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Transport and thermodynamic evidence for a marginal Fermi-liquid state in ZrZn2
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Measurements of low-temperature transport and thermodynamic properties have been used to characterize
the non-Fermi-liquid state of the itinerant ferromagnet ZrZn2. We observe a T 5/3 temperature dependence of
the electrical resistivity at zero field, which becomes T 2-like in an applied field of 9 T. In zero field, we
also measured the thermal conductivity, and we see a novel linear-in-T dependence of the difference between
the thermal and electrical resistivities. Heat-capacity measurements, also at zero field, reveal an upturn in the
electronic contribution at low temperatures when the phonon term is subtracted. Taken together, we argue that
these properties are consistent with a marginal Fermi-liquid state, which is predicted by a mean-field model
of enhanced spin fluctuations on the border of ferromagnetism in three dimensions. We compare our data to
quantitative predictions and establish this model as a compelling theoretical framework for understanding ZrZn2.
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I. INTRODUCTION

The Fermi liquid theory of the metallic state is among
the most successful in physics, and decades of research
have established its applicability to a wide range of systems.
The fundamental starting point of this theory is the exis-
tence of long-lived fermionic quasiparticles whose effective
interactions lead only to nondiffractive scattering in the
zero-temperature limit and near to the Fermi surface. In
recent years, however, there have been a proliferation of
materials that display behavior not easily understood within
the Fermi-liquid picture. These so called “non-Fermi liquids”
(NFLs) encompass a variety of systems. Examples include
the normal state of the high-Tc cuprates,1 one-dimensional
Tomonaga-Luttinger liquids,2,3 paramagnetic metals near a
low temperature phase transition,4 and Kondo lattice systems.5

A particularly rich variety of NFL behavior is exhibited
by materials in which a magnetic phase transition is observed
at low temperatures (see, for instance, Ref. 6). Tuning the
transition to zero temperature (a quantum critical point) yields
temperature dependencies of physical properties that differ
from the power laws predicted by Fermi liquid theory. Early
attempts to explain NFL behavior were based on the effects
of strongly enhanced low-frequency, long-wavelength spin
fluctuations7–12 (often called the self-consistent renormaliza-
tion or SCR theory). In the specific case of three-dimensional
materials near a ferromagnetic quantum critical point, these ap-
proaches suggest characteristic transport and thermodynamic
properties. For instance, the electrical resistivity is anticipated
to vary as T 5/3,13 instead of the usual T 2 behavior expected
in a Fermi liquid, and the electronic heat capacity diverges
logarithmically at low temperatures, instead of the Fermi liquid
linear in temperature variation.

These non-Fermi-liquid temperature dependencies are a
consequence of an underlying quasiparticle scattering rate,
τ−1, which varies linearly with the excitation energy E of a

quasiparticle near the Fermi level. This is characteristic not of
a Fermi liquid, for which τ−1 varies as E2, but of a marginal
Fermi liquid. The study of the marginal Fermi liquid (MFL)
state is compelling, as it represents the weakest breakdown of
the quasiparticle picture, and thus could prove to be a gateway
to understanding more exotic departures from Fermi-liquid
theory.

In this paper, we examine in more detail the transport of
heat and charge in ZrZn2 reported in a previous work,14 which
is a metal close to a three-dimensional (3D) ferromagnetic
quantum critical point. We calculate the temperature depen-
dencies of transport properties using the SCR model, and
show them to be both qualitatively and semiquantitatively in
agreement with our data. In particular, we pay close attention
to the difference between thermal and electrical resistivities,
following the analytical framework of Paglione et al.15 for
clean magnetic metals. We then compare these results with
new measurements of the electronic specific heat, which we
argue lends further support to the validity of the SCR model
in this material.

II. EXPERIMENTAL DETAILS

The intermetallic compound ZrZn2 crystallizes in the C15
cubic Laves structure, and is an archetypal d-band itinerant
electron ferromagnet.16 Improved sample quality as well as
reports of the possible coexistence of ferromagnetism and
superconductivity17,18 have stimulated renewed interest in this
compound in recent years. The highest quality samples of
ZrZn2 order ferromagnetically at Tc = 28.5 K, and magne-
tization measurements reveal a small moment of 0.17μB/Zr
atom in the low-temperature, low-magnetic-field limit that is
well below the Curie-Weiss moment μeff = 1.9μB/Zr atom.19

The ferromagnetic transition is suppressed to zero with
the application of only 20 kbar of hydrostatic pressure,14,19

which for a d-metal system of this kind, suggests that

035118-11098-0121/2012/85(3)/035118(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.035118


MIKE SUTHERLAND et al. PHYSICAL REVIEW B 85, 035118 (2012)

ZrZn2 is close to a ferromagnetic quantum critical point at
ambient pressure. This idea is supported by de Haas–van
Alphen studies, which show significantly enhanced cyclotron
effective masses, as expected in the critical regime,20 and
that longitudinal fluctuations of the local magnetisation are
important.21 Inelastic neutron scattering studies support the
applicability of an SCR model, since the generalized magnetic
susceptibility (χq,ω) at small wave vectors, q, and small
frequencies, ω, has a structure characteristic of overdamped
dissipative modes with a strongly dispersive relaxation rate.22

In our experiments, we measured four single-crystal sam-
ples with varying levels of impurities.23,24 The samples were
thin and platelet-shaped with typical dimensions of 2 mm ×
0.5 mm × 0.2 mm. We label each crystal by its residual
resistivity ρ0 and residual resistivity ratio (RRR) defined
as ρ300 K/ρ0. These were measured to be ρ0 = 0.31 μ�cm
(RRR = 210), ρ0 = 0.97 μ�cm (RRR = 67), ρ0 = 2.3 μ�cm
(RRR = 29), and ρ0 = 6.4 μ�cm (RRR = 11) and were
selected to cover a range of impurity concentrations.

Each sample was spark-cut into a convenient geometry, then
electropolished to remove a surface layer approximately 5 μm
in depth. This step was taken to avoid surface inclusions of
superconducting material, shown previously to arise from the
spark cutting procedure.18 Contacts were made in a four-wire
geometry using a low-power micro-spot-welding technique,25

yielding contact resistances that were measured to be 5 m� or
less at low temperatures.

Resistivity measurements were performed using a standard
four-terminal low-frequency ac technique in a 3He cryostat and
in an adiabatic demagnetisation refrigerator, with low-noise
transformers to enhance the signal-to-noise level. Measure-
ments were performed on the samples with several different
excitation currents between 0.1 and 1 mA and several different
heating rates to ensure reproducibility.

Thermal conductivity was measured with a two-
thermometer, one-heater, steady-state technique down to
T = 0.8 K on a 3He system. The reliability of our setup
was tested by measuring both heat and charge transport
in silver wire, obtaining the Wiedemann-Franz law at low
temperatures to within 2%. Measurements were checked using
different models of Cernox thermometers and different sizes
of temperature gradient in order to ensure reliability.

The heat-capacity measurements between 0.3 and 100 K
were conducted in a commercial Quantum Design micro
calorimeter at the University of Cantabria using a standard
relaxation technique. Only the purest sample was measured
(ρ0 = 0.31 μ� cm), a thin slab-shaped crystal weighing 3 mg.

III. EXPERIMENTAL RESULTS

A. Transport data

Figure 1 shows the electrical resistivity of our samples plot-
ted against T 5/3. We observe a non-Fermi-liquid temperature
dependence of the form ρ(T ) = ρ0 + AT 5/3 between 300 mK
and approximately 15 K (or higher in the cleanest samples), in
agreement with that observed in recent work.23,26 No evidence
of superconductivity was observed down to 300 mK in any of
our crystals.

FIG. 1. (Color online) Main: Resistivity for the four samples of
ZrZn2 plotted against T 5/3. The straight line is a fit to the form ρ(T ) =
ρ0 + AT 5/3 between 0 and 15 K. The inset shows the resistivity
plotted against T for a wider temperature range.

The excellent fit to a pure T 5/3 power law indicates that the
scattering of electrons by spin fluctuations is much larger than
the scattering by phonons across a wide temperature range.
Significant phonon scattering would normally be expected
to produce a characteristic T 5 temperature dependence in
the resistivity at low temperatures, crossing over to a T -
linear dependence at higher temperatures. Neutron scattering
measurements on ZrZn2 are consistent with this observation—
the observed scattering intensities are up to two orders of
magnitude larger than what could be expected from phonons
alone at low temperatures.22 A similar conclusion was reached
in transport studies of the cubic Laves-phase compounds
RCo2 (R = Sc,Y,Lu) by Gratz and co-workers.27,28 In these
compounds, which lie near a ferromagnetic instability and play
host to spin fluctuations, it was concluded that the contribution
to ρ from phonon scattering was negligible below 30 K.

Figure 2 shows how the T 5/3 state is affected by the
application of a magnetic field. With μ0H = 9 T, the resistivity
recovers a characteristic Fermi-liquid-like T 2 dependence,
which may be understood to arise due to the suppression or
gapping of the fluctuations in a magnetic field, as suggested
by measurements of the electronic specific heat.29 The overall
change in the resistivity with temperature is similarly sup-
pressed with field, supporting this interpretation.

In can also be seen from Fig. 2 that the magnetoresistance
of the sample is strongly temperature-dependent, as observed
previously in polycrystalline samples.30 At low temperatures,
the effect is positive, as expected in an ordinary metal. Above
T ∼ 22 K, however, the magnetoresistance becomes negative,
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FIG. 2. (Color online) Fits to the electrical resistivity of ZrZn2 (a)
in zero field, fit up to 17 K as ρ = ρ0 + AT 2, where A is a constant,
and (b) data in zero field fit to ρ = ρ0 + AT 5/3. Panel (c) shows the
9 T data fit up to 10 K as ρ = ρ0 + AT 2, and (d) shows the 9 T data
fit as ρ = ρ0 + AT 5/3.

suggesting that the decrease in resistivity due to the stiffening
of spin fluctuations outweighs the increase in resistivity due
to orbital magnetoresistance. The recovery of T 2 power law
at high fields helps rule out disorder scattering as the origin
of the T 5/3 power law in μ0H = 0, since this process would
have little field dependence.

Figure 3 shows the thermal conductivity of the three
ZrZn2 samples. In a metallic material such as ZrZn2, the
thermal conductivity has contributions from both electrons
(κel) and phonons (κph). In the ferromagnetic state at very low
temperatures, T � TC , we might also expect a contribution
from magnons (κmag). A careful consideration of the relative
magnitudes of each of these is necessary to evaluate the
suitability of the MFL model in describing ZrZn2.

The thermal current due to coherent, propagating magnetic
modes (magnons) can be difficult to distinguish from other
contributions to κ . Such modes are not the overdamped,
dissipative spin excitations mentioned previously, but coherent
spin waves existing at very low q that may become populated
in the low-temperature regime. The contribution to thermal
transport from such modes can be considerable, as was
demonstrated in the antiferromagnetic insulator Nd2CuO4.31,32

However, in magnetic metals κmag is limited by scattering from
charge carriers,33 which can greatly limit the conductivity.
We would expect κmag to be particularly small in ZrZn2 due
to its very small ordered moment, which limits the phase
space available for propagating magnons to q < qsw (qsw =
k↑ − k↓ ∝ M , where k↑ and k↓ are the radii of the majority
and minority spin sheets of the Fermi surface, respectively,
and M is the magnetization). We thus ignore the contribution
from κmag.

Between the remaining two terms, κel and κph, we argue
that by far the largest contribution to thermal conductivity at

FIG. 3. (Color online) Main: Thermal conductivity of ZrZn2,
with samples labeled by their residual resistivities. Inset: zoom of
the transition region in the cleanest sample, with ρ0 = 0.31 μ� cm.
Linear fits to the data above and below TC suggest a change in slope
occurs at T ∼ 28 K = Tc.

low temperatures is the electronic term, as might be expected
in metals with exceptionally low ρ0. From Fig. 3, we see that
increasing the residual resistivity from 0.31 to 6.4 μ� cm
drastically reduces the overall thermal conductivity of the
sample, and the characteristic peak seen in the cleanest sample
at T ∼ 10 K is rapidly suppressed. Since the κph is unlikely
to change much between these two samples, we can infer that
the reduction in peak height is essentially due to an increase
in elastic scattering of electrons from impurities. Studies
of controlled levels of impurities doped into conventional
ferromagnetic metals have shown a similar trend.34

The inset of Fig. 3 shows an expanded view of the region
near the peak observed in our cleanest sample. A simple linear
extrapolation above and below the kink in the data meets at
T ∼ 28 K, a reasonable estimate for the onset temperature
of the peak. This is coincident with the Curie temperature
TC = 28.5 K,19 and we thus attribute the peak in κ to
the increase in electronic mean free path as the sample
enters the ferromagnetically ordered state and spin fluctuation
scattering is reduced.

A more detailed treatment of the relative magnitudes of κel

and κph lends quantitative support to our argument. We can
estimate κph by comparing data from samples with different
levels of impurities as follows. We first define the thermal
resistivity w using the Wiedemann-Franz law as

w = L0T

κel
, (1)

where the Lorentz number L0 = 1/3(πkB/e)2 = 2.44×
10−8 W�/K2. When considering the transport of both heat
and charge by electrons, we must bear in mind that scattering
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events may affect thermal and electrical currents in different
ways. We thus define the difference between the thermal
resistivity (w) and the electrical resistivity (ρ) as δ, which
contains information about scattering processes:

δ = w − ρ = L0T

κel
− ρ. (2)

The difference between the effect of scattering on the charge
and heat current is that while charge current is only degraded
due to the quasiparticle being deflected through a scattering
angle θ , the heat current is also degraded by any loss of energy
(h̄ω) of the quasiparticle.35,36 The difference between electrical
and thermal resistivities can thus reveal information about
the nature of inelastic scattering processes, as pointed out by
Kaiser for the case of localized magnetic impurities in metallic
alloys36 and recently used to investigate antiferromagnetic
fluctuations in the clean magnetic metal CeRhIn5.15 In the
case of a ferromagnetic metal such as ZrZn2, such inelastic
processes are attributed principally to scattering from spin
fluctuations.

We may now arrive at an estimate for the phonon conduc-
tivity κph. At low temperatures, in keeping with Matthiessen’s
rule, we assume that the amount of impurities in a given
sample in the dilute limit would not considerably alter δ. In
other words, we assume that the elastic and inelastic scattering
channels are independent.

For two samples A and B, with differing impurity levels,
we then have

κA = L0T

ρA + δ
+ κph, (3)

κB = L0T

ρB + δ
+ κph. (4)

We assume here that κph will be the same in each sample at
low temperatures, since the presence of impurities is expected
to have a minimal effect on low-energy phonon modes.37 Since
we measure both κ and ρ for each sample, at every temperature
we can then solve these two simultaneous equations to find
both δ and κph.

The solutions of these equations for κph are shown using
the data sets from the samples with ρ0 = 0.31 and 6.4 μ� cm
in Fig. 4. The temperature dependence of κph below 25 K is
reasonably close to the T 2 dependence typically expected from
phonons scattered by electrons,37 and a fit to this form yields
a coefficient κph/T 2 ∼ 0.018 mW K−3 cm−1. Using different
pairs of samples in Eqs. (3) and (4) yields almost identical
curves for κph, differing in magnitude by only 20%, which
demonstrates the consistency of our analysis.

The phonon contribution that we estimate using this method
is seen to be rather small compared to the total conductivity of
the least disorder.

Using our estimated form of κph from Fig. 4, we now
subtract this from κtot to find the electronic contribution to
thermal transport. For the two samples with the lowest levels
of disorder, κph is small enough so that below T = 15 K,
κtot � κel, meaning κel is insensitive to the details of the
phonon subtraction. A similar conclusion was drawn in thermal
transport studies below 10 K in the very pure antiferromagnetic
metal CeRhIn5.15
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FIG. 4. The estimated phonon contribution to the total thermal
conductivity using the analytical method described in the text. The
dashed line represents a fit to κph ∝ T 2. The inset shows the estimated
phonon contribution compared to the total conductivity measured in
the cleanest sample.

With the above considerations, we are in a position to study
κel in isolation. In Fig. 5, we use κel to calculate the thermal
resistivity w defined in Eq. (1), which we plot alongside the
electrical resistivity ρ. All three samples display the same qual-
itative features: w � ρ at finite temperatures, and w → ρ in
the limit T → 0 as expected from the Wiedemann-Franz law.

The difference between the two resistivities is δ, defined
in Eq. (2) and plotted versus temperature in Fig. 6 for the
cleanest sample. The striking linear T dependence of δ seen

FIG. 5. (Color online) The electrical and thermal resistivity of
ZrZn2. The electrical resistivity data are shown as solid lines, while
the thermal resistivity data are shown as data points, calculated using
w = L0 × T/κel, where κel = κtot − κph as described in the text.
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FIG. 6. The difference (δ) of the thermal (w = L0T/κel) and
electrical (ρ) resistivities versus temperature for the sample with
ρ0 = 0.31 μ� cm. κel is found by subtracting κph from κtot, as outlined
in the text. The line is a linear fit to the data below 12 K.

in our data persists over an order of magnitude in temperature.
In the usual metallic state, we would expect δ(T ) ∝ T 2, since
w = w0 + AT 2 and ρ = ρ0 + BT 2. The deviation from this
prediction in ZrZn2 is clearly related to the presence of strong
inelastic scattering processes operating at low temperatures.
We rule out the possibility that δ is influenced by the
presence of phonon scattering at low temperatures since these
processes lead to a very different behavior; in the conventional
description, phonon scattering leads to a T 5 term in ρ and
a T 3 term in w.37 For T > 12 K, δ(T ) does appear to gain
some upward curvature, and we take this temperature to be
the point where phonon scattering ceases to be negligible. We
note that the same linear behavior is confirmed in the sample
with ρ0 = 2.3 μ� cm.

We can compare our results with those obtained in a
magnetic system by Paglione et al., who studied the an-
tiferromagnetic metal CeRhIn5 with TN = 3.8 K.15 In that
study, δ was seen to evolve as aT 2 + bT 5 below the Néel
temperature and dropped rapidly toward zero above. The T 5

term is due to scattering from antiferromagnetic magnons.
Clearly the temperature dependence of δ at low temperatures
in ZrZn2 presents an interesting case—it is difficult to reconcile
with either conventional electron-phonon physics or with
the model used for CeRhIn5. What we show in Sec. IV is
that a qualitative and semiquantitative understanding of δ(T )
may in fact be gained by considering scattering from spin
fluctuations on the low temperature border of ferromagnetism
in three dimensions. In other words, the distinct temperature
dependence of δ(T ) is a characteristic of the marginal Fermi-
liquid state.

B. Heat capacity

The measured specific-heat capacity C(T ) of ZrZn2 is
shown in Fig. 7, and is in agreement with those reported
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FIG. 7. (a) The heat capacity, C, of ZrZn2 versus temperature, T .
(b) C/T versus T 2; the inset shows �C = (C − Cph)/T vs T 2, where
Cph is a T 3 Debye-like phonon heat capacity whose slope is given by
θD = 340 K, as discussed in the text.

previously.26 Figure 7(a) is a plot of C versus T and
Fig. 7(b) gives C/T versus T 2. The inset of Fig. 7(b)
gives (�C = C − Cph)/T versus T 2, where Cph = βT 3 =
(12π4/5)NkB(T/θD)3 is the phonon contribution to the spe-
cific heat at low temperatures in which θD is the appropriate
Debye temperature. In the plot we have taken θD to be 340 K,43

a value consistent with previous estimates.29 We show in the
next section that the upturn of �C/T versus T 2 at low tempera-
ture is consistent, within experimental error, with the observed
temperature dependences of δ and ρ and with the predictions
of the SCR model with parameters relevant to ZrZn2.

IV. DISCUSSION

In this section, we consider the possible description of the
transport and specific-heat data in terms of the SCR model. We
begin with an outline of the model and then present the pre-
dictions of the model for the model parameters that we believe
are relevant to ZrZn2. Finally, the results of the calculations
are compared with our transport and specific-heat data.

A. Outline of the self-consistent renormalization model

The theoretical treatment of the effects of the electron-
electron interactions on the transport and thermodynamic
properties of nearly or weakly ferromagnetic d metals has
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a long history (see, for instance, Refs. 7, 8, and 12). Here we
give only an outline of the key ideas within the SCR model
mentioned in the Introduction.

A discussion of transport properties in this model has been
presented most notably by Ueda and Moriya.38 In its simplest
form, this model involves two isotropic bands. The carriers
in one band, referred to as the s band, carry the current
while the electrons in the other band, referred to as the d

band, scatter the s electrons through a local s-d exchange
interaction. The problem can be formulated in terms of the
scattering of s electrons from the spontaneous spin fluctuations
arising in the d-electron system. The spin fluctuation spectrum
is characterized by a generalized dynamical and wave-vector-
dependent susceptibility, which emerges as a central concept in
the theory. The s electrons effectively transfer their momentum
to the d electrons. It is assumed implicitly that the d electrons
in turn ultimately transfer their momentum to the lattice via
umklapp processes and scattering from any residual impurities
present.

If we ignore residual elastic scattering due to impurities,
then for T � TF (where TF is the Fermi temperature for the s

band), ρ and w in this model in the paramagnetic state can be
written in the form

ρ

w

}
= η

kBT

∑
q<kc

∫ ∞

0
dω nω(nω + 1)

ω

q
Imχq,ω

{
Fρ

Fw
, (5)

where nω is the Bose function, nω = (eh̄ω/kBT − 1)−1, and

Fρ =
(

q

kc

)2

(6)

Fw =
(

q

kc

)2

+
(

h̄ω

kBT

)2 3

4π2

[
1 − 2

3

(
q

kc

)2
]

. (7)

Here η is a measure of the s-d coupling parameter, kc is a wave-
vector cutoff, equal to the diameter of the s-electron Fermi
surface in the usual description, and χq,ω is the generalized
wave vector and frequency-dependent magnetic susceptibility
associated with the d electrons. The factor q2 (i.e., in Fρ) arises
from the fact that the current cannot be degraded by scattering
of s electrons through an infinitesimal angle (i.e., q → 0).
Importantly, the factor Fw for the thermal resistivity includes
a second, dynamical term, which allows for the degradation of
peak current even when q is vanishingly small through strictly
inelastic processes, as discussed earlier. It is this crucial term
that leads to the lower-temperature exponent in w than in ρ.
Note that if we set F to 1, then Eq. (5) is proportional to the
quasiparticle scattering rate.

The specific heat in this model arises primarily from
the d electrons, and we consider the contribution from
dissipative modes.8 In the paramagnetic state on the border
of ferromagnetism at low temperature, the specific heat may
be expressed within the SCR model approximately in the form

C = νT
d

dT

∑
q<qc

∫ ∞

0
dωSωIm

(
∂ lnχq,ω

π∂ω

)
, (8)

where Sω is the entropy of an undamped boson, i.e., a harmonic
oscillator, which is given by

Sω = kB[(1 + nω)ln(1 + nω) − nωlnnω]. (9)

The parameters ν and qc correspond to the degeneracy of spin
fluctuation modes and the wave-vector cut-off, respectively.
In the usual description, ν = 3 and qc is the diameter of the
d-electron Fermi surface.

To evaluate the expressions for ρ, w, and C, we need, in
particular, Imχq,ω, which we model using data from inelastic
neutron scattering experiments. The cut-off wave vectors kc

and qc can be estimated from the known properties of the Fermi
surface, measured in quantum oscillation experiments.20 The
parameter η can, in principle, be inferred from the Kadowaki-
Woods relationship, which was shown39 to be consistent with
the SCR model under conditions in which this model reduces
to the Fermi-liquid limit. Since we shall be mainly interested in
the relative magnitudes of ρ and w, we shall for simplicity scale
both quantities to a reference value of ρ at 15 K (a crossover
temperature above which phonon contributions to the transport
properties become progressively less ignorable). Although we
shall focus on the relative values of ρ and w, we note that by
applying the above Kadowaki-Woods relationship, we obtain
in our calculations absolute values of ρ and w, which are
within 20% of the measured values for the model parameters
relevant to ZrZn2.

Within the SCR model, χq,ω in the paramagnetic state may
be expressed in the form

χ−1
q,ω = χ−1(T ) + cq2 − i

ω

γ q
, (10)

where χ (T ) is the static magnetic susceptibility, and c and γ

are constants dependent on the details of the d-electron band.
The temperature dependence of the static susceptibility can,
in principle, be determined self-consistently within the SCR
model. Here we take χ (T ) from bulk susceptibility data and
the parameters c and γ from inelastic neutron scattering data,
which could be satisfactorily described by the model given by
Eq. (10).22

In the ferromagnetic state below the Curie temperature
TC , we must distinguish between the components of the spin
fluctuations parallel (‖) to the ordered moment and perpen-
dicular (⊥) to the ordered moment. The principal changes
are as follows. First, the static susceptibility χ (T ) becomes
strongly dependent on the component [there are two transverse
(⊥) components and one longitudinal (‖) component with
respect to the average magnetisation.]. Secondly, the transverse
component of the generalized susceptibility has a spin-wave
form below the cutoff qsw defined earlier. In this regime, we
have8

χ−1
⊥q,ω = cq2

(
1 − ω2/�2

q

)
, (11)

where

h̄�q = Dq2 = 2μBMcq2 (12)

is the spin-wave spectrum at small q.
From inelastic scattering data for ZrZn2, we have ap-

proximately γ = 1.8 μeV Å and c = 3 × 105 Å2.22 From
the measured Fermi surface of ZrZn2, we estimate qsw =
0.07 Å−1.20 From bulk measurements of the magnetic equation
of state, we arrive at models for χ⊥(T ) and χ‖(T ) as shown
in Fig. 8 and M(T ) = M0(1 − T 2/T 2

C )1/2, where M0 = 31 G.
We note that the results of the calculations are not sensitive to
precise forms of χ and M or even to the precise values of the
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FIG. 8. (Color online) Plots showing the form of the dimension-
less inverse volume susceptibility [in c.g.s units of Oe/(emu cm−3)]
used in the resistivity calculations for ZrZn2. The expressions of
these are as follows: χ−1

‖ = 2{36TC[1 − (T/TC)4/3]} and χ−1
⊥ = 0

for T � TC and χ−1
‖ = χ−1

⊥ = 70(T − TC) for T > TC . Here we take
TC = 28.5 K.

other parameters. For non-Fermi-liquid behaviors to arise in
this model, we require principally that χ−1 is small compared
with cq2 for the characteristic wave vectors for thermally
excited spin fluctuations. In other words, we require that the
characteristic thermal wave vector, qT , is large compared with
the magnetic correlation wave vector (i.e., the inverse of the
magnetic correlation length ξ = √

χ/c).8

In practice, d metals such as ZrZn2 cannot be represented
simply in terms of two distinct species of electron as the above
model suggests, and the terms “s electron” and “d electron”
may not have precise meanings. It is of interest, however, to
see if the model can capture some of the behaviors of ρ, w,
and C, which we have measured in ZrZn2.

It has been emphasized in more recent theoretical works
that there should be non-analytic corrections to certain
aspects of the SCR model.40–42 Although relatively weak in
three dimensions, they can nevertheless strongly modify the
magnetic equation of state and in particular may give rise to
a first-order ferromagnetic transition near the quantum critical
point and potentially to a magnetically inhomogeneous state.12

Therefore, we shall not attempt to calculate the magnetic
equation of state self-consistently in this paper and take the
temperature dependence of aspects of the magnetic equation
of state from experiment. θD = 340 K was taken from the
high-magnetic-field heat-capacity data of Ref. 29.

B. The marginal Fermi-liquid limit of the SCR model

In the limit qT  ξ−1, it may be shown from Eqs. (5)–(10)
that in three dimensions,

ρ ∝ T 5/3, (13)

δ = (w − ρ) ∝ T , (14)

τ−1 ∝ T ln(T ∗/T ), (15)

and

C ∝ T ln(T ∗/T ), (16)

where T ∗ is an appropriate temperature scale in each case
separately. Note that the temperature dependence of the
scattering rate τ−1 is different from that of δ due to the (ω/T )2

factor in Eq. (7). Thus, in this limit, the SCR model reduces
to the MFL model discussed in the Introduction, while in the
opposite limit, qT � ξ−1, the SCR model reduces to the FL
model. For the parameters relevant to ZrZn2 we find that the
crossover to the FL model occurs only at temperatures below
1 K at ambient pressure.44

The characteristic marginal Fermi-liquid exponents for ρ

and δ can be understood by analogy to the corresponding
electron-phonon scattering problem. In that problem, ρ ∝
qd+2

T and δ ∝ qd
T , where d is the dimension of space. The extra

factor of q2
T in ρ comes from the q2 term in Fρ [Eq. (6)] which

is absent in the difference between w and δ. The temperature
dependence of qT is given by the dynamical exponent z via
T ∝ qz

T so that one expects

ρ ∝ T
d+2

z , (17)

δ ∝ T
d
z . (18)

For the electron-phonon scattering problem, z = 1 and in
3D we recover the usual results, ρ ∝ T 5 and δ ∝ T 3. For
electron paramagnon scattering, however, z = 3 [see Eq. (10)
in the limit χ−1 → 0] and so in 3D we expect ρ ∝ T 5/3 and
δ ∝ T as in Eqs. (13) and (14). We caution that for dissipative
modes such as paramagnons, this elementary treatment fails
if z is unity or lower. In this case, ρ and δ are determined by
spin fluctuations over all of q space rather than just at low q,
and to obtain the FL limit of the SCR model, one must return
to the full expressions for ρ and w in Eq. (5).

C. Calculations of the electrical and thermal resistivities

Using the model and parameters given above, we can
calculate the electrical and thermal resistivities and the
difference δ = w − ρ. The results of these calculations are
shown in Fig. 9 for several values of kc (which in the model
represents the typical diameter of the Fermi surface of the light
electrons that principally carry the current).

The value of kc that gives the correct magnitude of the scaled
quantity δ(T )/ρ(15 K) turns out to be around kc = 0.4 Å−1. It
is interesting to note that this is close to the observed diameter
of the sheet of the Fermi surface of ZrZn2 with the highest char-
acteristic Fermi velocity observed in this system. However,
this fitted value of kc should not be taken too seriously, given
the complexity of the Fermi surface of ZrZn2 and the relative
simplicity of the present model. What seems to be significant,
however, is that the calculated temperature dependences of ρ

and δ are qualitatively very similar to the observed values given
in Sec. III A, irrespective of the precise value chosen for kc, or
indeed of the precise values of the other model parameters.

Within the experimental temperature range of interest, we
find that the SCR model reduces essentially to the MFL model,
as discussed in the Introduction. In particular, ρ is predicted
to vary approximately as T 5/3 and δ approximately as T

in the temperature range below 15 K (above which phonon
contributions become progressively more important in the
measurements) and above about 1 K (well below which the
SCR model predicts a Fermi liquid form for ρ and w).
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(b)

(a)

FIG. 9. (Color online) Plot showing (a) the calculated electrical
resistivity plotted against T 5/3 and (b) the calculated difference
between the thermal and electrical resistivities plotted against T . The
results are normalized relative to the calculated electrical resistivity
at 16 K. The results are shown for three values of the wave-vector
cut-off parameter kc [0.4 Å−1 (bottom), 0.6 Å−1 (middle), and
0.8 Å−1 (top)]. The data for kc = 0.6 and 0.8 Å−1 are shifted upward
by 0.1 and 0.2, respectively, for clarity.

D. Calculations of the specific heat

Using the model and parameters in Sec. IV A, we can also
calculate the specific-heat contribution of the spin fluctuations.
Below TC , we consider the contribution from both dissipative
modes and from spin waves with q < qsw. The results of the
calculations are shown in Fig. 10 in the form of C/T versus
T 2 for comparisons with the inset of Fig. 7(b) of the measured
specific heat minus the estimated phonon contribution. The
calculated heat capacity depends approximately logarithmi-
cally on the upper cut-off qc and is also somewhat sensitive to
the spin-wave cut-off qsw, although the relative contribution
from the dissipative modes with q > qsw dominates at all
temperatures. The results in Fig. 10 correspond to the choice
qc = 1 Å−1, which is approximately equal to the observed
diameter of the large sheets of the Fermi surface with high
effective mass (and so low Fermi velocity).

To check on the sensitivity of the result to the lower spin-
wave cut-off, several values of qsw around the value of 0.07 Å−1

given in Sec. IV A have been used.
Comparing the inset of Fig. 7(b) with Fig. 10, we see

that the measurements are qualitatively consistent with the
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FIG. 10. Plot showing the calculated spin fluctuation heat ca-
pacity for several values of qsw , namely 0.05 Å−1, 0.08 Å−1 and
0.1 Å−1. The effect of increasing qsw is to cut-off the low temperature
divergence of C/T .

predictions of the SCR model, especially for a reasonable
value for qsw. In particular, the upturn in C/T with decreasing
temperature in the inset of Fig. 7(b) is consistent with the
predictions of the SCR model. In the limit qT  ξ−1 (see Sec.
IV B), this upturn is reminiscent of the logarithmic term in C

expected for a marginal Fermi liquid. The magnitude of the
calculated C/T is somewhat lower than the measured value.
This is reasonable since the SCR model does not include the
effects of the electron-phonon interaction, nor, in the form
defined in Sec. IV A, the effects of any antiferromagnetic spin
fluctuations that may be present.

V. CONCLUSIONS

In summary, we find that the temperature dependencies
of the electrical and thermal resistivities and the electronic
specific heat in ZrZn2 can be understood qualitatively and even
semiquantitatively in terms of the self-consistent renormaliza-
tion model with model parameters inferred from independent
measurements of the magnetic equation of state, the inelastic
neutron scattering cross section, and the Fermi surface. Over
a wide range in temperature, the SCR model reduces to the
marginal Fermi-liquid model characterized by an electrical
resistivity ρ varying as T 5/3, a thermal resistivity w-ρ varying
as T , and a logarithmic divergence in the low-temperature
specific heat. We believe that taken together, these findings
provide the most compelling evidence thus far for the existence
of the marginal Fermi-liquid state in the field of itinerant-
electron ferromagnetism. We note that in other areas of the
phase diagram, perhaps closer to the quantum critical point or
at pressures beyond the critical pressure where TC = 0, even
more exotic departures of Fermi-liquid theory may be possible,
such as those discussed in Ref. 12 and others.
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