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Electronic liquid crystalline phases in a spin-orbit coupled two-dimensional electron gas

Erez Berg,1 Mark S. Rudner,1,2 and Steven A. Kivelson3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2IQOQI and Institute for Theoretical Physics, University of Innsbruck, AT-6020 Innsbruck, Austria

3Department of Physics, Stanford University, Stanford, California 94305, USA
(Received 14 August 2011; revised manuscript received 26 December 2011; published 18 January 2012)

We argue that the ground state of a two-dimensional electron gas with Rashba spin-orbit coupling realizes one
of several possible liquid crystalline or Wigner crystalline phases in the low-density limit, even for short-range
repulsive electron-electron interactions (which decay with distance with a power larger than two). Depending on
specifics of the interactions, preferred ground states include an anisotropic Wigner crystal with an increasingly
anisotropic unit cell as the density decreases, a striped or electron smectic phase, and a ferromagnetic phase that
strongly breaks the lattice point-group symmetry, i.e., exhibits nematic order. Melting of the anisotropic Wigner
crystal or the smectic phase by thermal or quantum fluctuations can likely give rise to a nonmagnetic nematic
phase that preserves time-reversal symmetry.
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I. INTRODUCTION

Enhancing the role of electron-electron interactions relative
to that of the kinetic energy often leads to interesting many-
body effects. Electron crystallization is an extreme example
of this phenomenon. At low densities, where electrons are
far apart and the kinetic energy cost of localization is low,
Coulomb interactions dominate and the electrons form an
ordered state, known as a Wigner crystal.1

The nature of the crystallized electronic state has been
intensely investigated through quantum Monte Carlo (QMC)
calculations.2,3 These calculations support the existence of the
crystalline phase, though the density at which they find crys-
tallization is typically significantly lower than what heuristic
arguments would suggest. The Wigner crystal has also been
sought experimentally. Despite difficulties associated with
reaching the ultra-low density regime where crystallization is
expected, evidence that the Wigner crystal phase may have
been realized has been reported for experiments on ever-
cleaner samples of two-dimensional electron gases (2DEGs)
in semiconductor quantum wells.4

In this paper, we study the low-density limit of the 2DEG
system with Rashba spin-orbit coupling (SOC), which is
present whenever the 2DEG lacks inversion symmetry.5 This
is the case, for example, when the 2DEG is confined in an
asymmetric quantum well, or if it is formed at the surface of a
three-dimensional material. As shown in Fig. 1(a), the resulting
dispersion relation has an extended (highly degenerate) mini-
mum which forms a ring in momentum space. The low-energy
density of states exhibits a divergent van Hove singularity,
ρ(ε) ∼ ε−1/2, akin to the behavior of a one-dimensional system
[see Fig. 1(b)]. This is in striking contrast to the usual behavior
ρ(ε) ∼ const, familiar for two-dimensional systems without
spin-orbit coupling. Thus the Rashba SOC greatly enhances
the role of interactions relative to that of kinetic energy in the
low-density limit.

For a system with Coulomb interactions, V (r) ∼ 1/r , the
ground state at low densities is a Wigner crystal, just as for a
2DEG without spin-orbit coupling. Remarkably, however, we
find that with Rashba SOC, broken symmetry states appear to
be favored over the uniform Fermi liquid (UFL) state even

for short-range interactions, V (r) ∼ 1/rα with α > 2. (In
particular, note that the Coulomb interaction screened by a
metallic gate is described by α = 3.) The instability in this
case occurs at an electron density n for which the Fermi energy
is smaller than an energy scale set by the SOC.

We have investigated candidate ordered states by construct-
ing variational wave functions, determining the patterns of
broken symmetry that minimize their variational energies,
and then comparing the energy to that of the UFL. We
consider the following types of broken symmetry states:
(1) Wigner crystalline (WC) states, i.e., insulating states with
only discrete translational symmetry corresponding to one
electron per unit cell, allowing for various possible crystal
structures corresponding to different patterns of rotation
symmetry breaking, (2) an electron smectic state that breaks
translational symmetry in only one direction, and can be
viewed as a partially melted version of an anisotropic WC,
and (3) a ferromagnetic nematic state that preserves translation
symmetry, but breaks time reversal symmetry and rotational
symmetry—this state is invariant under time reversal followed
by a rotation by π around the symmetry axis. Note that we refer
to a WC as anisotropic when only a discrete twofold rotation
symmetry (C2) remains unbroken. In the limit of low density,
each of these ordered states has parametrically lower energy (in
powers of the density n) than the UFL. This strongly suggests
that the UFL is unstable at low densities. In contrast, the energy
balance between different broken-symmetry phases is more
delicate, and may well depend on long-distance fluctuational
effects that are not well captured by variational wave functions;
we will return to this point in the final section of the
paper.

The nature of the low-density instability of the UFL, and
the origin of the strong tendency of the system to a nematic
pattern of rotation symmetry breaking (whether or not it is
accompanied by other patterns of symmetry breaking) can be
most easily seen by studying candidate WC wave functions. A
schematic version of the resulting WC phase diagram is shown
in Fig. 1(c) as a function of the exponent α. For α > 2 (short-
range interactions), the unit cell of the Wigner crystal becomes
increasingly anisotropic, with an aspect ratio that diverges in
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FIG. 1. (Color online) (a) Dispersion of a particle with Rashba

SOC. The minimum of the dispersion occurs on a ring in k space,
marked by a red circle. The red arrows show the spin polarization
of the different Bloch states. (b) Density of states as a function
of energy, corresponding to the dispersion shown in (a). Near the
band bottom, the density of states diverges as ρ(E) ∼ (E)−1/2.
(c) Schematic phase diagram in the low-density limit with repulsive
electron-electron interactions that decay at long distances as V ∼ r−α .
For α � 2, the ground state is an isotropic Wigner crystal (i.e.,
it preserves a discrete rotational symmetry, Cn with n > 2). For
α > 2, states with a further broken rotational symmetry are favored:
(i) represents an anisotropic Wigner crystal with a unit cell,
which becomes parametrically anisotropic in the low-density limit,
(ii) and (iii) represent snapshots of a smectic state and a ferromagnetic
nematic liquid state, respectively.

the low-density limit. This unusual behavior can be traced
back to the form of the single-particle dispersion, Fig. 1(a),
which is strongly anisotropic in the directions perpendicular
and tangential to the ringlike minimum.

A complimentary view can be obtained by considering
a ferromagnetic state. Because of the Rashba SOC, the
orientation of the magnetization vector (which is always
in plane) necessarily defines a preferred nematic axis—any
ferromagnetic state must necessarily be nematic, although
a nonmagnetic nematic phase is possible. For example, a
magnetic moment in the y direction implies a special role
for the point �k0 in Fig. 1(a), which defines the point on
the ring of minimum dispersion with the largest possible
value of kx . At low density, the resulting Fermi surface
forms an ellipse encircling this special point. As in the usual
Stoner theory of ferromagnetism, spin polarization lowers the
interaction energy via the Pauli-exclusion principle, which
helps electrons to avoid each other at short distances. However,
the cost in kinetic energy is parametrically smaller than in
a conventional FL, owing to the divergent density of states.
The variational energy that we find for the ferromagnetic
nematic state differs from that of the anisotropic crystal only
by a numerical constant for 2 < α � 3, so it is not possible,
on the basis of the present considerations, to confidently
determine which (if either) is the preferred ground state. For
α > 3, the ferromagnetic nematic state has parametrically
lower energy than the anisotropic WC, suggesting that it is
a better candidate ground state. The scaling of the ground state

TABLE I. Scaling of the ground-state energy per particle as a
function of the electron density n in the low-density limit, for the
various candidate ground states considered in this paper: the nematic
ferromagnetic (FM) state, the anisotropic Wigner crystal (AWC), and
the smectic. For α < 2, the isotropic Wigner crystal always has the
lowest energy.

state 2 < α � 3 3 < α � 4 4 < α

nematic FM n2(1− 1
α ) n2(1− 1

α ) n
3
2

AWC or smectic n2(1− 1
α ) n

4
3 n

4
3

energy as a function of the electron density for each type of
state considered in this paper is listed in Table I.

This paper is organized as follows. The model is described
in Sec. II. In Sec. III, we explain the basic physics leading to
anisotropic Wigner crystal formation. We analyze three cases:
contact interactions, extended short-range interactions (which
fall off with distance with a power that is larger than two), and
long-range interactions. Considerations related to the magnetic
structure of the Wigner crystal phase are discussed in Sec. IV.
In Sec. V, we discuss melting the Wigner crystal partially to
obtain a smectic state. In Sec. VI, we discuss the ferromagnetic
nematic state. Section VII presents a proposed schematic
phase diagram for a 2DEG with SOC and screened Coulomb
interactions. In Sec. VIII, we discuss possible realizations
in electronic and atomic systems. Appendix A presents the
solution of a single Rashba particle in a box problem, which is
crucial for the arguments regarding the anisotropic Wigner
crystal and the smectic phases, and Appendix B presents
the details of the Hartree-Fock analysis of the ferromagnetic
nematic state.

II. MODEL

We consider a 2DEG with Rashba SOC and repulsive
electron-electron interactions, described by the Hamiltonian
(in units with h̄ = 1)

H =
∑

j

{
1

2m

[
−∇2

j − 2k0

i
(∇j × ẑ) · �σj

]
+ E0

}

+ 1

2

∑
l �=j

V (|�rl − �rj |). (1)

Here, m is the electronic effective mass, k0 is a parameter that
characterizes the strength of the SOC, E0 ≡ k2

0/(2m), �σj is
the vector of Pauli matrices that acts on the spin of electron
j , and V (|�r|) is the (repulsive) electron-electron interaction
potential. The Hamiltonian (1) is invariant under translations,
under rotations around the z axis, and under mirror reflections
about the x and y axes, Mx and My , but not under inversion
�r → −�r .

Below, we consider cases in which, at large interparticle
separation r , the interaction potential decays as a power law:

V (|�r|) ∼ V0

rα
. (2)

We distinguish between long-range and short-range in-
teractions, which are characterized by α � 2 and α > 2,
respectively. The bare Coulomb interaction is described by
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α = 1, while screening can lead to α > 1. In particular,
screening due to a nearby metallic top gate leads to α = 3.

In the absence of interactions, V (|�r|) = 0, Eq. (1) yields
the single-particle dispersion law [see Fig. 1(a)]:

E(�k) = 1

2m
(k2 ± 2k0k) + E0, (3)

where �k is the electron momentum (h̄ = 1), and k = |�k|. The
minimum kinetic energy occurs for any value of momentum
falling on a ring of radius k = k0, with a minimal value of
E = 0. The corresponding density of states, shown in Fig. 1(b),
is given by

D(E) =
⎧⎨
⎩

m
π

√
|E0|
E

(E < E0),
m
π

(E > E0).
(4)

For E > E0, the density of states is independent of energy, just
as for a usual 2DEG without spin-orbit coupling. However, for
E → 0, the density of states diverges as 1/

√
E. Because this

divergence will play a crucial role in the analysis below, we
comment briefly on its origin. The divergence comes from
the fact that the minimum of kinetic energy is infinitely
degenerate, occurring everywhere on a ring in momentum
space, rather than at a single point or finite set of points. In
the presence of crystalline anisotropy (which manifests itself
through corrections to the effective mass approximation in real
materials), the divergence is cut off near the band bottom and
the density of states goes to a constant. However, as long as
k0a/π 	 1, where a is the lattice constant (i.e., as long as the
spin-orbit coupling is weak), the crystal field anisotropy terms
are small and Eq. (4) provides a good approximation down to
energies of order |E0|(k0a)2 above the band bottom.

III. WIGNER CRYSTAL

A. Instability of the Fermi liquid state

We begin by considering the stability of the uniform (Fermi
liquid) state. According to Eq. (4), at low densities, the Fermi
energy εF is

εF = π2n2

4m2|E0| , (5)

where n is the density of electrons per unit area. Thus the
kinetic energy per particle in the homogeneous state is

ε̄kin = 1

n

∫ εF

0
εD(ε)dε = π2n2

12m2|E0| . (6)

The potential energy per particle, on the other hand, is

ε̄pot = 1

2n�

∫
d�rd�r ′V (�r − �r ′)〈n(�r)n(�r ′)〉, (7)

where � is the total area of the system, n(�r) is the local density
at position �r , and 〈· · ·〉 denotes averaging in the uniform (Fermi
gas) state. In the low-density limit, for short-range interactions
[α > 2 in Eq. (2)], ε̄pot ∝ n. For long-range interactions,
the right-hand side of Eq. (7) diverges. Here, a neutralizing
background must be taken into account, leading to ε̄pot ∝ nα/2.
We see that in all cases, in the low-density limit, ε̄pot � ε̄kin,
suggesting that the uniform state is unstable to forming some

sort of order. One possibility is that at asymptotically low
densities, the ground state is a Wigner crystal, as in a 2DEG
with no SOC. Note, however, that here, in the presence
of Rashba SOC, this instability occurs even for short-range
interactions.

B. Contact interactions

For simplicity, we begin by considering the case of the
shortest range interactions: repulsive “contact” interactions.
We start with a variational wave function, which minimizes
the interaction energy, taking each electron to be confined
to a rectangular box of dimensions Lx × Ly , with different
boxes nonoverlapping. This is a zero-energy eigenstate of the
potential energy operator. In order for the boxes to tile the
plane, Lx and Ly are constrained by the condition

LxLy = 1

n
. (8)

Thus we have a single variational parameter, the aspect ratio
η ≡ Lx/Ly , which we use to minimize the kinetic energy of
the trial state. The kinetic energy per particle in the variational
state is given by the ground-state energy of a single particle in
a box with Rashba SOC. This problem is investigated, both
analytically and numerically, in Appendix A. Surprisingly,
unlike the case with no SOC, the ground-state energy in the
low-density limit is minimal for η �= 1. In the η � 1 limit, we
find the following expression for the ground-state energy as a
function of η and n:6

ε (n,η) = n

2m

(
Aη−1 + Bn

k2
0

η2

)
, (9)

where A and B are numbers of order unity, see Eq. (A14).
Minimizing Eq. (9) with respect to η, we find that the optimal
aspect ratio η	 scales as

η	 ∼ (
n/k2

0

)− 1
3 , (10)

and the ground-state energy per particle scales as

ε	(η	) ∼ |E0|
(
n/k2

0

) 4
3 . (11)

Therefore, in the low-density limit, we get that the energy
per particle of this anisotropic Wigner crystal state is para-
metrically lower than that of the uniform state, which scales
as n. Note that, consistent with our assumptions, the optimal
aspect ratio of the unit cell in the Wigner crystal becomes
parametrically large at low densities.

The fact that the kinetic energy is minimal for an anisotropic
box can be understood as follows. Suppose that the ground-
state wave function is a superposition of plane waves with
wave vectors close to some wave vector �k	 of length k0, for
which the dispersion (3) is minimal. Near �k	, the dispersion is
quadratic in the radial direction, while it is anomalously flat
(quartic) in the transverse direction. Therefore confinement in
the direction perpendicular to �k	 is less costly than confinement
parallel to �k	, and the optimal aspect ratio is such that the box is
long in the direction of �k	, and short in the transverse direction.
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C. Extended short-range interactions

We now turn to the case of extended, short-range interac-
tions, which corresponds to 2 < α < ∞. We show that in this
case, as in the case of contact interactions, the Wigner crystal
state is extremely anisotropic in the low-density limit.

In the case of extended interactions, the potential energy
in the Wigner crystal phase cannot be neglected. To estimate
the potential energy, we consider the same variational wave
function as before, in which the particles are localized in
an array of nonoverlapping Lx × Ly boxes. To estimate the
potential energy, we will replace the wave function of each
particle by a constant, such that the density is uniform,
n = 1/(LxLy); the parametric dependence of the energy on n

and η should not depend on this assumption. Let us focus on the
anisotropic limit, Lx � Ly , assuming that this is the optimal
configuration. The interaction energy of a given particle with
all the other particles is

ε̄v(n,η) ≈ 2(U1 + U2), (12)

where U1 and U2 are given by

U1 = 1

L2
xL

2
y

∫ Lx

0
dx

∫ Ly

0
dy

∫ ∞

−∞
dx ′

×
∫ ∞

Ly

dy ′ V0

[(x − x ′)2 + (y − y ′)2]α/2

= V0n
α
2 η

α
2 −1C1 (13)

and

U2 = 1

L2
xL

2
y

∫ Lx

0
dx

∫ Ly

0
dy

∫ ∞

Lx

dx ′

×
∫ Ly

0
dy ′ V0

[(x − x ′)2 + (y − y ′)2]α/2

= V0n
α
2 η

α
2 −2[C2 + O(η2−α)]. (14)

C1 and C2 are dimensionless constants that depend on α. In the
η � 1 limit, we get that U1 � U2, and therefore we neglect the
latter. Now, if we assume that η ∼ n− 1

3 , as Eq. (10) suggests
in the case of contact interactions, we find

ε̄v ∼ n
1
3 (1+α). (15)

We see that, for α > 3, ε̄v becomes negligible compared to
the kinetic energy ε	(η	) ∼ n4/3, Eq. (11), in the n → 0 limit.
Therefore Eqs. (10) and (11) are not modified in this case. For
α < 3, ε̄v dominates in the low-density limit, and we should
consider both the kinetic and potential energies, Eqs. (11)
and (12):

ε̄tot = ε̄v(n,η) + ε(n,η)

≈ n

2m

(
Aη−1 + Bn

k2
0

η2

)
+ C1V0n

α
2 η

α−2
2 . (16)

Minimizing with respect to η and keeping only the most
singular term as n → 0 gives

η	 ∼ 1

(2mV0)2/α
n

2
α
−1 (2 < α < 3). (17)

We see that, for 2 < α < 3, η still becomes parametrically
large in the n → 0 limit. Inserting Eq. (17) back into Eq. (16),
we get

ε	
tot ∼ 1

m
(2mV0)2/αn2(1− 1

α
) (2 < α < 3). (18)

Thus for 2 < α < 3, the anisotropic Wigner crystal has
parametrically lower energy per particle than the uniform state.

D. Long-range interactions

For α < 2 (long range interactions), the Wigner crystal in
the low-density limit has the same hexagonal (C6) symmetric
triangular structure as the classical crystalline phase that
minimizes the potential energy. We will refer to the hexagonal
crystal as “isotropic,” as opposed to the “anisotropic” crystal
described previously, which has a lower symmetry. To show
that the Wigner crystal is isotropic for α < 2, we note that the
potential energy in a classical crystal scales as

εWC ∼ n
α
2 . (19)

If, in the Wigner crystal phase, each electron is confined
to a region whose dimension is some fraction of the mean
interelectron distance, the kinetic-energy cost of forming the
crystal scales as the density n, as in the case without SOC.7

(Here, unlike before, we assume that the region to which
the electron is confined has an aspect ratio of order unity.)
Therefore, in the low-density limit, crystallization yields a
potential energy gain that overwhelms the kinetic energy cost.
Thus, to first approximation, we may ignore the kinetic energy.
The ground state is therefore a hexagonal Wigner crystal, and
is not qualitatively affected by the Rashba SOC.

IV. MAGNETIC PROPERTIES OF THE WIGNER CRYSTAL

So far, we have ignored the magnetic degrees of freedom.
The ground state of a Rashba particle in a box is two-fold
degenerate, according to Kramers’ theorem. Correspondingly,
the variational wave function we considered (in which elec-
trons occupy nonoverlapping boxes) is 2N -fold degenerate,
where N is the number of electrons. This degeneracy is lifted
by exchange interactions.

First, we elucidate the nature of the Kramers pair of ground
states of a single electron in a box. Because of the spin-orbit
coupling, these states are not eigenstates of the spin operator
�σ . However, in the anisotropic (η = Lx/Ly � 1) limit, there
are particular linear combinations of the two ground states that
are approximately polarized in the ±ŷ directions, where ŷ is
the narrow direction of the unit cell. The expectation values of
all other spin components are small; this is true for any choice
of basis in the ground-state Hilbert space.

To demonstrate this, we calculate the quantities

Si ≡
√√√√1

2

∑
α,β=1,2

|〈α|si |β〉|2, (20)

where |α = 1,2〉 are the two ground states obtained from
the numerical solution of the particle-in-a-box problem (see
Appendix A), and si = σi/2 where σi=x,y,z are Pauli (spin)
matrices. As defined, Si is the maximum expectation value of
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FIG. 2. (Color online) The quantities Sx,y,z, defined in Eq. (20)
vs the aspect ratio η = Lx/Ly of a box with fixed area � = 75/k2

0 .
When Lx/Ly = 1, Sx = Sy ; as Lx/Ly increases, Sy becomes close
to 1 and Sx → 0.

the spin component i in the ground-state manifold spanned
by the Kramers pair |α = 1,2〉. The values of Si=x,y,z as
functions of the aspect ratio η are shown in Fig. 2. As η

increases, Sy becomes close to 1/2, while Sx,z → 0. This can
be understood as a consequence of the fact that when Lx � Ly ,
the ground states contain mostly components with momenta
close to �k = ±k0x̂, with spin polarizations close to the ±ŷ

directions.
The magnetic degrees of freedom in the anisotropic Wigner

crystal can therefore be thought of as Ising-like spins, which
are polarized in the ±ŷ directions. These spins are coupled by
exchange processes, which generate N -body interactions.8–10

In addition, because of the spin-orbit coupling, Van der
Waals-like interactions generate spin-spin terms,11 which are
not exponentially suppressed in the Wigner crystal phase. A
detailed estimate of these interactions is complicated, and we
defer their analysis for later work.

V. SMECTIC STATE

The anisotropic Wigner crystal variational wave function
described above assumes that translational symmetry is bro-
ken. However, long-range quantum fluctuations can restore
translational symmetry, either partially or fully, resulting in
either a smectic state (which breaks translational symmetry in
only one direction), a nematic state, which breaks rotational
symmetry, but is translationally invariant, or an isotropic
liquid. Since the ground-state energy is mostly sensitive to
short-range correlations, the crystal and the various liquid
states can have close energies. Below, we demonstrate that
one can write an explicit wave function describing a smectic
state with the same parametric dependence of the ground-state
energy on density as that of the anisotropic WC. In the next
section, a ferromagnetic nematic variational wave function will
be described.

Let us consider, for simplicity, the case of short-range
(contact) interactions. To construct a wave function for the
smectic, we consider a trial Hamiltonian in which the electrons
are confined to move along an array of strips of width Ly with

infinitely hard walls separating different strips. The problem
is then reduced to finding the electronic ground state of a strip
with a linear density of nLy . The single-particle dispersion
in the strip is derived in Appendix A [see Eq. (A12)]. The
dispersion of each transverse subband has two degenerate
“valleys” at ±(k0 + δk	

x), where δk	
x ∼ 1/(k0L

2
y). We will

assume that only the lowest subband of the strip is occupied.
(For a fixed Ly , this is valid for a sufficiently small density.12)
Moreover, we may ignore the “valley” degeneracy since every
electron can be assumed to be in one of the two valleys, and
exchange processes between the valleys are suppressed. We
thus obtain an effective one-dimensional Hamiltonian for the
motion along a strip:

H =
∑

i

(
� − ∂2

x

2m	

)
+ 1

2

∑
i,j

V (xi − xj ), (21)

where, from Eq. (A12), � = A2
1/8mk0L

4
y and m	 ∝ m (A1 is

a dimensionless constant). In the n → 0 limit, the interaction
becomes strong compared with the Fermi energy, and the
electrons behave as effectively hard core particles (indepen-
dently of their valley index). The system can be mapped onto
a noninteracting spinless fermion problem. The ground-state
energy per particle is thus

ε(Ly) = A1

8mk2
0L

4
y

+ (πnLy)2

6m∗ . (22)

Minimizing this expression with respect to Ly , we obtain the
ground-state energy per particle of the smectic state:

εSM ∼ k2
0

m

(
n

k0

) 4
3

. (23)

The scaling of the energy of the smectic state with n is thus
the same as that of the anisotropic Wigner crystal, Eq. (11).12

The numerical prefactor, which cannot be determined reliably
from such simple considerations, is therefore important in
determining which of these two states is favored in the n → 0
limit.

In the case of extended interactions that decay with an
exponent α, one can use the same variational wave function
for the smectic, in which the expectation value of the potential
energy is finite, and then minimize the total energy over Ly .
The calculation proceeds in essentially the same way as in
Sec. III C, and we will not repeat the details here. The result
is that the parametric dependence of the smectic variational
energy on n is the same as that of the Wigner crystal, Eq. (18),
for any α.

VI. FERROMAGNETIC NEMATIC STATE

Finally, we consider a complete melting of the anisotropic
Wigner crystal phase, preserving its preferred orientation.
This results in a nematic state. Similarly to the situation in
the Wigner crystal and the smectic states, we expect that
in the low-density limit, only states in the vicinity of two
opposite points ±�k0 on the ring of minimal dispersion will
be occupied. For simplicity, we will assume the occupation is
limited to the vicinity of only one point on the ring, �k0, which
makes the nematic state also ferromagnetic (with an in-plane
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magnetization perpendicular to �k0). Such a state is particularly
easy to describe within a Hartree-Fock approximation. We
emphasize, however, that a paramagnetic nematic state is
also possible, although it is not easily captured by a simple
variational wave function.

The Hartree-Fock analysis of the ferromagnetic nematic
state is straightforward, and is described in Appendix B. At a
sufficiently low density, a spontaneous in-plane magnetization
develops, and the Fermi surface becomes asymmetric. At
asymptotically low densities, the Fermi surface becomes an
ellipse centered around one of the points on the minimal
dispersion ring in momentum space. The total variational
ground-state energy per particle in this limit scales with density
as [see Eq. (B10)]

εFM ∼
{

n2(1− 1
α

), α � 4,

n
3
2 , α > 4.

(24)

Comparing this to Eqs. (11), (18), and (23), we see that the
ground-state energy of the ferromagnetic state is parametri-
cally smaller than that of either the anisotropic WC or the
smectic states for α > 3, making it the best candidate for the
ground state. For 2 < α � 3, the scaling of the ground-state
energy with density of all three states has the same exponent.
The energies differ only by the prefactor, which cannot be
estimated reliably within the simple variational approach used
here.

The ferromagnetic nematic state spontaneously breaks
time-reversal (T ) and rotational symmetry (Rθ ) about the
z axis as well as the mirror symmetry, My , for the plane
parallel to the ferromagnetic moment. However, it preserves
the product, T Rπ , of time-reversal and rotation by π (hence
the name, “nematic”) and reflection through the plane perpen-
dicular to the moment, Mx . The latter symmetry ensures that
there is no out-of-plane component of the magnetization, and
no anomalous Hall effect. Note that, even though this state
carries a finite crystal momentum, it does not carry a finite
current density, as required by a theorem by F. Bloch.13–15

There is, however, a large anisotropy in the in-plane Drude
weight (effective mass). From our Hartree-Fock state (see
Appendix B), we find that the anisotropy scales as n2− 4

α for
α < 4, and as n−1 for α � 4, in the low-density limit.

The physics behind the formation of the in-plane ferro-
magnetic state is similar to the usual Stoner picture for ferro-
magnetism: the system gains exchange energy by polarizing,
at the expense of kinetic energy. In a system with Rashba
SOC at low density, the exchange energy gain exceeds the
kinetic energy cost due to the high density of states. In the
low-density limit, the Fermi surface becomes parametrically
anisotropic. Qualitatively, the short-range correlations in this
state are similar to those of the anisotropic Wigner crystal. This
explains why these states are close in energy, at least for α � 3.
The long-range correlations, however, are very different: the
ferromagnetic state is a fluid, whereas the Wigner crystal is an
insulator.

VII. PHASE DIAGRAM

So far, we have argued that for sufficiently low density
and for short-ranged interactions, the system breaks rotational

invariance, going into either an anisotropic Wigner crystal,
smectic, or a nematic state. We now discuss the global features
of the phase diagram as a function of density and the interaction
range. For concreteness, let us discuss a 2DEG with Rashba
SOC with screened Coulomb interactions, where the screening
is from a nearby metallic gate at a distance ξ away. The
effective electron-electron interaction is V (r) ≈ e2/κr for
r 	 ξ , where κ is the dielectric constant of the surrounding
material, and V (r) ∼ e2ξ 2/κr3 for r � ξ .

The broken-symmetry state forms at a density n	 at which
various scales become comparable to each other. We define a
density n	

1 at which the energy of the broken symmetry state
per particle is comparable to that of the uniform Fermi-liquid
state (which is dominated by Coulomb energy):

e2ξn	
1

κ
∼ 1

m

(
m

e2ξ 2

κ

) 2
3

(n	
1)

4
3 , (25)

where e is the electron charge, and κ is the dielectric constant
of the host material. On the left-hand side we have used that,
for short range interactions, the potential energy of the uniform
state scales linearly with density [assuming that (n	

1)−
1
2 � ξ ],

and on the right-hand side, we have used Eq. (18) for the energy
of the broken symmetry state with V0 ∼ e2ξ 2/κ . Note that the
energies of all the different candidate states are the same up
to a numerical prefactor in the case α = 3; compare Eqs. (18)
and (B10). This gives n	

1 ∼ (a0ξ ), where a0 ≡ κ/me2 is the
effective Bohr radius.

In addition, we define a density n	
2 at which the interelectron

distance is comparable to the screening length ξ , and a density
n	

3 at which the Fermi wave vector is comparable to k0. These
characteristic densities are given by n	 < n	

2 ≡ 1/ξ 2 and n	 <

n	
3 ≡ k2

0. The strongly anisotropic states are favored at densities
that satisfy n < n	 = min[n	

1,n
	
2,n

	
3].

We can now speculate about the structure of the zero-
temperature phase diagram of a 2DEG with Rashba SOC,
sketched in Fig. 3, as a function of the dimensionless inter-
electron spacing rs ≡ (πna2

0)−1/2 and the screening length ξ .
Let us consider large ξ , for which the Coulomb interactions are
effectively unscreened. Then, a Wigner crystal with hexagonal
symmetry forms when rs > rs,c ≈ 35.2 Imagine that we start
deep in the Wigner-crystal phase, with arbitrarily large rs and ξ .
Upon decreasing ξ , while keeping rs fixed, eventually we reach
ξ � rsa0, where the interactions are effectively short-ranged
and the kinetic energy becomes important. At some point along
this path, we expect a phase transition from the hexagonal
Wigner crystal to one of the phases with lower rotational
symmetry: either an anisotropic Wigner crystal, a smectic,
or a nematic, which can also be ferromagnetic. Which of these
phases is realized cannot be determined reliably on the basis
of the present analysis.

At higher densities, such that rs,c < rs < 1/(k0a0), the
SOC can essentially be ignored. Then, upon decreasing ξ

from the Wigner crystal, we expect a transition to a Fermi
liquid. The reentrant tip of the Wigner crystal phase originates
from the same physical reasoning as that described in Ref. 16.

As drawn, a sliver of UFL is shown between the isotropic
WC and broken rotational symmetry phases. Such a region
may or may not exist, depending on details of the numerical
factors that are beyond the scope of the calculation here.
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ξξ

1 ξ 
ξ 

FIG. 3. (Color online) Sketch of the phase diagram of a 2DEG
with Rashba SOC, as a function of 1/rs ≡ a0(πn)1/2 and the screening
length ξ , where a0 = κ/me2 is the Bohr radius. The three regions
correspond to the uniform Fermi liquid (UFL), the isotropic Wigner
crystal (WC), and a phase featuring a high degree of anisotropy,
which can be either an anisotropic Wigner crystal, a smectic, or a
nematic. The red dashed lines correspond to rs ∼ ξ/a0, where the
crossover between effectively short-range (screened) and long-range
Coulomb interactions occurs; 1/rs ∼ k0a0, where the SOC length
scale becomes comparable to the interparticle distance; and 1/rs ∼
(ξ/a0)−1/2, where the energies of the uniform Fermi liquid and the
anisotropic phases become comparable, see Eq. (25).

VIII. POSSIBLE REALIZATIONS

The physics described here could be relevant to electrons
in two-dimensional heterostructures that lack inversion sym-
metry such as (Ga,Al)As quantum wells. The magnitude of
the Rashba spin-orbit coupling in these systems, however,
is rather small. As discussed above, a necessary condition
for realizing the phases with broken rotational symmetry is
rs � 1/k0a0, or equivalently, kF � k0; in typical (Ga,Al)As
quantum wells, k0/kF ∼ 0.5 or less, and the characteristic
energy scale of the SOC, E0 is at most of the order of
a few degrees Kelvin.17,18 More promising systems are the
surface states of heavy metal surface alloys. For instance, the
boundary between BixPb1−x and Ag(111) supports a surface
state with very strong Rashba SOC with k0 ≈ 2 nm−1 and
E0 ≈ 0.1 eV.19,20 Moreover, it was demonstrated that by
varying x, the Fermi level of the surface state can be tuned to
be lower than E0.21 The Coulomb interactions on the surface
are naturally screened by the metallic bulk.22 Detecting the
broken rotational symmetry on the surface poses a challenge,
because transport measurements would be dominated by the
bulk. One possibility is to look for signatures of anisotropy in
the finite-frequency response, e.g., in the optical conductivity,
assuming that the anisotropic domains can be aligned (e.g., by
application of an in-plane magnetic field). Scanning tunneling
microscopy can be done on metallic surface alloys,23 and
used to detect anisotropy in the electronic structure. Finally,
magnetic spectroscopy can be used to detect the ferromagnetic
state, which has a large in-plane moment. Such measurements
have recently been done24 on the conducting interface between
LaAlO3 and SrTiO3, and indeed, large in-plane moments were
found. Whether these are related to the mechanism described
in this paper remains to be seen.

It has been proposed25 that similar physics can arise in
lightly doped bilayer graphene with a perpendicular electric
field, in which the single-particle dispersion has a minimum
on a ring in k space, even without SOC. In bilayer graphene the
single particle dispersion is valley and spin degenerate. The
ground state is likely to have additional broken symmetries,
lifting these degeneracies.

It is interesting to note that the considerations that lead to
broken rotational symmetry at low densities are independent
of the particle statistics, and are thus valid for two-component
bosons with effective (isotropic) Rashba-like spin-orbit inter-
actions. Recently, various techniques were proposed to realize
effective SOC in systems of trapped ultracold atoms.26,27 The
properties of such systems have been the subject of intense
study.28–31 Highly anisotropic phases may be accessible in
such systems at sufficiently low densities. Indeed, it was
found31 that the ground state breaks rotational symmetry at low
densities, and that the ground-state energy per particle scales
as n4/3 in the limit n → 0, consistently with our results for the
anisotropic WC and smectic phases with contact interactions.

IX. CONCLUSIONS

In the presence of strong Rashba SOC, even short-range
electron-electron interactions become important. As a result,
the system is expected to form a broken-symmetry state at
low enough densities. In this work, we have shown that for
sufficiently short-range interactions, states which break rota-
tional symmetry are favored in the low-density limit. This is a
consequence of the fact that the single-particle dispersion has
a minimum on a ring of finite radius in k space, rather than at a
single point. This physics is not limited to the case of Rashba
SOC; for instance, a similar situation arises in spin-imbalanced
fermionic superfluids with no SOC, in which the majority-spin
quasiparticles have a dispersion that is minimal near kF ,32 or
in bilayer graphene with a transverse electric field.25

We believe that the variational wave functions and physical
arguments proposed above capture the correct scaling of the
ground-state energy, which is found to be parametrically lower
than other states (e.g., a uniform Fermi liquid or an isotropic
Wigner crystal). However, this approach is too crude to answer
some important, more detailed questions, such as discriminat-
ing between the different broken-symmetry states considered
here. For sufficiently short-range interactions (which fall off
with an exponent larger than three) a nematic ferromagnetic
state has a parametrically lower energy than all the other states
considered here, and is therefore the best candidate for the
ground state. It is not clear, at this point, whether a nonmagnetic
nematic state is a competitor or not; such a state is harder to
capture within a simple variational approach. More detailed
calculations will be needed to determine the phase diagram
for interactions that fall off with distance with a power of three
or less. For instance, it may be interesting to treat this problem
in an unrestricted Hartree-Fock approximation, which can be
used to systematically improve the variational wave functions
used in this work.

Edge states of surface alloys, such as the ones discovered
by Ast et al.,19 seem to be promising candidates to realize
the anisotropic Wigner crystal phase, since they combine
extremely strong Rashba SOC, a tunable Fermi energy, and
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screening due to the nearby metal. In a real system, however,
disorder will inevitably play a major role. As a result, both
the positional and orientational order are expected to be
short ranged. To detect the broken-symmetry state on the
surface, one can either resort to local probes (such as scanning
tunneling spectroscopy) or find a way to align the orientational
domains, e.g., by an in-plane magnetic field.
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APPENDIX A: RASHBA PARTICLE IN A BOX

The arguments presented in this paper rely on the solution
of the quantum-mechanical problem of a single particle with
Rashba SOC in a rectangular box of size Lx × Ly with infinite
potential walls. While the corresponding problem without
spin-orbit coupling is trivial, with spin-orbit coupling the prob-
lem of boundary-condition matching with the multicomponent
wave function is highly nontrivial. The reason the problem
with SOC is more difficult is that in this case, the Hamiltonian
is no longer separable (i.e., it cannot be written as a sum
of two commuting terms, one of which depends only on the
x coordinate and the other on y). A circular well can be solved
exactly,33 thanks to its rotational invariance.

In this Appendix, we combine several approaches to
deduce the asymptotic form of the ground-state energy in the
anisotropic, low-density limit, Eq. (9) of the main text. We first
solve the problem exactly in the Lx → ∞ limit (keeping Ly

fixed), and then provide an argument which yields the form
of the leading corrections for finite Lx . Finally, we present
numerical results supporting the analytical arguments.

1. Solution in the Lx → ∞ limit

In the limit Lx → ∞, the problem becomes translationally
invariant in the x direction. The eigenfunctions then take the
form

ψ(x,y) = eikxxϕ(y), (A1)

where ψ , ϕ are two-component spinors. We choose coordi-
nates such that the walls are at y = ±Ly/2. Then ϕ(y) satisfies
the boundary conditions

ϕ(±Ly/2) =
(

0

0

)
. (A2)

Seeking a solution with energy E = ε, we get that the wave-

vector modulus k =
√

k2
x + k2

y satisfies

ε = (k − k0)2

2m
. (A3)

Fixing kx , we find four allowed values of ky , which we denote
by ±ky,±:

ky,± =
√

(k0 ±
√

2mε)2 − k2
x . (A4)

Note that ky,± can be imaginary.
The wave function for the transverse motion takes the form

ϕ(y) =
∑

η1,η2=±
aη1,η2e

iη1ky,η2 y

(
e−iη1θη2 /2

ieiη1θη2 /2

)
, (A5)

where

eiθη1,2 = kx + iky,η1,2

k
(A6)

and aη1,η2 (η1,η2 = ±) are coefficients, which are determined
by the boundary conditions. We may reduce the number of
coefficients by using symmetry. Under reflection, y → −y

the spinor ϕ(y) transforms as ϕ(y) → σyϕ(−y). Requiring
that the wave functions are either even or odd under reflection
gives

aη1,η2 = ±a−η1,η2 . (A7)

Imposing the boundary condition, Eq. (A2), on the wave
function in Eq. (A5), for the even sector gives the following
(implicit) equation for ε:

cos

(
ky,+Ly

2
− θ+

2

)
cos

(
ky,−Ly

2
+ θ−

2

)

− cos

(
ky,+Ly

2
+ θ+

2

)
cos

(
ky,−Ly

2
− θ−

2

)
= 0, (A8)

where ky,±, θ± are given by Eqs. (A4) and (A6). For the odd
sector, we get an identical equation with cos replaced by sin.
Equation (A8) determines the dispersion ε(kx). The dispersion
of the lowest subband, near kx = k0, is shown in Fig. 4, for
widths k0Ly/2 ranging from 10 to 20.

The form of the low-energy dispersion can be deduced from
Eq. (A8) as follows. To lowest order in ε and δkx ≡ kx − k0,

Δ

Δ

Δ

Δ

Δ)

Δ

FIG. 4. (Color online) Dispersion of the lowest subband for
infinite strips of varying width Ly . The inset shows the dispersion
minimum � vs Ly on a log-log plot, showing good agreement with
� ∼ 1/L4

y .
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this equation depends on ε, δkx , and Ly through the factors
ky,±Ly :

ky,±Ly =
√

(k0 ±
√

2mε)2 − (k0 + δkx)2Ly

≈
√

±2k0

√
2mε − 2k0δkxLy. (A9)

Therefore Eq. (A8) has the functional form

F
(
2k0

√
2mεL2

y,2k0δkxL
2
y

) = 0, (A10)

where F is some function of two variables. Close to the band
minimum, the dispersion has the following form:

2k0

√
2mεL2

y = A1 + A2
[
2k0δkxL

2
y − A3

]2
, (A11)

where A1,2,3 are dimensionless constants. Therefore

ε(δkx) ≈ 1

8mk2
0

[
A1

L2
y

+ A2

(
2k0δkx − A3

L2
y

)2

L2
y

]2

≈ 1

8mk2
0

A2
1

L4
y

+ A1A2

m
(δkx − δk	

x)2, (A12)

where δk	
x = A3/2k0L

2
y . We see the dispersion minimum �

scales as 1/L4
y , while the effective mass in the x direction is

L independent. We confirm the relation � ∼ 1/L4
y by solving

Eq. (A8) numerically, see inset of Fig. 4.

2. Extension to finite Lx

Next, we consider that Lx is finite, still assuming that
Lx � Ly . In this case, the solution is complicated by multiple
reflections from the boundaries. Nevertheless, we can deduce
the form of the ground-state energy as a function of Lx and
Ly as follows. For large Lx , we assume that the solution is
largely composed of traveling wave states near the bottom
of the dispersion given by Eq. (A12), which are reflected
back and forth from the two edges. Consider a right-moving
wave with momentum kx = k0 + δkx . This state can only
be reflected to the state k′

x = k0 − δkx + 2δk	
x , where δk	

x is
defined below Eq. (A12). Note that time reversal symmetry
prohibits scattering to the other left-moving solution with
momentum −k0 − δkx , since this state is the Kramer’s partner
of the original incoming wave. The eigenstates of the system
are determined by the requirement that the phase acquired over
one period is a multiple of 2π :

2(δkx − δk	
x)Lx + φ = 2πj , (A13)

where j is an integer, and φ = φ1 + φ2 is the sum of the
two (unknown) phase shifts φ1, φ2 associated with reflections
from the two ends. The total phase shift φ is a function δkx ,
Ly , and k0. However, in the limit δkxLy → 0, 1/k0Ly →
0, we assume that we can replace φ(δkxLy,1/k0Ly) by a
constant φ(δkxLy → 0,1/k0Ly → 0) ≡ φ0. We then find that
the ground state is given by δkx − δk	

x = (2πjmin − φ0)/2Lx ,
where jmin is an integer chosen to minimize the energy below.
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FIG. 5. (Color online) Numerical results for the ground-state
energy vs aspect ratio Lx/Ly of a particle with Rashba spin-orbit
coupling in a rectangular infinite potential well of size Lx × Ly , for
several values of the density n (measured in units of 1/k2

0). We have
set 2m = 1.

Inserting this into Eq. (A12), we finally get

ε(Lx,Ly) ≈ 1

8mk2
0

A2
1

L4
y

+ A1A2(πjmin − φ0/2)2

mL2
x

. (A14)

Substituting n = 1/(LxLy) and η = Lx/Ly , we obtain
Eq. (11).

3. Numerical solution

In order to verify the assumptions that lead to Eq. (A14), we
have numerically calculated the ground-state wave function of
a Rashba particle in a box. This is done using a generalization
of the “plane-wave decomposition” technique described in
Refs. 34 and 35. The solution is written as a superposition
of eigenstates of the free Hamiltonian, which are plane waves
with wave vectors satisfying Eq. (A3) for some value of ε. The
coefficients of the different plane waves are determined by
requiring that both components of the wave functions vanish
on a set of points evenly distributed along the boundary (in this
case, an Lx × Ly rectangle), and that the first component of
the wave-function spinor is equal to one at an arbitrary point in
the interior. The sum of the squares of the wave function (the
“tension”) at a different set of points on the boundary is then
calculated. The eigenvalues ε are identified as the minima
of the tension. The eigenvalues can be determined with an
accuracy of 1% or better. We have tested the technique by
calculating the eigenenergies of a Rashba particle in a circular
well, and found excellent agreement with the exact results.33

Figure 5 shows the ground-state energy versus the aspect
ratio η = Lx/Ly for a few values of the density 1/n = LxLy .
The ground-state energy is minimal for η �= 1. We found this
behavior for n � 0.08k2

0; for higher densities (smaller box
area), the minimum energy occurs at η = 1. In Fig. 6, we show
the minimal ground-state energy ε	 and the corresponding
aspect ratio η	 for densities ranging from n/k2

0 = 8 × 10−2 to
4 × 10−3. For low densities, the optimal ground-state energy
and aspect ratio follow ε	 ∼ n4/3 and η	 ∼ n−1/3, in agreement
with Eqs. (10), (11), and (A14).
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η ∼

η
)

ε
) ε ∼

FIG. 6. (Color online) (a) Minimal ground-state energy, ε	, and
(b) optimal aspect ratio, η	, as a function of the density, on a log-log
scale. The data are consistent with the analytical predictions: ε	 ∼
n4/3 and η	 ∼ n−1/3 at low densities.

APPENDIX B: HARTREE-FOCK DESCRIPTION OF THE
FERROMAGNETIC NEMATIC

Within the Hartree-Fock approximation, we replace the
full Hamiltonian H , Eq. (1), by the following mean-field
Hamiltonian H:

H =
∑

j

{
1

2m

[
−∇2

j − 2k0

i
(∇j × ẑ) · �σj

]
− μ − 1

2
�h · �σj

}
,

(B1)

where �h is a spontaneous Zeeman field, to be determined
self-consistently, and μ is the chemical potential. We proceed
by minimizing the expectation value of the full Hamilto-
nian within the ground state of the mean-field Hamiltonian,
Eq. (B1).

Let us focus on the case of an in-plane Zeeman field �h.
(We will later argue that an out-of-plane �h is not energetically
favorable.) Without loss of generality, we assume that �h = hx̂.
Then, the lower-branch single-particle dispersion obtained by
diagonalizing Eq. (B1) is

εk = k2

2m
− μ − k0

m

√
k2
x +

(
ky + mh

2k0

)2

. (B2)

The minimum of the dispersion is obtained for �k = k0ŷ. In
the low-density limit, only states close to the minimum are
occupied. We therefore expand the dispersion around the
minimum, using polar coordinates, kx = k sin θ , ky = k cos θ ,
with k = k0 + δk, to leading order in δk and θ . This gives

εk ≈ − k2
0

2m
− 1

2
hx − μ + δk2

2m
+ 1

4

k2
0h(

k2
0 + m

2 h
)θ2. (B3)

The Fermi surface is thus approximately an ellipse centered
around k0ŷ (see Fig. 7). Denoting the Fermi energy measured

relative to the dispersion minimum ε0 = k2
0

2m
+ 1

2hx + μ as εF ,
we get that the density and Fermi energy are related by

n = m

2π

√
1 + 2k2

0

mh
εF . (B4)

The expectation value of the kinetic energy per particle in the
ground state of H (measured relative to the band minimum,

kx/k0
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FIG. 7. (Color online) Constant-energy contours of the dispersion
of the mean-field Hamiltonian, Eq. (B2), around the minimum at
�k = k0ŷ. Numerical labels indicate energy values above the minimum,
measured in units of k2

0/(2m). The dashed line indicates the circle
k2

x + k2
y = k2

0 .

ε0) is

K =
〈
H + 1

2
�h · �σj

〉
+ k2

0

2m
+ μ ≈

〈
δk2

2m

〉

≈ πn

2

√
h

2mk2
0

, (B5)

where we kept only the leading-order term in mh

k2
0

. Next, we

calculate the potential energy. Assuming that V (r) ∼ r−α at
long distances, its Fourier transform has the following form
for small momentum transfer:

Ṽ (q) ≈ V0(β0 − β1q
α−2) (B6)

for 2 < α � 4, where we have neglected higher-order terms in
q. Here, β0 and β1 are constants, and V0 is defined in Eq. (2).
For α > 4, the leading-order term goes as q2 (as can be seen,
e.g., from the fact that for α > 4 the second moment of the
potential exists). We now compute the potential energy

U = 1

2

∑
i,j

〈V (�ri − �rj )〉

=
∑

k,k′,q,σ,σ ′

Ṽ (q)

�3
〈c†k+q,σ ck,σ c

†
k′−q,σ ′ck′,σ ′ 〉, (B7)

where � is the volume of the system, and we have introduced
ck,σ , the annihilation operator of an electron with momentum
k and spin σ . The calculation can be simplified significantly in
the limit of small mh/k2

0, in which the Fermi surface becomes
parametrically eccentric. In that limit, only the dependence of
Ṽq on the momentum parallel to the major (long) axis of the
Fermi surface is important. The result can be written as U =
U↑↑ + U↑↓, where U↑↑ and U↑↓ are the interaction energies
between same spins and opposite spins, respectively, given (to
leading order in mh/k2

0) by

U↑↑ = A(β1V0)n

[(
k2

0

mh

) 1
4 √

n

]α−2

,

(B8)

U↑↓ = B
(β0V0) n2

k2
0

√
k2

0

mh
.
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Here, A and B are dimensionless constants. We can now
minimize the total energy per particle, ε = K + U↑↑ + U↑↓,
with respect to the variational parameter h. In the n → 0 limit,
we find that h	, the optimal Zeeman field, is

h	 ∼
{

k2
0

m
(mβ1V0)

4
α n2− 4

α , α < 4,

β0V0n, α > 4.
(B9)

Inserting h	 back into the expression for the total energy, we
get that the ground-state energy is

ε	 ∼
⎧⎨
⎩

1
m

(mV0)
2
α n2(1− 1

α
), α < 4,

k2
0

m

√
mβ0V0

(
n

k2
0

) 3
2 , α > 4.

(B10)

Finally, we argue that an out-of-plane Zeeman field, hz �= 0,
is not energetically favorable. First, note that for an in-plane
field, in the low-density limit (n → 0) the kinetic energy
per particle is unaffected because the Zeeman field becomes

parallel to the spin-orbit field for all occupied states, allowing
each particle to gain the Zeeman energy without changing its
wave function. In contrast, in order for an electron to align
its spin with an out-of-plane Zeeman field, its wave function
must include hybridization with the excited band (with energy
∼k2

0/m above the lower band). In the hybridized state, the
upper band is occupied with a probability ∼(mhz/2k2

0)2,
leading to a kinetic energy cost (k2

0/2m) × (mhz/2k2
0)2. For

contact interactions, the potential energy per particle is given
by Ep = 1

4 (U0/n)(n2 − m2
z), where mz ≈ nhz/(k0/m2) (here

we use that for small hz, the spin of each electron obtains a z

component given by the ratio of hz to the spin-orbit field).
Therefore the potential energy gain from z polarization is
approximately 1

4U0n(mhz/k2
0)2. Compared with the kinetic

energy cost, we see that the potential energy gain includes
an extra factor of n, indicating that the cost of polarizing in
the z direction overwhelms the benefits in the low-density
limit.
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