,
our results on the counting of multiplets of quasielectrons are
markedly different from those presented in Ref. 29. There
it was stated that the counting for quasielectrons is different
from that for quasiholes and the possibility was raised that the
quasielectrons might have different braiding properties from
quasiholes. However, we find that quasielectrons satisfy the
same universal counting properties as quasiholes, suggesting
that they also enjoy the same braiding properties.

Our construction of trial wave functions is based on the idea
that we can view the bosonic Moore-Read state as a double
layer30 of bosonic Laughlin 1/2 states—the fermionic MR
ground state can be obtained by multiplying with a Jastrow
factor involving all the particles. A construction of localized
quasiholes from the double layer representation of the MR
wave function was already given in Ref. 30. Here, we generate
trial wave functions for all excitations of the bosonic and
fermionic MR states by constructing, in each layer, all the
possible excitations (excitons, quasiholes, and quasielectrons)
over the ν = 1/2 Laughlin ground states. The latter are well
understood in terms of the composite fermion (CF) theory,31

that is, by creating quasielectrons and/or quasihole excitations
in the integer quantum Hall effect of the CF at effective filling
fraction ν∗ = 1. We calculate the numbers of independent
angular momentum multiplets of such states, which exist at
numerically accessible N and Nφ , providing evidence that
our construction yields quasielectrons with the same type
of non-Abelian statistics and edge CFT as the quasiholes.
We also compare the trial wave functions to the low-energy
eigenfunctions of the three-body Hamiltonian and the second
Landau level Coulomb Hamiltonian, showing directly that they
indeed are good candidates to describe the excitations of the
MR Pfaffian state.

Other candidates for quasielectron and/or exciton trial
wave functions, not directly based on composite bosons
or fermions, have been proposed previously by Hansson,
Hermanns, Regnault, and Viefers32,33 and by Bernevig and
Haldane.34 The construction in Refs. 32 and 33 is based on CFT
and looks superficially very different to ours, but nevertheless,
we expect that the quasiparticle wave functions presented there
are the maximally localized (coherent) states, which can be
produced from the states we propose here. The construction in
Ref. 34 determines the trial wave functions for quasielectrons
by requiring that they vanish when certain patterns of clusters
of electrons are formed and also that they be dominated by
certain root configurations. We review both constructions in
some detail in the rest of the paper and comment on the
similarities and differences to our own construction.

We have focused our numerical tests on systems with an
even number of electrons, in part because these systems exhibit
a unique incompressible ground state, making quasielectrons
and excitons clearly defined. Recently, a number of works
has also appeared that study the band of low-energy states that

appears in systems at ν = 5/2 when the number of electrons is
odd.28,35,36 In particular, the paper by Sreejith et al.28 employs
trial wave functions for the states in this band that are based
on a double layer CF system. Further recent work that focuses
on the properties of excitons at ν = 5/2, and particularly on
the roton minimum, includes Refs. 37 and 38.

Outline of the paper. In Sec. II, we give an overview of
the Moore-Read state and of the quasielectron constructions
of Hansson et al. and Bernevig and Haldane. In Sec. III,
we give a quick review of the construction of excitations
over composite fermion or composite boson ground states.
In Sec. IV, we describe our own trial wave functions for
quasielectrons and excitons and explain how they can be
numerically evaluated and studied both by real space Monte
Carlo and by Fock space methods (using eigenstates of angular
momentum), which allow us to work at machine precision. In
particular, we give details on the calculation of overlaps and
of the number of independent trial wave functions for given
N , Nφ , and the number of excitons or quasielectrons. In this
section, we also give a detailed explanation of the relation
between our trial wave functions and those of Ref. 29. In
Sec. V, we present our numerical results, which include state
counting of quasielectrons and excitons and overlaps between
our sets of wave functions for bosons and fermions and the
low-lying states in the exact spectra obtained for bosons and
fermions with three-body hardcore, two-body hardcore, and
second Landau level Coulomb interactions (with a slight shift
of the pseudopotential V1 to obtain a stable Pfaffian state). We
note that our results for quasielectron counting are consistent
with the idea that the conformal field theory on the edge of
a disk containing MR-type Fractional Quantum Hall (FQH)
liquid should be the same on both sides of the plateau. Finally
in Sec. VI, we critically examine our results and discuss
potential future developments.

II. QUASIELECTRON CONSTRUCTIONS OVER THE
MOORE-READ GROUND STATE

Here, we briefly review the MR state and its quasihole
excitations and discuss two existing constructions of trial
wave functions for quasielectrons and excitons—one using
the language of CFT, conjectured by Hansson, Hermanns,
Regnault, and Viefers,32,33 and one conjectured by Bernevig
and Haldane, who define their trial wave functions by their
vanishing properties.34 Although the language used to describe
the model states is very different in the different approaches,
the ground-state and quasihole-state wave functions are identi-
cal. However, each approach has a “natural” extension toward
quasielectrons, leading to distinct, but related model wave
functions. We will comment on their relation and differences
in Secs. IV and V.

In this section, we will focus on the simplest case: the
bosonic MR state at filling ν = 1. In an abuse of language, we
still use the words electron and “quasielectron,” even though
the system is made up of bosons.

A. Ground state and quasihole excitations

Let us start by reviewing some important properties of the
MR ground state and its quasihole excitations. It was noted
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early on in Ref. 39 that Laughlin model states as well as their
quasihole excitations can be written as correlation functions,
where the particles are represented by CFT operators. Moore
and Read generalized this approach,3 and proposed a model
wave function based on the Ising CFT for the fermionic FQH
state at filling 2 + 1/2. In the following, we focus on the
bosonic version of this state—the MR Pfaffian state at filling
ν = 1:

�Pf(z1, . . . ,zN ) = Pf

(
1

zi − zj

)∏
i<j

(zi − zj ). (1)

Pf(A) denotes the Pfaffian of the skew-symmetric matrix A. It
is defined by

Pf (A) =
∑

σ

εσAσ (1)σ (2)Aσ (3)σ (4) . . . Aσ (N−1)σ (N), (2)

where the sum runs over all permutations σ of the N indices
and εσ is the signature of the permutation.

The model state (1) is the densest (lowest-degree) zero-
energy state of H(3)

B —the hardcore three-body Hamiltonian
(k = 2),

H(k+1)
B =

∑
i1<...<ik+1

k∏
j=1

δ2
(
zij − zij+1

)
. (3)

In particular, the bosonic MR Pfaffian state vanishes as the
second power of the difference between coordinates when
three particles come to the same position. More precisely,

�Pf(z1 = z2,z3,..,zN ) ∼
N∏

i=3

(z1 − zi)
2 . (4)

This vanishing property is a particular case of the more general
(k,r) vanishing properties, where the polynomials vanish as the
rth power when k + 1 particles come to the same point:40

�
(k,r)
N (z1 = z2 = . . . = zk︸ ︷︷ ︸

z

,zk+1, . . . ,zN )

=
N∏

i=k+1

(z − zi)
r�

(k,r)
N−k(zk+1, . . . ,zN ) . (5)

Note that for fermionic systems there are ultralocal Hamiltoni-
ans H(k+1)

F , similar to the H(k+1)
B , which implement vanishing

properties for the wave functions so that, after division of the
wave function by a Jastrow factor (which is always possible for
a fermionic wave function), the resulting function still vanishes
when k + 1 of the coordinates are equal.

The quasihole state manifold of the MR state is spanned
by less dense (higher degree) polynomials that satisfy the
vanishing conditions (4). These quasihole states are in fact
ground states (i.e., zero modes) of the three-body Hamiltonian
(3), albeit at a higher number of flux quanta Nφ than the
Pfaffian state (1). Nevertheless, we will call them excitations,
because, when perturbing away from the model Hamiltonian
toward more realistic Hamiltonians, the degeneracy between
these states is split and the resulting band should give a good
description of the low-energy sector of the more realistic
system.

One may choose a basis for the space of quasihole states,
which consists of eigenstates of the total angular momentum

operator L̂ and the angular momentum along the z direction,
L̂z. The quasihole counting, i.e., the number of basis states
(or equivalently, the number of multiplets) at each angular
momentum, is a fingerprint of the topological order of the
model state. For the MR Pfaffian states, it was explained
in Ref. 6 how to calculate the number of quasiholes states
N (N,nqh,lz) for N particles and nqh quasiholes with L̂z

eigenvalue lz. Formulas for N (N,nqh,lz) for the entire family
of Read-Rezayi states were obtained using CFT methods in
Ref. 25 (see also Ref. 41) and by direct counting of polynomials
with the required vanishing properties and degree restrictions
in Ref. 26. The number of multiplets at L � 0 can always be
easily found from the numbers of states at given L̂z eigenvalue
to beN (N,nqh,L) − N (N,nqh,L + 1). To give detailed results
on N (N,nqh,lz), let us first define the q binomial [ a

b
] by[a

b

]
=
{

(q)a
(q)a−b(q)b

for a,b ∈ N, a � b,

0 otherwise,
(6)

where (q)m =∏m
j=1(1 + qj ). Following Ref. 25, the

generating function of N (N,nqh,lz) can then be written as

Nn/4∑
lz=−Nn/4

N (N,n,lz) qlz

= q−(2N+nqh)N/4
N/2∑
a=0

qN2−2aN+2a2

[
nqh/2

N − 2a

] [
nqh + a

a

]
.

(7)

For the first min[N/2,nqh] angular momentum multiplets
(counted from the highest), the quasihole counting is identical
to the edge mode counting that is expected in the thermody-
namic limit in the disk geometry. This is reasonable: the sphere
and the disk are connected via a stereographic projection. The
south pole of the sphere is mapped to the origin, while the north
pole is mapped to the edge of the disk. Thus we expect the state
counting at high angular momenta on the sphere to correspond
to the edge counting in the disk geometry. In Sec. V, we will see
that the situation is similar for the quasielectron state counting;
the high angular momentum counting is identical to the edge
counting, even though finite-size corrections to the counting
appear earlier than for the quasihole case.

B. Quasielectron construction based on CFT

We now discuss the construction of trial wave functions
for quasielectrons by Hansson et al.32 using CFT. Note that
this construction focused on localized excitations. However,
by expanding such wave functions in a basis of eigenstates
of angular momentum, one may always obtain a set of trial
wave functions for low-energy excitations on a sphere, which
can be compared to the set of trial wave functions to be
presented in this paper. The Pfaffian ground state, Eq. (1),
has a natural interpretation as a symmetrized wave function of
two independent layers of Laughlin ν = 1/2 states:

�Pf(z1, . . . ,zN )

= S

⎡⎣ N/2∏
i<j=2

(zi − zj )2
(
zN

2 +i − zN
2 +j

)2⎤⎦ . (8)
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Following Cappelli et al.,30,42 we may now observe that this
state can be written as a CFT correlator using two independent
bosonic fields: φc, which is related to the filling fraction and
thus to the electric charge, and φl , which distinguishes the two
different layers. In the CFT we associate an operator V with
the electron, given by

V (z) = cos[φl(z)]eiφc(z)

= 1
2 [V+(z) + V−(z)], (9)

where V±(z) = exp[±iφl(z) + iφc(z)] can be interpreted as
electron operators in layer 1 (+) and layer 2 (−). The Pfaffian
ground state can then be written as

�Pf(z1, . . . ,zN ) =
〈

N∏
j=1

V (zj )Obg

〉

= S

⎡⎣〈N/2∏
j=1

V+(zj )
N∏

j=N/2+1

V−(zj )Obg

〉⎤⎦ .

(10)

The homogeneous compensating background charge operator
Obg, see Ref. 3 for details, is needed to render the correlation
function charge neutral and thus nonzero. Note that it only
contains the field φc, but not the layer field φl . This means that
nonzero correlation functions necessarily need to be charge
neutral in φl . The background charge reproduces the correct
Gaussian factor needed for a valid lowest-Landau-level (LLL)
wave function, but is otherwise of no importance for the
remainder of this section.

Using this two-layer description, the non-Abelian quasihole
at position η has to be described by two operators,

H±(η) = exp

[
± i

2
φl(η) + i

2
φc(η)

]
. (11)

Without the symmetrization procedure, H+ and H− would be
Abelian (Laughlin-type) quasiholes in each layer. Because of
charge-neutrality, the quasiholes can only be inserted in pairs.
The non-Abelian nature of the quasiholes manifests itself in
a topological degeneracy of 2n−1 for 2n localized quasiholes.
In Moore and Read’s original description using the Ising CFT,
this degeneracy originates in the two possible fusion channels
of the CFT operator describing the non-Abelian quasihole.
In the two-layer description, the degeneracy comes from the
possible distribution of the 2n quasihole positions η1, . . . ,η2n

over the two layers. This naively overcounts the number
of quasihole states. However, using techniques described
in Ref. 5, one can show that not all of them are linearly
independent and that suitable linear combinations reproduce
the localized quasihole wave functions obtained from the Ising
description. For instance, for four quasiholes, there are two
linearly independent states:

�
4qh,1
MR =

〈
H+(η1)H+(η2)H−(η3)H−(η4)

N∏
j=1

V (zj )Obg

〉
,

�
4qh,2
MR =

〈
H+(η1)H−(η2)H+(η3)H−(η4)

N∏
j=1

V (zj )Obg

〉
.

Expanding the localized quasihole states in angular momen-
tum eigenstates reproduces the zero-energy multiplets found
by diagonalizing the three-body Hamiltonian (3).

In Ref. 32, Hansson et al. introduce quasielectron operators
that play a similar role in the definition of trial wave functions
with quasielectrons as the operators H± do for wave functions
with quasiholes. The guiding principle used there to construct
these quasielectron operators is to view the quasielectron as the
antiparticle of the quasihole. However, the operators H−1

± (η)
are obviously not good candidate quasielectron operators,
because they produce singularities in the electron coordinates.
Instead, the authors of Ref. 32 constructed well defined,
regularized operators P± with the same long-range properties
as H−1

± (η); for more details on the regularization, see Ref. 33.
The operators,P± can be interpreted as Abelian quasielectrons
in the ± layers. As was the case for quasiholes, explicit
symmetrization is essential for the non-Abelian properties.
It was shown in Ref. 33 that localized quasielectrons have
the same topological multiplicity as localized quasiholes, that
is, for 2n localized quasielectrons, there are 2n−1 linearly
independent candidate wave functions. For instance, the two-
quasielectron candidate wave function is unique and given by
(see Ref. 33 for the four-quasielectron candidate):

�
2qe
MR({zj })

=
〈
P+(η1)P−(η2)

N∏
j=1

V (zj )

〉

= S

⎧⎨⎩e(η̄1z1+η̄2zN/2+1)/8	2

⎡⎣∂1

N/2∏
j=2

(z1 − zj )

⎤⎦ N/2∏
2�i<j

(zi − zj )2

×
⎡⎣∂N

2 +1

N∏
j= N

2 +2

(
zN

2 +1 − zj

)⎤⎦ N∏
N/2+2�i<j

(zi − zj )2

⎫⎬⎭ ,

(12)

where we abbreviated ∂j ≡ ∂zj
. This method can be applied

for an arbitrary number of quasielectrons and/or quasiholes by
inserting the appropriate operators in the first line of Eq. (12).

C. Quasielectron construction based on vanishing conditions

Bernevig and Haldane conjectured a quasielectron con-
struction by imposing vanishing and clustering properties
on the candidate wave functions.34 Before going into the
details of their construction, let us review some important
background material. The bosonic RR model states, as well
as their quasihole excitations, are uniquely defined by their
vanishing properties. In the case of the bosonic MR state, the
ground state is the lowest degree symmetric polynomial that
vanishes when three particles are at the same positions. Higher
degree polynomials, obeying this vanishing property, span the
quasihole state manifold.

The single-particle states in the LLL,

φn(z) = (2πn!2n)−
1
2 zne−|z|2/4,

are eigenstates of the angular momentum operator, L̂z with
eigenvalues that are just proportional to powers of the complex
coordinate z. Hence, there is a basis for the many-body states,
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which consists of symmetrized monomials mλ, where λ is
a partition of the total angular momentum nt . Alternatively,
one can label a monomial by its corresponding occupation
number configuration nλ = {nj (λ), j = 0,1, . . . ,Nφ}, where
nj (λ) is the occupation number of the single-particle state
with angular momentum j . A set of partitions may always be
partially ordered by dominance, denoted by “>.” A partition
μ dominates another partition ν (μ > ν) if the latter can be
obtained by successive squeezing operations on μ. Squeezing
is a two-particle operation that changes the angular momenta
of two particles from j1 and j2 to j ′

1 and j ′
2, such that j1 <

j ′
1 � j ′

2 < j2 and the total angular momentum is conserved.
It has been realized recently40,43 that many fractional

quantum Hall trial wave functions, in particular, the ground
states and quasiholes of the Read-Rezayi (RR) series, can be
written as Jack polynomials. This means in particular that
they have nonzero coefficients only for a small subset of the
monomials that span the full Hilbert space. In fact, for each
of these wave functions, there is a special partition λ0, called
the root partition, such that mλ0 has nonzero weight and λ0

dominates any other partition present in the expansion:

Pλ0 = mλ0 +
∑
μ<λ0

vλ,μmμ . (13)

Jack polynomials satisfy further properties in addition to the
fact that they have a nontrivial root partition. In particular,
the coefficients of the nonzero monomials in the expansion
of a Jack may be obtained from a recursion relation.44,45

However, in describing Bernevig and Haldane’s quasielectron
construction, we will use wave functions that have a given root
partition and additional vanishing properties, but which are not
necessarily Jacks.

Because the MR ground state is the lowest degree
polynomial that satisfies the vanishing properties (4) and
inserting quasielectrons necessarily involves lowering the total
degree, Bernevig and Haldane suggested that the quasielectron
polynomials are defined by modified vanishing conditions.
They conjectured root configurations and vanishing conditions
for two types of quasielectrons, which they call Abelian
quasielectrons and non-Abelian quasielectrons. Abelian quasi-
electrons carry a full flux quantum (that is, in creating
Abelian quasielectrons, one must lower the electric flux by one
quantum per quasielectron), while non-Abelian quasielectrons
carry only half of a flux quantum, like the non-Abelian anyonic
half-flux quasiholes of the Pfaffian state. In their paper, Ref. 34,
Bernevig and Haldane focus on systems with any number of
Abelian quasielectrons (all localized near the same position)
and systems with a single non-Abelian quasihole and a single
non-Abelian quasielectron (these are really excitons). Let us
start by reviewing the vanishing and clustering conditions for
the Abelian quasielectrons of the MR state, because they are
slightly simpler. In the following, the expression “forming a
cluster of n particles” denotes that n particles are at the same
positions. The requirements on an s-Abelian quasielectron
state (which is a state with s Abelian quasielectrons localized
near the same position) are that it vanishes when s + 1 clusters
of four particles are formed, and it vanishes when one cluster
of 2s + 3 particles is formed as the (s + 2)th power of the

difference between coordinates. In the special case of s = 1,
this becomes

P (z1,z1,z1,z1,z2,z2,z2,z2,z9, . . . ,zN ) = 0,
(14)

P (z1, . . . ,z1,z6, . . . ,zN ) ∼
N∏

j=6

(z1 − zj )3,

with the root partition {4 0 0 2 0 2 . . . 02}.
The root configurations and vanishing conditions for a

non-Abelian quasielectron-quasihole pair for the RRZk states
are also given explcitly in Ref. 34. The quasielectron-quasihole
candidate states for the MR state form angular momentum
multiplets L = 2,3, . . . ,N/2. The highest weight states of
these multiplets are defined by the fact that they have the
following root configurations:

L = N/2; {3 0 1 1 1 1 . . . 1 1 1},
L = N/2 − 1; {3 0 1 1 1 1 . . . 1 0 2},

(15)
...

L = 2; {3 0 1 0 2 0 . . . 2 0 2},
and by requiring in addition that they vanish for two clusters
of three particles and for a single cluster of four particles:

P (z1,z1,z1,z2,z2,z2,z7, . . . ,zN ) = 0,
(16)

P (z1, . . . ,z1,z5, . . . ,zN ) = 0.

These conditions can be generalized to several quasihole-
quasielectron pairs and also to an even number of non-Abelian
quasielectrons.46 The quasielectron-quasihole states satisfy a
further vanishing property, namely,

P (z1,z1,z1,z2,z2,z6, . . . ,zN )

∼ (z1 − z2)3
N∏

i=6

(z1 − zi)
2(z2 − zi)

2. (17)

This condition, in combination with the second condition in
Eq. (16) also uniquely determines the space of quasihole-
quasielectron pair wave functions. We compare our trial wave
functions for excitons and quasielectrons to those proposed by
Bernevig and Haldane in Sec. V B.

III. JAIN COMPOSITE FERMION PICTURE

A. CF quasielectrons and excitons

In this section, we give a short review of the treatment of
excitations over fractional quantum Hall plateaus based on
composite fermions (CF), as introduced by Jain.31 Composite
fermions provide an attractive physical picture and very
successful trial wave functions for the most prominent filling
fractions in the LLL. For a much more in depth review and
extensive references, see for instance Ref. 47.

Jain conjectured that states of strongly interacting electrons
can be understood in terms of states of noninteracting
or weakly-interacting composite particles, called composite
fermions. A composite fermion consists of a fermion (boson)
and an even (odd) number m of vortices. When moving in a
magnetic field, the attached vortices generate a Berry phase
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FIG. 1. (Color online) Sketch of the composite fermion mapping
in the case of two vortices attached [m = 2 in Eq. (18)].

that partly cancels the Aharonov-Bohm phase. Thus the CFs
behave as if they were subject to a reduced magnetic field,
B∗ = B − mφ0ρ with ρ being the density and φ0 the magnetic
flux quantum. The reduced magnetic field B∗ gives rise to
Landau-like levels, called � levels (�Ls) in the following,
which are separated by an effective CF cyclotron energy h̄w∗

c .
Based on this interpretation, Jain proposed a generalization

of the Laughlin wave function, describing the Fractional Quan-
tum Hall effect at filling fraction ν = n/(nm + 1) effectively
as an integer quantum Hall (IQH) state of CFs at filling ν∗ = n:

�CF
n

nm+1
(z1, . . . ,zN ) = PLLL

⎡⎣ N∏
i<j

(zi − zj )mφn(z1, . . . ,zN )

⎤⎦ .

(18)

Here, φn(z1, . . . ,zN ) is the IQH ground-state wave function
with ν∗ = n completely filled �Ls. The m Jastrow factors∏N

i<j (zi − zj )m attach m vortices to each particle, and PLLL

projects the wave function on the lowest Landau level (LLL).
The case m = 2 is illustrated in Fig. 1. In the particular case
n = 1, the Jain state (18) is identical to the Laughlin wave
function for filling ν = 1/(m + 1).

An important property of the CF picture is that it not only
describes the ground states accurately, but also gives a very
good description of the low-energy excitations, both neutral
(excitons) and charged (quasiholes and quasielectrons). The
trial wave functions for excitations are obtained by creating
excitations in the ν∗ = n IQH state of the CFs (again, see
e.g., Ref. 47 for a detailed review). Here, we don’t present the
method in full generality, but rather give some representative
examples.

The first example consists in creating an exciton with
energy one (in the effective CF cyclotron energy h̄ω�

c unit)
over the Laughlin state with filling fraction ν = 1/(m + 1)
[which corresponds to taking n = 1 in Eq. (18)]. To create this
excitation, a CF in φ1(z1, . . . ,zN ) [see Eq. (18)] is removed
from the angular momentum l state in the lowest � level (L�L)
and placed in the angular momentum j state in the second �

level, thus leaving a hole in the L�L [see Fig. 2(b)]. This

(a)

(c) (d)

(b)

FIG. 2. (Color online) (a) The bosonic ν = 1/2 Laughlin state in
the composite fermion picture. (b) An exciton over this state, with one
CF in the second �L and one hole in the L�L. (c) A quasielectron
excitation of the Laughlin state: as the number of flux quanta is
decreased by one unit, one CF has to occupy the second �L. (d)
A quasihole excitation of the Laughlin state: as the number of flux
quanta is increased by one unit, there is one hole in the L�L.

creates an exciton with total L̂z eigenvalue j − l,

�exc
CF (z1,..,zN )

= PLLL

⎡⎣φ̃j−l(z1, . . . ,zN ,z̄1, . . . ,z̄N )
∏
i<j

(zi − zj )m

⎤⎦
(19)

with, up to overall normalization,

φ̃j−l(z1, . . . ,zN ,z̄1, . . . ,z̄N )

= εi1,...,iN z0
i1
z1
i2

. . . zl−1
il

(
z̄il+1z

j+1
il+1

)
zl+1
il+2

. . . zN−1
iN

, (20)

where εi1,...,iN is an antisymmetric tensor, and there is an
implicit summation over repeated indices. The LLL projection
can be implemented by putting all z̄’s on the left and
performing the following replacement in Eq. (19):48

z̄ → 2
∂

∂z
. (21)

Therefore φ̃1(z1, . . . ,zN ,2 ∂
∂z1

,..,2 ∂
∂zN

) becomes an operator

acting on the product
∏N

i<j (zi − zj )m. In a similar way, we
can generate charged excitations with angular momentum l.
A quasielectron state with kinetic energy one is obtained by
decreasing the number of quantum fluxes in φ1(z1, . . . ,zN ) by
one and placing a CF in the angular momentum l orbital in
the second � level [see Fig. 2(c)] and finally projecting the
wave function to the LLL using (21). A quasihole state over
the Laughlin state is obtained by increasing the number of
quantum fluxes in φ1(z1, . . . ,zN ) by one. This creates a hole
in the L�L with a given angular momentum [see Fig. 2(d)].

The structure of the charged and neutral excitations over
the Jain states that we have just described has been confirmed
numerically by exact diagonalization of microscopic Hamil-
tonians with Coulomb and short-range interactions.47,49–57

There is also experimental evidence for this picture, see, e.g.,
Refs. 58,59.

Explicit counting formulas like Eq. (7) are not known
for the CF excitations. The only exception is the case of
quasihole states over the Laughlin states, where the number
of independent n quasihole states at angular momentum Lz
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above the ground state is just the number of independent
homogeneous symmetric polynomials of degree Lz in n

variables, with the maximal degree in each variable equal to
the number of electrons N .

Despite the fact that general analytic counting formulas are
not known, it is of course possible to compute the numbers of
independent charged and neutral excitations numerically, for
small numbers of excitations and electrons, as was done for
quasielectrons and quasiholes in Ref. 49 and for excitons in
Refs. 53,54,57, and 47.

B. Vanishing properties of composite fermion states

The vanishing properties of the states obtained from the
CF picture are directly given by the index of the highest
� level occupied:60 the bosonic states and the bosonic
counterpart of the fermionic states (fermionic states divided by
a Vandermonde determinant) constructed from n �L satisfy
Eq. (5) with k = n and r = 2. For instance, the bosonic
Laughlin state and its quasihole states [see Figs. 2(a) and
2(d)] reside completely in the L�L; thus they vanish when
two particles are brought to the same point. The quasielectron
and exciton states [see Figs. 2(b) and 2(c)] involve states
in the second � level; therefore they vanish when three
particles are brought to the same point. Moreover, the CF
quasielectron states over a Laughlin state also have vanishing
properties when multiple clusters are formed simultaneously:
the one-quasielectron states vanish when two clusters of two
particles are formed,61 whereas the two-quasielectron states
vanish when three clusters of two particles are formed.62

The trial wave functions for quasielectrons based on CFT
obey the same vanishing conditions for single and multiple
clusters as above. (Note that the vanishing properties do not
define the CF-based trial wave functions uniquely in contrast
to the approach by Bernevig and Haldane, where candidate
wave function are defined by their vanishing properties and
root configurations.) In fact, we expect the two approaches
to yield identical vector spaces of trial wave functions for
quasielectrons. In Ref. 63, this was shown for a single localized
quasielectron (up to boundary effects that are absent in the
spherical geometry). It should hold for several quasielectrons
as well, when using the exact projection to the LLL48 in the
CF construction. For neutral excitations of energy �2, the two
constructions can, in principle, differ, as the CF construction
involves higher �Ls. However, for neutral excitations of
energy two, we found that not to be the case. We have verified
all these assertions numerically for small system sizes.

IV. CONSTRUCTING THE ANSATZ WAVE FUNCTIONS

A. Description

From the composite fermion point of view, we can interpret
the ν = 1/2 Laughlin states in the two-layer description
of the bosonic MR ground state (8) as Jain ground states
corresponding to a ν∗ = 1 IQHE system of CFs (consisting
of a boson and one attached vortex). Therefore we propose
to construct the excitations over the bosonic MR ground state
by creating CF excitations over the Laughlin states in each
layer of Eq. (8). Trial wave functions for excitations over the

fermionic MR are obtained by multiplication of the bosonic
trial wave functions with an overall Jastrow factor.

The physical interpretation of this proposal is complicated
by the explicit symmetrization in Eq. (8). A number of
works addressing this issue have appeared, focusing on the
fermionic case. It was suggested by Ho in Ref. 64 that the
spin-polarized MR states can be obtained from the two-layer
331 state,65 whose spatial wave function does not include the
symmetrization, by introducing tunneling between the layers.
This proposal turned out to be problematic, and it was argued
for example in Refs. 6,66, and 67 that tunneling actually drives
the system to an Abelian phase, although at a special value of
the parameter that drives the tunneling, a modified version of
Ho’s model (with some three-body interaction added) does
describe a critical theory adjacent to the MR phase. Recently,
it was suggested in Ref. 67 that a weak MR phase can be
stabilized around this point, provided that one changes the
density of the system at the same time as introducing the
tunneling. While this is clearly an important issue, we will not
worry too much here about the precise physical mechanism
that provides the symmetrization (either for bosons or for
fermions), but rather simply write down trial wave functions
based on the two layer picture and subject these to numerical
scrutiny.

Explicitly then, we propose to write a general excitation
over the bosonic MR ground state as

�exc
Pf (z1, . . . ,zN )

= S
[
�

exc,1
CF (z1, . . . ,zN/2) × �

exc,2
CF (zN/2+1, . . . ,zN )

]
, (22)

where �
exc,1
CF and �

exc,2
CF are excitations (neutral, quasihole,

or quasielectron) of the Laughlin state within the CF picture.
For instance, we can create a two-quasielectron state with
z-angular momentum lz by taking the �

exc,i
CF states to be CF

quasielectron states with lz1 in layer 1 and lz2 in layer 2 (such
that lz1 + lz2 = lz).

Notice that in Eq. (22), the projection onto the LLL is
done separately for �

exc,1
CF and �

exc,2
CF . As mentioned, this

construction can be extended to the fermionic cases by
multiplying Eq. (22) by a global Jastrow factor. This operation
being invertible and L preserving, the number of excited states
and their angular momentum counting obtained in this way for
the fermionic states are the same as those for bosonic states.

It is important to note that obtaining the number of linearly
independent angular momentum multiplets is not trivial.
As in the case of quasiholes, the trial wave functions for
quasielectrons that we propose are not all linearly independent.
The LLL projection in each of the layers projects some
linear combinations of quasielectron states to zero and the
symmetrization between the layers often introduces further
linear dependencies. The same considerations apply also to
excitons.

We should also point out that the place where the projection
onto the LLL is performed is highly relevant. Several others
schemes would have been possible. For example, we could
have done the projection after the symmetrization. Considering
the fermionic states offers even more options since projection
can be performed before or after considering the additional
global Jastrow factor. Our choice is motivated by the physical
picture that the bosonic MR state can be seen as two
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ν = 1/2 CF layers, both for the ground state and the quasihole
excitations.

An alternative set of trial wave functions for quasielectrons
and excitons over the fermionic Pfaffian state, presented by
Sreejith et al. in Refs. 28 and 29 can in fact be considered
as a differing from the trial wave functions we propose in the
way that the LLL projection is done. Sreejith et al. define their
bilayer composite fermion (BCF) wave functions as follows
(omitting Gaussian factors),

�exc
BCF,ν= 1

2
(z1, . . . ,zN )

= A
[
�

exc,1
ν= 1

3
(z1, . . . ,zN/2) × �

exc,2
ν= 1

3
(zN/2+1, . . . ,zN )

]
×

N/2∏
i=1

N∏
j=N/2+1

(zi − zj ). (23)

Here, the A stands for total antisymmetrization. As in our
own proposal, the electrons have been split into two groups, or
layers. However, here, each layer is in a ν = 1/3 Laughlin (or
CF) state, with potentially some quasiholes, quasielectrons, or
excitons, all created according to the usual CF construction.
There is also repulsion between electrons in different layers,
but this only induces a single zero in the wave function when
two such electrons approach. Finally, the wave function is
antisymmetrized in order to make the electrons all indistin-
guishable. We have taken the number of electrons in each
layer equal to N/2 in the expression above, but these numbers
can in principle be different and must be different if the total
number of electrons is odd (as in Ref. 28). In order to compare
these wave functions to our own, we divide by a Jastrow factor
[recall that our own wave functions for fermions are obtained
by multiplying the wave functions (22) by a Jastrow factor].
This leads to the bosonic BCF wave functions

�exc
BCF,ν=1bosons (z1, . . . ,zN )

= S

⎡⎣�
exc,1
ν= 1

3
(z1, . . . ,zN/2)∏N/2

i<j=1(zi − zj )
×

�
exc,2
ν= 1

3
(zN/2+1, . . . ,zN )∏N

i>j=N/2+1(zi − zj )

⎤⎦ .

(24)

This expression obviously leads to the same ground state
and quasihole states as Eq. (22). However, for excitons and
quasielectrons, where the LLL projection in the individual
layers’ wave functions is nontrivial, there are differences,
because LLL projection does not commute with multiplication
by a Jastrow factor. Despite these differences, one would
expect that the two sets of wave functions have large overlaps,
probably describing the same universality class of FQH states.
In fact, in numerical studies of systems with a large number
of composite fermions, one usually does not use the canonical
LLL projection, but instead the method introduced by Jain and
Kamilla in Refs. 55 and 56. Similarly, for bosonic systems
with a large number of particles, one typically uses the
wave functions obtained by first multiplying with a Jastrow
factor, then projecting using the Jain-Kamilla method and
then dividing out the Jastrow factor again (this practice was
introduced in Ref. 68). If we were to follow both of these
conventions, then the wave functions (22) and (24) would
become identical. We have, in fact, done our numerical work

using the exact LLL projection in each layer so that we really
study different wave functions from those proposed by Sreejith
et al. However, as a check, we have also done some calculations
of the number of independent states for small system sizes
using the alternative LLL projection, which leads to the wave
functions of Sreejith et al. This gave essentially the same
results as obtained for our own wave functions, but different
results from those found by Sreejith et al. More detail on this
can be found in Sec. IV C.

B. Vanishing properties of the trial wave functions

As the vanishing properties of CF wave functions are
known (see Sec. III B), we can deduce a priori vanishing
properties of the two layer states we construct. If �

exc,1
CF

(�exc,2
CF ) vanishes when k1 (k2) particles are brought to

the same point, then �exc
Pf vanishes when a cluster of

k1 + k2 − 1 particles is formed. For example, a two quasi-
electron excitation of the MR state can be built from a
single quasielectron excitation, as depicted in Fig. 2(c),
in each layer. Such a state is automatically a zero-energy state
of the Hamiltonian H(5)

B [see Eq. (3)]. While such states cannot
be zero-energy eigenstates of H(3)

B , since the MR state is the
densest zero-energy ground state of this Hamiltonian, suitable
linear combinations of the quasielectron states may still be
zero-energy eigenstates of the H(4)

B Hamiltonian.
In a similar way, we can deduce the vanishing properties

when multiple clusters of electrons are formed in the states
constructed by Eq. (22) from the cluster vanishing properties
of the Laughlin quasielectron states. When �

exc,1
CF and �

exc,2
CF

are Laughlin states with one quasielectron, the resulting states
will vanish when a cluster of four particles and a cluster of
three particles are formed and when three clusters of three
particles are formed. If �

exc,1
CF and �

exc,2
CF are Laughlin states

with two quasielectron states, the resulting states must vanish
when a cluster of four particles and a cluster of five particles
are formed. This property is trivially satisfied since these states
already vanish when any five particles are brought to the same
point. However, one may also deduce non trivial vanishing
properties: such states vanish when two clusters of four and
a cluster of three particles are formed, or when one cluster of
four particles and three clusters of three particles are formed,
or when five clusters of three particles are formed.

The idea behind the construction (22) is the same as for
the CFT construction,32,33 see Sec. II B: both are inherently
two-layer constructions. Due to the similarities of the two
approaches in each layer, we expect that they give equivalent
descriptions of the low-energy excitations of the MR ground
state. In particular, one can show that they obey the same
vanishing properties as described above, and they yield
identical candidate wave functions for a single exciton as well
as for quasielectrons.

C. Implementation of state counting and overlap calculations

We use two different methods to generate our trial states
and compute overlaps. The first method calculates the wave
functions (22) in real space and computes the overlaps using
Metropolis integration. Real space techniques can be used to
compute composite fermion wave functions with over 100
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particles if the LLL projection of Refs. 55 and 56 is used.
However, the symmetrization procedure involves a number of
terms, which grows factorially with the number of particles N

and this limits the reachable size with this method to N = 16.
In our second method, we first compute Laughlin states

�exc
CF with the desired excitations in the CF picture using the

exact method for computing CF wave function explained in
Ref. 60. Then the states are symmetrized at the Fock space
level. Using this method, we were able to generate bosonic
states up to 20 particles. Using Schur polynomials that can
be generated using recursion formulas from Ref. 69, we can
multiply these wave functions by a global Jastrow factor at the
Fock space level, converting our bosonic states to fermionic
ones. This can be done for up to 14 particles (Hilbert spaces
of a few hundred thousands of independent states).

A major advantage of the Fock space method over the
real space method is that all calculations are done at the
machine precision and results are expressed in the n-body
basis. In the real space method, overlap calculations are
done by Monte Carlo integration and suffer from statistical
errors, which are much larger than machine rounding errors.
A potential advantage of the real space method is that it
makes multiplication by a Jastrow factor trivial, which means
fermionic calculations could, in principle, be done for up to 16
particles using this method.

We now describe our calculation of the number of linearly
independent trial wave functions at each value of Lz. Formula
(22) provides, for each value of Lz, and for each number of flux
quanta and quasielectrons or excitons, a set of wave functions
�i,i = 1, . . . ,d. These wave functions are usually not linearly
independent as both symmetrization and projection induce
linear dependencies. We want to find a basis of linearly
independent states χi,i = 1, . . . ,d ′ � d for the space spanned
by the �i . To do this, we compute the overlap matrix, given
by

Mij = 〈�i |�j 〉, (25)

and we diagonalize it. In the ideal case, the matrix M has
a number of eigenvalues that are clearly nonzero and a
number of eigenvalues that equal zero to numerical accuracy.
This actually occurs in all our calculations when we use
the Fock space method. Since M is Hermitian, there exists
a unitary matrix Q such that QMQ−1 is diagonal, that
is,
∑

j,k QijMjkQ
−1
kl = λiδil , where λi are the eigenvalues

of M . We now define χi =∑j Q̄ij�j and it follows that
〈χi |χj 〉 = δi,j λi . This implies that whenever λi = 0, we also
have χi = 0, giving a linear relation between the �i . The χi ,
which belong to nonzero eigenvalues λi 
= 0, form the sought
after orthogonal basis for the vector space spanned by the �i .
Hence, the dimension of the space spanned by the trial wave
functions �i is just the number of nonzero eigenvalues of the
overlap matrix M .

The method described above works very well for us when
we use the Fock space method of evaluating the wave functions
and overlaps. However, if we use the real space method to
calculate the overlap matrix, there are statistical errors in the
matrix that cause its spectrum to have a number of spurious
small but nonzero eigenvalues, which should be discarded to
obtain the correct counting of states. Moreover, it is important

to realize that the dimension of the space spanned by a
set of trial wave functions is not a quantity that is stable
under perturbation; random perturbation of a set of linearly
dependent wave functions �i will tend to make them all
linearly independent. Such perturbations may be introduced
for example by making a change in the way that lowest
Landau projection is implemented. In such cases, as long as
the spurious eigenvalues of M are small enough, one may
approximate the original trial wave functions �i very well
using only those vectors χi that correspond to the larger
eigenvalues. Explicitly, let us first define the orthonormal
basis vectors χ̃i = χi/

√
λi . We may expand each of the �i in

terms of these, that is, we may write �i =∑j cij χ̃j for some

coefficients cij . We then find that cij = 〈χ̃j |�i〉 = √λjQji .
Since Q is a unitary matrix, |Qij | � 1 and hence |ci,j |2 �
λj . Hence we see that it is an excellent approximation, in
terms of the quantum-mechanical inner product, to drop the
states corresponding to the small eigenvalues of M from our
description of the space spanned by the �i , as long as the sum
of the M eigenvalues of the dropped states is much smaller
than 1. In practice, we find in our calculations using the real
space method that it is always possible to make a cut in the
spectrum of M , which satisfies this condition very well, and
when this is done, we obtain the same counting of states as
that obtained using the Fock space method.

Once we have a basis of linearly independent states χ̃i ,i =
1, . . . ,d̃ for the Hilbert space HLz , we can compute overlaps
between this set of wave functions and another set of wave
functions obtained, for example, by exact diagonalization. To
do this, we need to generalize the notion of overlap between
single states to overlap between subspaces. If we have two
bases of normalized states φi,i = 1, . . . ,d and ηi,i = 1, . . . ,d

and we are interested to know if they generate the same
subspace, we can take the trace of the operator that projects
one of the bases into the other, i.e., we can define the (squared)
overlap between the two subspaces as

Overlap = 1

d

d∑
i=1

d∑
j=1

|〈φi |ηj 〉|2. (26)

This quantity (26) is a natural measure for the overlap between
two different subspaces. In particular, if the subspace generated
by both bases is the same, the overlap is equal to one, and if
they don’t generate the same subspace, it is easy to see that
Eq. (26) is less than one.

V. NUMERICAL RESULTS

In this section, we present the results of our numerical
calculations. In Sec. V A, we show that our ansatz wave
functions produce, for the boundary excitations on the disk,
the same counting formulas for quasiholes and quasielectrons.
We also conjecture a counting formula (for any value of Lz)
for two- and four-quasielectron states. In Sec. V B, we then
compute the root partitions (see Sec. II C) of our quasielectron
states and we show that our states share a number of properties
with the quasielectrons obtained by Bernevig and Haldane in
Ref. 61. Section V C contains a discussion on the relevance of
unbalanced states, which have different number of electrons
in the two layers. Finally, in Sec. V D, we show how well our
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TABLE I. Multiplicities of the angular momentum multiplets for n-quasielectron states. The dash symbol indicates that there is no state
and na stands for not available. The dimensions corresponding to the highest values of L in boldface stabilize when we increase the number of
particles and matches the dimensions given by the CFT describing the boundary excitations on the disk.

N/L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

n = 2 14 0 1 0 1 0 1 0 1 – – – – – – – – – – –
16 1 0 1 0 1 0 1 0 1 – – – – – – – – – –
18 0 1 0 1 0 1 0 1 0 1 – – – – – – – – –

n = 4 14 2 0 4 1 4 2 3 1 2 0 1 – – – – – – – –
16 3 0 4 2 5 2 5 2 3 1 2 0 1 – – – – – –
18 3 0 5 2 6 3 6 3 5 2 3 1 2 0 1 – – – –

n = 6 14 0 3 1 5 2 3 2 2 0 1 – – – – – – – – –
16 3 1 6 4 8 4 7 3 4 2 2 0 1 – – – – – –
18 0 7 4 11 8 12 9 11 6 8 4 4 2 2 0 1 – – –
20 na na na na na na na na na na na 7 8 4 4 2 2 0 1

n = 8 14 1 0 1 0 1 – – – – – – – – – – – – – –
16 2 0 3 1 3 1 2 0 1 – – – – – – – – – –
18 4 1 6 4 8 4 7 3 4 2 2 0 1 – – – – – –

construction describes the low-energy spectrum of both model
and realistic Hamiltonians. We also show that the subset of our
trial states, which vanish when a cluster of four electrons is
formed, is particularly successful in attaining low variational
energies and large overlaps with exact wave functions.

A. Multiplet counting for the trial wave functions

As discussed in Sec. IV A., both the projection and the
symmetrization can create linear dependencies between the
ansatz wave functions (22). We have computed, for each Lz and
for different numbers of particles, the dimension of the space
of linearly independent trial wave functions for the various
types of excitations. The calculations have been performed up
to N = 20 involving Hilbert spaces as large as 6 × 107. For
quasielectrons at high values of Lz, these dimensions match
perfectly with the values predicted by the CFT describing
the boundary excitations (low-energy excitations) of the MR
Pfaffian phase on the disk (see Sec. II A). Therefore our ansatz
wave functions for quasiparticles show the same topological
properties for quasielectrons as for quasiholes.

In Tables I, II, and III, we give the numbers of independent
states we have found for various numbers of quasielectrons
and excitons, for each value of the total angular momentum L,
and for different numbers of electrons.

Table I shows the numbers of independent multiplets of
our trial states with two to eight quasielectrons for N = 14,
16, and 18. Note that the dimensions corresponding to the
higher values of L (in boldface) stabilize when we increase the
number of particles. As explained in Sec. II A, they correspond
to the dimensions given by the CFT describing the boundary
excitations on the disk. Using Eq. (7), one may check that the
stable multiplicities in Table I are the same as those observed
in the high L sector of systems with two to eight quasiholes.
The number of multiplets of single exciton states is just the
same as the number of single exciton states over one of the two
layers of composite fermions. This was to be expected as the
trial wave functions for single excitons have an exciton in one
composite fermion layer and a ground-state wave function in
the other. We find that a system of N particles has no multiplets
at L = 0 and 1 and has a single multiplet at all subsequent L

values up to the maximal L value where a multiplet occurs,
which is L = N/2.

Table II shows the multiplicities corresponding to states
with a single exciton and two quasielectrons (top) and a
single exciton and two quasiholes (bottom). As in the case
of quasielectrons and quasiholes without excitons present, we
obtain the same numbers for quasielectrons and quasiholes
at high L, once again confirming the idea that the CFT and
TQFT describing the quasielectrons should be the same as
for the quasiholes. We may also conjecture a formula for the

TABLE II. Multiplicities of the angular momentum multiplets for a system with one exciton (in the second �L) over a two-quasielectron
ground state (top) and a system with one exciton (in the second �L) over a two-quasihole ground state (bottom).

N/L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12 2 3 6 7 8 6 7 5 3 2 1 – – – – – –
14 1 5 7 10 10 11 9 9 7 5 3 2 1 – – – –
16 2 5 10 11 14 14 14 12 12 9 7 5 3 2 1 – –

12 2 3 6 7 9 9 10 8 7 5 3 2 1 – – – –
14 1 5 7 10 11 13 12 13 11 9 7 5 3 2 1 – –
16 3 5 9 12 15 15 17 16 16 14 12 9 7 5 3 2 1
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TABLE III. Multiplicities of the angular momentum multiplets for a system containing excitons with effective CF energy 2.

N/L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12 5 3 10 7 13 9 13 8 9 4 4 1 1 – – – –
14 6 4 13 10 18 13 18 13 15 9 9 4 4 1 1 – –
16 7 5 16 13 23 18 24 18 22 15 16 9 9 4 4 1 1

bold numbers in these tables. They equal the integer parts
of (p + 1)(p + 2)/6, where p is the position of the L value
counting from the highest L for which a multiplet of trial states
exists. Alternatively, we may characterize these numbers by
the generating function x/[(1 − x)2(1 − x3)].

Table III shows the multiplicities corresponding to a system
with up to two excitons. Observe in the table that the stable
multiplicities occur in pairs and that they are simply the squares
of the integers (1, 4, 9, 16, etc.). Double excitons can, in
principle, occur in three different ways. One may excite a
particle to the first unoccupied �L in each of the composite
fermion layers, or one may excite two particles in a single
layer, or one may excite a single particle up to the second
unoccupied �L. We have considered all of these possibilities,
as they all occur at the same naive composite fermion energy.
However, it is worth noting that, to obtain the entire set of
linearly independent trial wave functions, one does not actually
need to include the states with two excitons in the same layer
or with particles excited to the second unoccupied �L. We
checked numerically that the states constructed in this way are
already contained in the space of trial wave functions with a
single exciton in each layer.

We have already conjectured counting formulas for the
stable numbers of multiplets of quasielectron and exciton states
at high L, relating quasihole and quasielectron states. However,
for two- and four-quasielectron states, we may go further
and conjecture counting formulas for any L value. Observe
that, before projection and symmetrization, the number of
independent n-quasielectron states (considering second �L
quasielectrons only) in a system with N particles, is the same
as the number of independent n-quasihole states in a system
with N ′ particles, where N ′ is given by

N ′ = N − 2n + 4. (27)

Of course, the naive counting of states is modified as the
projection and symmetrization operations introduce linear de-
pendencies between the ansatz wave functions. Nevertheless,
for all cases we have checked, it turns out that after projection
and symmetrization, these countings, though modified by
projection and symmetrization, are still equal for quasiholes
and quasielectrons, for all L, in the particular cases of two-
and four-quasihole/quasielectron states (we checked this up to
N = 18). We conjecture that this equality holds for all N . For
higher numbers of quasiholes/quasielectrons, the countings are
no longer the same at all L values. However, by inspection, we
note that even in these cases, equality of multiplicities between
quasihole and quasielectron states still holds for some L values
beyond the stable ones.

Some further relations between multiplet countings at dif-
ferent numbers of particles and different numbers of electrons
can be conjectured using particle hole duality in the composite

fermion � levels. One may naively conjecture that the same
counting should be obtained for a system with N particles and
n quasielectrons as for a system with 2N − 3n + 4 particles
and 2(N/2 − n + 2) quasielectrons (this is true before LLL
projection and symmetrization). We observe in our data that
this holds for n = 2 and 4, but not beyond four quasielectrons.

B. Vanishing properties and comparison to
Bernevig-Haldane construction

Now we come back to the Bernevig-Haldane quasielectron
and exciton states introduced in Sec. II C and we will compare
them with our ansatz wave functions. The easiest comparison
to make is between our one-exciton states and those of
Bernevig and Haldane, which have a single non-Abelian
quasielectron and a single non-Abelian quasihole. We have
checked that our single exciton states have the same root
partitions as the Bernevig-Haldane excitons [given explicitly in
formula (15)]. We also find that they satisfy the same vanishing
properties (16) and (17). Hence, for single excitons, our trial
wave functions are in fact the same as those proposed by
Bernevig and Haldane.

For wave functions with multiple excitons or with only
quasielectrons, it is a bit more complicated to make a
comparison between our trial wave functions and the ones
proposed by Bernevig and Haldane, if only because the root
partitions for such states are not given explicitly in Ref. 34.
However, it is clear that, in these more general cases there
can be some mismatch between the two constructions. For
example, let us compare our construction to Bernevig and
Haldane’s construction for non-Abelian quasielectrons.

As discussed in Sec. IV B, our two-quasielectron states
vanish when five particles cluster together. They also vanish
when three clusters of three particles are formed and when two
clusters, one of four particles and one of three particles, are
formed. These vanishing properties are also satisfied by our
two-exciton states. However, the non-Abelian quasielectron
states of Ref. 34 vanish already when a single cluster of
four particles is formed and also when two clusters of three
particles are formed. It is easy to check directly that not all
of our trial wave functions satisfy these stronger vanishing
properties, so we obtain a mismatch with Bernevig and
Haldane’s construction.

It is interesting to look at subspaces of our space of trial
wave functions that do satisfy stronger vanishing properties,
such as those required by Bernevig and Haldane. One motiva-
tion for this is that it may be (naively) expected that trial wave
functions, which vanish already when four particles cluster
together, may have lower variational energy (for repulsive
potentials) than wave functions that don’t vanish until a cluster
of five particles is formed. This indeed turns out to be the case
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TABLE IV. Multiplicities of angular momentum multiplets for
n-quasielectron states, which are also zero modes of H(4)

B .

N / L 0 1 2 3 4 5 6 7 8

n = 2 14 0 1 0 1 0 1 – – –
16 1 0 1 0 1 0 1 – –

n = 4 14 1 0 2 0 1 – – – –
16 2 0 2 1 2 0 1 – –

(see Sec. V D). We have therefore studied in some detail the
subspaces of our spaces of trial wave functions that consists
of those states that vanish when a cluster of four particles is
formed. In other words, this is the space of zero modes of the
H(4)

B Hamiltonian inside our spaces of trial wave functions.
We give a sample of the results for the counting of such states
in Table IV. By comparison to Table I, we see immediately
that, indeed, not all our trial states are zero modes of H(4)

B . In
particular, the trial states at the highest angular momenta seem
never to vanish when four particles cluster together. We find
similar results to those presented in Table IV for the counting
of multiplets of two-exciton states, which are also zero modes
of H(4)

B . Again, not all our trial states for double excitons are
zero modes of H(4)

B and, in particular, the trial states at the two
highest angular momenta never vanish when four particles
cluster together. For the case of double excitons, we can give
an exact description of the numerical results for multiplet
counting by a formula that relates the number of multiplets,
which are zero modes of H(4)

B to the total number of multiplets.
We observe that the total number of multiplets equals the
number of multiplets of H(4)

B zero modes for L = 0,1,2,3
and then from L = 4 upward, the number of multiplets of
H(4)

B zero modes is lower than the total number of multiplets,
by min{[L/2 − 1],[(N − L)/2 + 1]}, where min denotes the
minimum and the square brackets denote the integer part.

We also calculated the root partitions for the two-
quasielectron states, which are also zero modes of H(4)

B . For
N = 16, these are given in Table V. These root configurations
correspond to the ones predicted by Bernevig and Haldane’s
construction46 for states with two non-Abelian quasielectrons.

C. Unbalanced states

So far, we have considered only balanced states, that is,
states with the same number of electrons in both CF layers.

TABLE V. Highest root configurations of the zero-energy states
of H(4)

B in each Lz sector of our space of two-quasielectron trial states
at N = 16.

Lz highest root configuration

0 3 0 1 1 1 1 1 1 1 1 1 1 0 3
1 2 1 1 1 1 1 1 1 1 1 1 1 0 3
2 2 0 2 1 1 1 1 1 1 1 1 1 0 3
3 2 0 2 0 2 1 1 1 1 1 1 1 0 3
4 2 0 2 0 2 0 2 1 1 1 1 1 0 3
5 2 0 2 0 2 0 2 0 2 1 1 1 0 3
6 2 0 2 0 2 0 2 0 2 0 2 1 0 3

However, there is no strong reason for this restriction a priori.
In fact, for odd numbers of electrons, unbalanced states with
an odd number of electrons in one layer and an even number in
the other layer are unavoidable, and as shown in Ref. 28, these
indeed give a good description of the lowest band of states
for an odd number of electrons in the MR Pfaffian phase. In
this paper, we are looking at systems where the total number
of electrons is even, and in this case, we find that, at least in
the low-energy sector of the theory (defined with respect to the
CF energy), unbalanced states don’t introduce new physics and
can be ignored. The rest of this section is devoted to explaining
this in some detail and can be skipped on first reading.

We will deal with unbalanced quasihole states in the bosonic
case, but the same results hold for fermions. Consider a 2n-
quasihole state with N = N1 + N2 particles, where N1 and
N2 are the number of particles in the first and second layers,
respectively, and suppose that N1 > N2. We will require that
both layers feel the same magnetic field. This requirement can
be physically motivated by the idea that the Pfaffian phase can
really be viewed as some kind of modified two-layer system.
The largest exponent of the coordinates in the first layer, Nφ1,
must then be equal to the corresponding exponent Nφ2 in the
second layer. Note also that these two exponents must equal
the total number of fluxes in the system, Nφ = N − 2 + n.
Hence, we have

Nφ1 = N − 2 + n = 2N1 − 2 + (N2 − N1 + n),
(28)

Nφ2 = N − 2 + n = 2N2 − 2 + (N1 − N2 + n).

From this equation, it is clear that the second layer corresponds
to a ν = 1/2 Laughlin state with N1 − N2 + n quasiholes. For
the first layer, we have two different cases (depending on the
values of N1 and N2) corresponding to a ν = 1/2 Laughlin
state with either N1 − N2 + n quasiholes (if N2 − N1 + n >

0) or N1 − N2 + n quasielectrons (if N2 − N1 + n < 0). In
the first case, the two layers of the trial wave function
both contain ν = 1/2 Laughlin quasihole wave functions.
These 2n-quasihole states have the property that they vanish
when three particles are at the same position (see Sec.
II C). Therefore, because the balanced 2n-quasiholes already
span the complete set of wave functions with this vanishing
property, we can conclude that the unbalanced quasiholes are
linear combinations of the balanced ones and we don’t need to
consider them in our construction.

The case where one layer has quasiholes and the other
quasielectrons is more interesting. In particular, in cases with
a single quasielectron in one of the layers, these unbalanced
states have the property that they vanish whenever a cluster of
four particles is formed. This vanishing property is different
from the usual vanishing property for balanced quasihole
states, which already vanish when three particles form a cluster.
We have verified that these unbalanced states are linearly
independent of the balanced wave functions and therefore
they are new quasihole states. However, we have two reasons
to believe that these unbalanced quasiholes are not relevant
to the lowest-energy sector of quasihole states. First of all,
we can use the composite fermions’ kinetic energy, read
off from the number of particles in each �L, as a guide.
The new states include higher �L contributions, while the
balanced quasiholes have composite fermions only in the
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lowest �L, and so, at least naively, we can focus on balanced
quasiholes in any low energy description. Secondly, the fact
that the new quasihole wave functions vanish only when four
particle positions coincide will probably mean they have higher
variational energies for realistic repulsive interactions when
compared to balanced quasihole states that vanish already
when three particle positions coincide.

For unbalanced quasielectron states, it can be shown, in
a similar way as we did for unbalanced quasiholes, that
depending on the values of N1 and N2, we can have either
quasiholes or quasielectrons in the second layer, while in the
first layer, we always have quasielectrons. It is easy to see
that, in contrast to the situation for unbalanced quasiholes, the
unbalanced quasielectrons can, for suitable values of N1, N2,
and n, produce states with the same �L energy as the balanced
ones. However, it is also easy to see that this only starts to occur
when the overall number of quasielectrons is at least four.
In the four-quasielectron sector, we have compared balanced
and unbalanced four-quasielectron states with the same �L
energy and we have found that the unbalanced states are linear
combinations of the balanced ones. Therefore they can be
omitted from our construction. We have similarly investigated
a number of other cases where unbalanced quasielectron
states with the same �L energy as the balanced quasielectron
states exist, and in all cases considered, the unbalanced states
were already contained in the space spanned by the balanced
states.

Finally, for the exciton sector (where n = 0), it is easy to
see that unbalanced excitons correspond to states with N1 − N2

quasielectrons in the first layer and with the same number of
quasiholes in the second layer, in addition to any excitons that
may exist within the layers (this was also noted in Ref. 28). It
can be shown that, also in this case, for certain values of N1

and N2, it is possible to construct low-energy unbalanced states
with the same � level energy as the balanced excitons studied
before. For single excitons, this does not happen, as long as N

is even, but for double excitons, with �L energy 2, there are
unbalanced states at the same �L energy with N1 − N2 = 2:
two quasielectrons in the first layer and two quasiholes in
the second layer. However, we checked that these unbalanced
excitons are linear combinations of the balanced two-exciton
states and once again we do not need to include them in our
construction.

D. Comparison of spectra and overlaps

To test our construction, we now compare the exact spectra
of realistic and model Hamiltonians in the LLL with the
spectra of these same Hamiltonians in the spaces spanned
by our trial wave functions. We do this both for bosons and for
fermions. For the bosonic states, we use the H(3)

B Hamiltonian,
for which the MR state and its quasihole states are zero-energy
eigenstates, as our model Hamiltonian. We use the H(2)

B

Hamiltonian as our realistic Hamiltonian. This is well justified,
since in most experiments with ultracold bosonic gases, the
relevant interaction is s-wave scattering,70 which is modeled
well by this potential. For the fermionic states, the realistic
interaction is the Coulomb interaction in the second Landau
level. We considered this interaction with the first relevant
pseudopotential V1 (which describes the shortest range part of

the interaction71) shifted by δV1 = 0.035, so that the overlap
between the MR ground state and the exact ground state is
maximal. Since the fermionic MR state and its quasiholes
states are zero-energy eigenvectors of H(3)

F the three-body
hollow core interaction21 (the analog of H(3)

B for fermionic
systems), we take this as our model Hamiltonian for the
fermionic states. Studies of spectra and overlaps comparable
to the one presented here can be found in Ref. 23 for the
bosonic quasiholes states and in Ref. 22, for the fermionic
ones. A recent paper by Sreejith et al.,29 also presents a
number of results on spectra and overlaps closely related to
those presented here, for a slightly different family of wave
functions (see Sec. IV A for details).

In Fig. 3, we show spectra for systems with two quasi-
electrons. The top panels of Fig. 3 show the spectra of H(3)

B

and H(2)
B , in the full Hilbert space and in the space spanned

by our trial states for two quasielectrons, for N = 16 bosons
at Nφ = 13. The lower panels of Fig. 3 show the spectra of
H(3)

F and of the second LL Coulomb Hamiltonian with slightly
modified V1 pseudopotential, again in the full Hilbert space and
in the space spanned by our trial states for two quasielectrons,
now for N = 14 fermions at Nφ = 23. All panels also show
the spectrum of the relevant Hamiltonians in the space of trial
states for two quasielectrons that have the additional property
that they are zero modes of H(4)

B (for bosons) or of H(4)
F (for

fermions).
In all cases, the low-lying part of the spectrum in the

space of trial wave functions is similar to the low-lying part
of the full spectrum. However, for bosons, the quasielectron
states at the highest angular momentum (in this case L = 8)
have anomalously large energy and do not obviously match
anything in the exact spectra. For fermions, the highest angular
momentum states (now at L = 7) also have relatively high
energy, though the difference with the other trial states is not
as pronounced as in the case of bosons. These high angular
momentum states are also the only trial wave functions that do
not vanish when four particles are brought to the same point.
More precisely, in the case of fermionic trial wave functions,
the corresponding bosonic trial wave function does not vanish.
Thus it seems that the four-body vanishing property satisfied
by the trial wave functions at lower L may play a role in
obtaining good agreement between trial and low-energy states,
as predicted by Haldane and Bernevig.34 Note that all trial
wave functions vanish when five particle positions coincide.
We may also note that for bosons, the low-energy part of the
spectrum of the model Hamiltonian H(3)

B is obviously better
reproduced than that of the realistic H(2)

B Hamiltonian. For
fermions, the quality of approximation of the realistic and
model Hamiltonians is comparable.

We have also calculated overlaps between the trial states
and the corresponding low-lying states of the Hamiltonian.
The results for bosonic states can be found in Table VI and the
results for fermions in Table VII. In both cases, the results
for two-quasielectron states are in the first two columns.
When we compare our bosonic trial wave functions for two
quasielectrons to the lowest H(3)

B eigenstates, the overlaps
are all over 0.93, except for the L = 8 state for which the
overlap is 0.3. The overlaps with the lowest H(2)

B eigenstates
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FIG. 3. (Color online) Top left: spectra for N = 16 and two quasielectrons (Nφ = 13) of the Hamiltonian H(3)
B in the full Hilbert space

(dashes) in the full space of trial two-quasielectron states (crosses) and in the space of trial states that vanish when four particles are brought to
the same point (dots). Top right: spectra of H(2)

B in the same spaces. Bottom left: spectra of H(3)
F for N = 14 and two quasielectrons (Nφ = 24)

in the analogous spaces for fermions. Bottom right: spectra of the second LL Coulomb Hamiltonian with δV1 = 0.035 in the same spaces.

are lower across the board, except at the highest angular
momentum, but there the overlap is still low at 0.4. This
result is consistent with the fact that the spectrum of H(2)

B

is reproduced quite a bit worse than that of H(3)
B (see Fig. 3).

For fermions, the overlaps of the trial wave functions with

the spectrum of the model Hamiltonian H(3)
F are not as high

as the overlaps for bosons, with the lowest overlap equal to
0.83 if we exclude the L = 7 state, which is not a zero mode
of H(4)

F . However, in the fermionic case, the overlaps for the
realistic Coulomb Hamiltonian are comparable to those for

TABLE VI. Overlap between the space spanned by quasielectron states for N = 16 and the corresponding low-energy space with respect
to the H(3)

B and H(2)
B Hamiltonian in each L sector. “Four body” indicates that only states are taken into account that vanish when four particles

are at the same position. For two quasielectron states, the only state that does not have this vanishing properties is the state at L = 8. We can
notice that overlaps with this state are much smaller than the other ones. A dash means that there is no state for the corresponding L value.

L H(3)
B , 2qe H(2)

B , 2qe H(3)
B , 4qe H(2)

B , 4qe H(3)
B , 4qe four-body H(2)

B , 4qe four-body H(3)
B , one ex H(2)

B , 1 ex

0 0.985 0.915 0.619 0.527 0.754 0.613 – –
1 – – – – – – – –
2 0.970 0.836 0.576 0.521 0.895 0.770 0.273 0.181
3 – – 0.580 0.469 0.927 0.772 0.917 0.541
4 0.969 0.734 0.542 0.490 0.891 0.546 0.972 0.480
5 – – 0.510 0.497 – – 0.984 0.798
6 0.935 0.672 0.520 0.478 0.964 0.809 0.985 0.760
7 – – 0.378 0.348 – – 0.984 0.798
8 0.312 0.410 0.412 0.397 – – 0.983 0.607
9 – – 0.415 0.348 – – – –
10 – – 0.470 0.463 – – – –
11 – – – – – – – –
12 – – 0.013 0.167 – – – –
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TABLE VII. Overlap between the space spanned by fermionic quasielectron states for N = 14 and the corresponding space of low-energy
states with respect to H(3)

F and H̃C , the Coulomb interaction in the second LL Hamiltonian +δV1 = 0.035 in each L sector. A dash means that
there is no state for the corresponding L value.

L H(3)
F , 2qe H̃C , 2qe H(3)

F , 4qe H̃C , 4qe H(3)
F , 4qe four-body H̃C , 4qe four-body H(3)

F , one ex H̃C , one ex

0 – – 0.836 0.839 0.955 0.973 – –
1 0.903 0.792 – – – – – –
2 – – 0.791 0.757 0.629 0.732 0.133 0.026
3 0.929 0.910 0.571 0.003 – – 0.471 0.214
4 – – 0.638 0.568 0.911 0.947 0.883 0.710
5 0.830 0.840 0.679 0.690 – – 0.958 0.821
6 – – 0.617 0.597 – – 0.947 0.738
7 0.593 0.621 0.299 0.569 – – 0.943 0.817
8 – – 0.660 0.473 – – – –
9 – – – – – – – –
10 – – 0.835 0.708 – – – –

the model Hamiltonian. Also, the potentially anomalous state
at the highest L value (here L = 7) has considerably better
overlap in the case of fermions, reaching 0.62 for the Coulomb
Hamiltonian. Nevertheless,2 it still has much lower overlap
than the trial states at lower L values.

We similarly investigated systems with four quasielectrons.
In Fig. 4, we show the spectra for these systems. The top
panels again show the spectra of H(3)

B and H(2)
B , in the full

Hilbert space and in the space spanned by our trial states
for four quasielectrons, for N = 16 bosons at Nφ = 12. The
lower panels show the spectra of H(3)

F and of the second LL
Coulomb Hamiltonian for N = 14 fermions at Nφ = 23. In
both cases, the number of trial states generated is much higher
than for two quasielectrons. Only a few of these states vanish
when a cluster of four particles is formed. As in the case of two
quasielectrons, these states belong to the low-energy part of the
spectra. Overlaps between fixed L subspaces spanned by four-
quasielectron trial states and subspaces of lowest-energy states
of the Hamiltonians at the same L value are given in the third
and fourth columns of Tables VI and VII. Overlaps between
the subspaces of four-body vanishing states and subspaces
of lowest-energy states of the Hamiltonians are shown in the
fifth and sixth columns of these tables. The overlaps for the
four-body vanishing states are considerably higher than those
for the full set of trial states and indeed it is also easy to see from
the spectra that the four-body vanishing states are among the
lowest-energy trial states and certainly give a very economical
description of the lowest-energy part of the full spectrum. For
bosons, there even appears to be a low-energy “band” of states
at L = 0, 2, 4, and 6, which can be described by a subset of
the trial wave functions with the four-body vanishing property.
On the other hand, it is obvious from the spectra, especially
from those for fermions, that the full set of trial wave functions
does give a reasonable description of a much larger part of the
low-energy spectrum than the four-body vanishing states.

We have examined our construction of exciton states by the
same means. We consider the two lowest effective cyclotron
energies here, i.e., exciton states with effective composite
fermion energy up to 2 in units of the effective cyclotron
energy of the composite fermions. The spectra of the different
Hamiltonians in the spaces spanned by the one-exciton and

two-exciton trial states and in the full Hilbert space are shown
in Fig. 5 for bosons and in Fig. 6 for fermions. Overlaps
between single exciton states and low-energy states in the full
Hilbert space are given in Table VI for bosons and in Table
VII for fermions.

Single excitons (with effective energy 1) are obtained when
one of the liquids is in the Laughlin state while the second
is in a state excited over the Laughlin state with one exciton.
These states naturally vanish when four particles are brought
to the same point (see Sec. IV B). In the case of the model
Hamiltonians H(3)

B and H(3)
F , the magnetoroton-like branch

is remarkably well reproduced by these one-exciton states,
both in the spectra and in the overlaps. For the realistic
Hamiltonians, the performance of the one-exciton trial wave
functions is less impressive, but still quite reasonable.

As discussed in Sec. V A, all two-exciton states can be
generated by considering only the case when both liquids are in
a one-exciton state. In this case, the a priori vanishing property
is a five-body cancellation. However, most of the states also
vanish when four particle are brought to the same point (see
Sec. V A for details). The different spectra in the space of two-
exciton states with the four-body vanishing property are also
shown in Figs. 5 and 6. Due to the large number of trial states
generated and the large number of exact low-energy states of
the various Hamiltonians involved, it is difficult to make a
meaningful quantitative comparison of the different spectra,
and so we have not listed overlaps for two-exciton states.
However, we can see from the spectra that our construction
behaves well with respect to the energy of model and realistic
Hamiltonians, in the sense that, as we consider more trial
states, we manage to describe more of the lower-energy part
of the spectra.

VI. DISCUSSION

We have proposed trial wave functions for charged and
neutral excitations of the MR Pfaffian phase, tested these
numerically and compared our construction to existing pro-
posals. Despite what seems like a very different method of
construction, we find that our wave functions are precisely
the angular momentum eigenstates, which appear in the
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FIG. 4. (Color online) Top left: spectra for N = 16 and four quasielectrons (Nφ = 12) of the Hamiltonian H(3)
B in the full Hilbert space in

the space of trial four-quasielectron states and in the space of trial states that vanish when four particles positions coincide. Top right: spectra
of H(2)

B in the same spaces. Bottom left: spectra of H(3)
F for N = 14 and four quasielectrons (Nφ = 23) in the analogous spaces for fermions.

Bottom right: spectra of the second LL Coulomb Hamiltonian with δV1 = 0.035 in the same spaces.

trial wave functions for localized quasiparticles and excitons
proposed by Hansson et al..32 On comparing with the trial
states based on vanishing properties proposed by Haldane and
Bernevig,34 we find that our single exciton wave functions
coincide with theirs, but our quasielectron wave functions
do not. Finally, our construction is very similar to a CF-
based construction by Sreejith et al.29 and we show that
the difference can be viewed as a change in the LLL
projection.

As one of our main results, we find that the counting of
large L multiplets of independent trial wave functions in our
construction is the same for quasiholes and quasielectrons,
supporting the idea that quasiholes and quasielectrons are
described by the same CFT and TQFT. This result is in
disagreement with the claim of Sreejith et al. in Ref. 29 that
the counting of quasielectron states is different from that of
quasiholes. While the trial wave functions of Ref. 29 differ
from ours in the details of the LLL projection, this is not the
explanation of the disagreement, as we have checked for small
systems that, with the method detailed in Sec. IV C, we find
the same quasielectron multiplet countings for both types of
trial states.

We also tested how well our trial wave functions reproduce
the spectra of idealized three-body Hamiltonians and of more
realistic Hamiltonians, both for bosons and for fermions.

We find that the low-lying parts of the energy spectra for
the three-body Hamiltonians are reproduced very well when
diagonalizing these Hamiltonians in the spaces of trial states
for quasielectrons and excitons. This is also reflected in high
overlaps between the low-lying eigenstates in the spectra,
especially for two-quasielectron and single exciton states.
For bosons, the trial wave functions reproduce the spectra
quite a bit less well in the case of the more realistic H(2)

B

Hamiltonian, though the agreement between the spectra in the
full space and trial spaces and the overlaps are still reasonable.
For fermions, it appears that the agreement between our trial
wave functions and the eigenstates of the second Landau level
Coulomb Hamiltonian (with slightly shifted δV1 to stabilize a
MR Pfaffian phase) is roughly equally good as the agreement
between our trial states and the eigenstates of the model
three-body Hamiltonian.

It would be of interest to perform a detailed comparison
between our results for the spectra and overlaps of the
fermionic wave functions and those in Ref. 29, but this is
not completely straightforward. Sreejith et al. use the Coulomb
Hamiltonian without the shift in the pseudopotential V1 that we
use to stabilize the Pfaffian phase. Also, the overlaps presented
in Ref. 29 are overlaps between the lowest-energy state of the
Hamiltonian in the space of trial wave functions at a given
value of L and the lowest-energy state of the Hamiltonian in
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FIG. 5. (Color online) Spectra for bosons at N = 16 and Nφ = 14. Top left: spectrum of H(3)
B in the full Hilbert space (dashes) and in the

space spanned by our one exciton trial states (dots). Bottom left: spectra of H(2)
B in the same spaces. Top right: spectra of H(3)

B in the full Hilbert
space in the space of our two-exciton trial states (crosses) and in the space of two-exciton trial wave functions, which are zero modes of H(4)

B

(dots). Bottom right: spectra of H(2)
B in the same spaces.

the full Hilbert space at the same value of L. We present instead
the overlap (26) between the full space of trial wave functions
at a given L value and a space of low-energy eigenstates of
the Hamiltonian, which has the same dimension. We think that
our approach is more consistent to probe the accuracy of an
excitation manifold construction. Nevertheless, we checked,
up to the definition of the overlap (we use |〈�1|�2〉|2 instead
of |〈�1|�2〉|), that our results are in agreement with those of
Ref. 29 for the two and four quasielectrons case with the H(3)

F

Hamiltonian.
While our trial wave functions do reproduce the low-lying

parts of the spectra with at least reasonable success for each
of the Hamiltonians considered, it is also clear that many of
the trial states have high variational energies and could be
dispensed with. In fact, we observe that there is a subspace
of our space of trial wave functions that typically have much
better variational energies and overlaps compared to the other
trial wave functions, especially in the case of bosons. This
is the space of trial wave functions with four-body vanishing
properties, or more precisely, the space of zero modes of H(4)

B

for bosons and the space of zero modes of H(4)
F for fermions.

This observation suggests that it is a good idea to construct trial
wave functions based on their vanishing properties, a technique
already employed by Bernevig and Haldane.34 It is important
to note, however, that one must employ more complicated
vanishing requirements than those given by Bernevig and
Haldane if one wishes to describe arbitrarily large numbers

of quasielectrons. One reason for this is that, as one decreases
the number of flux quanta Nφ in the system (at fixed N ), from
the MR ground-state’s flux of Nφ = N − 2 (for bosons), one
eventually reaches values of Nφ where no states exist that
vanish when four particle positions coincide. This happens
for bosons when Nφ < 2

3N − 2, the flux of the bosonic k = 3
Read-Rezayi state. One might argue that, in a real system,
N is very large and one would never have to worry about
systems with this many quasielectrons. However, in the small
systems that are used in numerical studies, the number of
four-body vanishing states can start decreasing already at
a relatively modest number of quasielectrons (especially if
further vanishing requirements are imposed) and thus one
cannot hope to extract the correct large N limit of the counting
of multiplets of quasielectrons from numerical calculations
on such states. Also, it must be noted that for fermions the
difference in overlaps and energies between states with the
four-body vanishing property and other low-lying trial states
is less pronounced than for bosons. It seems that the four-body
vanishing property does guarantee good variational energy,
but absence of this property does not mean that the energy or
overlap will necessarily be bad.

We will now make some remarks on future directions for
this line of research. All the work done here can be repeated
for systems with an odd number of electrons (necessarily
with different numbers of electrons in each layer). No results
on multiplet counting have so far been published for such
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FIG. 6. (Color online) Spectra for fermions at N = 14 and Nφ = 25. Top left: spectra of H(3)
F in the full Hilbert space (dashes) and in the

space spanned by our one-exciton trial states (dots). Bottom left: spectra of the second LL Coulomb interaction with δV1 = 0.035 in the same
spaces. Top right: spectra of H(3)

F in the full Hilbert space, in the space of our two-exciton trial states (crosses) and in the space of two-exciton
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F (dots). Bottom right: spectra of the second LL Coulomb interaction with δV1 = 0.035 in the
same spaces.

systems. For fermions, overlaps and spectra for the lowest-
lying neutral states will likely be similar to those presented in
Ref. 28.

All constructions presented here can be generalized
straigthforwardly to the Bonderson-Slingerland hierarchy
states,72,73 which potentially describe all observed filling frac-
tions for fermions in the second Landau level. The ground-state
wave functions of the Bonderson-Slingerland states contain the
bosonic Pfaffian wave function as a factor; hence quasiparticles
and excitons on this Pfaffian factor provide a natural set of trial
wave functions for excitations of the Bonderson-Slingerland
states.

Other states, to which our construction generalizes natu-
rally, are the non-Abelian condensate states of Ref. 74. These
can, in fact, be interpreted as double layer states with a Jain
CF state in each layer, even though their construction is via
CFT. The BCF states proposed in Ref. 28 are related to
the states in Ref. 74 by a change of LLL projection, in the
same way that their Pfaffian trial wave functions relate to the
trial states presented here. We therefore expect, in line with
the predictions of Ref. 74, that they will have quasiparticle
multiplet countings at large L described by parafermionic
CFTs.

Similarly, by working with k composite fermion layers
instead of just two (still with symmetrisation over all layers),
the construction presented here can be used to produce

candidate quasiparticle and exciton wave functions for the
entire series of Read-Rezayi states.24 When k > 2, there is
actually still an open question with regard to quasiholes in
this case; while it is very plausible,75 it has not been strictly
proven that the quasihole wave functions produced using the
k-layer picture of these states and those that come from the
description of the states in terms of vanishing properties are
equivalent. That is, the layered wave functions satisfy the
required vanishing properties, but it has not been proven
that the angular momentum eigenstates, which occur in their
expansion, span the full space of states with these vanishing
properties.

One may also define a version of the bilayer com-
posite fermion states of Ref. 29 that utilizes an LLL
projection more similar to the one used in the current
work. The bosonic versions of these wave functions would
simply be the symmetrized product of two composite
fermion wave functions, where each of the composite
fermion layers is at an effective filling ν∗ = n, with n > 1
integer (the case n = 1 with single flux attachment was studied
in this paper). It would be of particular interest to find the
counting of quasiparticle multiplets for these states.

Entanglement spectra have recently been developed as a
way of characterizing excitations of FQH systems.76 It has
been conjectured and numerically and analytically verified for
a number of FQH states, including the MR state,76 that there
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are correspondences between the states in the entanglement
spectrum of the ground state of an FQH phase and the excited
states of that phase. For the orbital entanglement spectrum,
this allows one to find the counting of quasihole excitations
of the edge from the ground state,76 while the particle entan-
glement spectrum allows one to find the full counting of bulk
quasiholes77 and the real space entanglement spectrum78–80

can be used to study edge spectra while preserving the full bulk
counting. Despite the successes obtained with quasiholes, it is
not straightforward to extract information about quasielectron
and exciton states from entanglement spectra. In fact, the
states in the entanglement spectra of the Moore-Read and
Read-Rezayi model ground states all retain the same vanishing
properties as these ground states and can therefore not describe
quasielectrons or excitons. Nevertheless, one may hope to
find information on excitons and quasiparticles in numerically
exact Coulomb or hardcore spectra. This was done for Abelian
states in Ref. 60 and for the ν = 5/2 state, using our exciton
construction, in Ref. 78.

It is also of interest to construct and test trial wave functions
for quasielectrons and excitons in other geometries, especially
on a torus, where all candidate ground-state wave functions for
a plateau at a given filling fraction appear at the same magnetic

flux. A first step would be to find a torus generalization of
composite fermion wave functions that can be evaluated easily
enough to allow numerical testing. Such wave functions are
so far available only for the Laughlin ground states and their
quasihole excitations,81 but not for quasiparticles or excitons.
(The wave functions constructed in Ref. 82 are unfortunately
nontrivial to evaluate when considering quasielectrons or
excitons.)

Finally, an important direction for future work is to test
our trial states against the spectra of more physically realistic
Hamiltonians, often necessarily in larger Hilbert spaces. Here,
one may think for instance of including the effects of the
electron spin, Landau level mixing, and subbands in finite-
thickness quantum wells.
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