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2Centre de Physique Théorique, Ecole Polytechnique, CNRS, FR-91128 Palaiseau Cedex, France
3Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan

4Department of Physics, Moscow State University, 119992 Moscow, Russia
(Received 15 July 2011; published 18 January 2012)

Dynamical screening of the Coulomb interactions in correlated electron systems results in a low-energy
effective problem with a dynamical Hubbard interaction U(ω). We propose a Green’s function ansatz for
the Anderson impurity problem with retarded interactions, in which the Green’s function factorizes into a
contribution stemming from an effective static-U problem and a bosonic high-energy part introducing collective
plasmon excitations. Our approach relies on the scale separation of the low-energy properties, related to the
instantaneous static U , from the intermediate- to high-energy features originating from the retarded part of
the interaction. We argue that for correlated materials where retarded interactions arise from downfolding
higher-energy degrees of freedom, the characteristic frequencies are typically in the antiadiabatic regime. In
this case, accurate approximations to the bosonic factor are relatively easy to construct, with the most simple
being the boson factor of the dynamical atomic-limit problem. We benchmark the quality of our method against
numerically exact continuous-time quantum Monte Carlo results for the Anderson-Holstein model both at half-
and quarter-filling. Furthermore, we study the Mott transition within the Hubbard-Holstein model within extended
dynamical mean field theory. Finally, we apply our technique to a realistic three-band Hamiltonian for SrVO3.
We show that our approach reproduces both the effective mass renormalization and the position of the lower
Hubbard band by means of a dynamically screened U , previously determined ab initio within the constrained
random phase approximation. Our approach could also be used within schemes beyond dynamical mean field
theory, opening a quite general way of describing satellites and plasmon excitations in correlated materials.
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I. INTRODUCTION

Over the last years, significant progress has been made in the
modelization of strongly correlated materials. Such systems
typically contain partially filled d or f orbitals,1,2 which lie
relatively close to the nuclei. Electronic Coulomb interactions
can then induce substantial corrections to a Bloch one-particle
picture, ranging from renormalization of effective parameters
in the sense of Landau to full localization of the d or f degrees
of freedom in the Mott insulator.

One of the difficulties in describing such correlation effects
is to separate the usually rather small energy range of the
correlated d and f orbitals from the larger energy scale of
the itinerant degrees of freedom, e.g., the p orbitals of ligand
atoms, but also of higher- or lower-lying states of the transition-
metal, rare-earth, or actinide atoms themselves. The former
orbitals are mainly responsible for the low-energy physical
properties of the compounds, while the latter act as a screening
medium, setting in particular the actual value of the Coulomb
repulsion of the correlated degrees of freedom.

Screening is a dynamical process, where the efficiency of
the screening medium in reducing the effects of a perturbation
depends on the energy scales involved.3 The effective Coulomb
interaction that enters a low-energy description of a solid is
thus in general a frequency-dependent quantity. In particular,
the local interaction matrix element (“Hubbard U”) becomes
a frequency dependent U = U (ω). In a realistic approach to
strongly correlated materials, U can be determined thanks to
the constrained random phase approximation (cRPA),4 once

the bands and their eigenstates are computed by an ab initio
calculation. The static value U0 = U (0), evaluated in this
way,5,6 has been recently used in the dynamical mean field
theory (DMFT) calculations of materials (see, e.g., Ref. 7).
The DMFT approach, combined with the density functional
theory (DFT), is an extremely powerful tool to treat ab initio
strongly correlated systems, once the low-energy model is
determined.8 However, very little is known on the impact of
the frequency dependence of the interaction in the low-energy
part of the spectrum. The hardest obstacle in order to include
the dynamic U into the DMFT framework has been the lack of
reliable solver techniques for the quantum impurity problem
with frequency-dependent Hubbard interactions.

The main difficulties come from two sources: the un-
screened value of the Coulomb interaction for 3d electrons,
e.g., is typically as large as several tens of eV, ruling out the
application of traditional weak-coupling expansion methods.
Furthermore, realistic U (ω) can be parametrized by bosonic
(plasmon or particle-hole excitation) modes, but in general a
representation in terms of multiple modes is required. This
prevents the direct use of methods developed in the context
of the Hubbard-Holstein Hamiltonian,9–16 as many bosonic
baths coupled to the fermion degrees of freedom will be
necessary to fully resolve U (ω). Recently, this problem has
been overcome by a continuous-time quantum Monte Carlo
(CTQMC) solver proposed by Werner and Millis,17,18 where a
multiplasmon Lang-Firsov transformation19 is treated exactly
in the context of a hybridization expansion algorithm for the
DMFT impurity Hamiltonian.20,21 Also, the weak-coupling
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CTQMC algorithm22,23 by Rubtsov can treat generic retarded
interactions, but it is limited to a not-so-large dynamic U and
not-so-large screening frequencies, and therefore it becomes
prohibitively costly for realistic applications of dynamic
screening interactions in a multiorbital context.

Another major problem still left (even if reliable Monte
Carlo data are available) is the possibility of computing
spectral properties, such as high-energy plasmon satellites.
Indeed, the presence of screening modes leads usually to a
quite complicated spectrum with a series of peaks located
at high energies (at multiples of the plasma frequencies).
Those features are hard to get by the usual maximum entropy
(ME) methods24,25 used to invert the noisy QMC data in
the imaginary-time domain into the spectral properties at
real frequencies. The ME methods are quite reliable at low
energy, but usually are not capable to deal with high-frequency
features.

In this paper, we present a DMFT approach based on a
Bose factor ansatz (BFA) for the Green’s function, which is
able to handle a generic U (ω) interaction in a strong-coupling
antiadiabatic regime, a typical situation in strongly correlated
materials, and provides a robust and general way to compute
the full spectrum of the frequency dependent (retarded) U , with
an accuracy capable to resolve the high-energy satellites. Our
method is based on the separation between the energy scales
set by the screened value U0 and treated using well-established
solvers17,22,26 and the dynamic part treated with various levels
of approximation, the simplest and most insightful one taken
from the dynamic atomic limit.

The paper is organized as follows. In Sec. II, we present the
motivations for using the dynamically screened interactions
in ab initio calculations. In Sec. III, we introduce the
models used to parametrize the dynamic interactions in
many-body realistic Hamiltonians. In Sec. IV, we describe the
Green’s function ansatz used in our method and its spectral
properties. In Sec. V, we present the dynamic atomic limit
approximation (DALA) to solve the Hubbard model with
dynamically screened U . In Sec. VI, we show various ways
to improve upon the DALA, and in Sec. VII we describe
their performances. In Secs. VIII and IX, we report our
results for a single-band lattice model at half-filling and a
three-band model with the DFT density of state (DOS) of
SrVO3, respectively. Finally, Sec. X summarizes our findings.

II. MOTIVATION: DYNAMICALLY SCREENED HUBBARD
INTERACTIONS

A. Dynamically screened interactions in lattice models for
correlated fermions

At the time when Hubbard designed the model that carries
nowadays his name,27 the mere possibility of the parameters
involved in this model becoming one day quantities that could
be calculated from a microscopic theory would not even have
been envisioned. Even though it was clear that the hopping
integrals between different atomic lattice sites correspond to
matrix elements of the coupling part of the Hamiltonian in
appropriately localized Wannier functions in a tight-binding
sense, it took several years, and the advent of modern electronic
structure techniques28 before calculations that extract this

information explicitly from band structure29 became standard
tools of condensed matter physics. Determining the local inter-
action parameters that translate the Coulomb cost of creating
a double occupancy on a given lattice site, the “Hubbard
U”, turned out to be an even harder issue. The “constrained
local density approximation” (CLDA) tries to assess this
quantity by calculating total energy differences for systems
with modified particle numbers within DFT in the local density
approximation. This route has met a certain success, making
CLDA the most commonly used method for this purpose
nowadays, even though ambiguities concerning the screening
channels that are included persist. Indeed, it is clear on physical
grounds that the Hubbard interactions depend on the choice
of the one-particle part of the Hamiltonian, not only through
the localization of the orbitals, but also through the number
and nature of states included in the low-energy description. An
elegant way to address this question is the “constrained random
phase approximation” (cRPA), which calculates the Hubbard
interactions as partially screened Coulomb interactions, that is,
screening processes that are included in the low-energy model
are suppressed in the calculation of U . The idea behind this
scheme is in fact more general than its (now commonly used)
name suggests, and is conceptually not restricted to a random
phase approximation treatment. It rather relies on the fact that
the electronic polarization P of a solid can be divided into two
parts, a part that is explicitly included in the low-energy model
to be treated Pd and the one stemming from the remaining
screening channels Pr = P − Pd . In this framework, the bare
interaction of the low-energy model Wr can be identified to be
the bare Coulomb interaction v(r − r ′) = 1

|r−r ′ | screened by
Pr :

Wr = v

1 − Prv
. (1)

This identification is motivated by the fact that further screen-
ing of Wr by the low-energy screening channels, expressed by
the polarization Pd , leads to the fully screened Coulomb inter-
actions (the W of Hedin’s theory30) of the original full-scale
model of the solid. The matrix elements of Wr between local-
ized orbitals used for the description of the low-energy effec-
tive model can therefore be identified as the Hubbard U param-
eters of the model. While this construction directly translates
the dependence of U on the choice of the low-energy model
in a conceptually satisfying manner, it reveals a further basic
feature: screening is a dynamical process since the efficiency
of a screening medium in responding to a perturbation depends
on the energy scale of this perturbation, as translated by the
frequency dependence of the polarization function or the cor-
responding dielectric response functions. The recognition of
the Hubbard U as a partially screened interaction thus leads in
a natural way to a generalization of the original Hubbard model
to a model with frequency-dependent Hubbard U . The natural
formulation is thus no longer in the form of a static Hamilto-
nian, but rather in the framework of an action formalism, even
though the additional frequency dependence of the Hubbard
interaction can be parametrized in terms of bosonic degrees
of freedom (particle-hole excitations and plasmon modes)
opening the way to formulating the problem in terms of a
Hubbard-Holstein model, where electronic degrees of freedom
are coupled to bosonic modes. As alluded to above, it is the
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goal of this paper to introduce a simple but accurate way to deal
with such a frequency dependence in the context of many-body
calculations. We address this problem in the dynamical mean
field approximation, in which the lattice problem is mapped
onto an auxiliary local problem of a single atomic site embed-
ded in a bath. The bath is determined by a self-consistency
condition imposing the local part of the lattice Green’s
function to coincide with that of the auxiliary problem. In the
present framework, where the lattice model itself is dynamical
(through the interaction), this amounts to solving a dynamical
local impurity model, as in extended dynamical mean field
theory,31–35 but with a fixed dynamical interaction. A mathe-
matical formulation of this strategy is given in Sec. III, before
we introduce our dynamical impurity solver scheme in Sec. IV.

B. Converting nonlocality into frequency dependence: The
“GW + DMFT view” on dynamical impurity models

In the discussion above, the dynamical nature of the
interaction was supposed to stem only from the downfolding
of higher-energy degrees of freedom. It can then be directly
assessed by a cRPA construction of a dynamical lattice model.
The construction of the impurity model serves in this case
merely as a tool to solve the dynamical lattice problem, with a
fixed local dynamical interaction that is assumed to be the local
part of the cRPA one. It is, however, possible to adopt a more
general point of view, which also incorporates the contribution
of nonlocal interactions and nonlocal screening effects in
a solid, giving rise to an additional frequency dependence
of the effective local interaction. The Hubbard interaction
U in this case should no longer be interpreted as the local
part of the physical Coulomb interaction of a downfolded
model, but as an effective quantity that incorporates both the
effects of screening by downfolding and by representing a
lattice model by an impurity. This perspective goes beyond the
cRPA view of the problem, but can be consistently formulated
within extended DMFT.31–35 It is also the starting point for
the combined “GW + DMFT” scheme,36 which yields a
prescription on how to calculate both the one-particle part of
the Hamiltonian and the Coulomb interactions of a correlated
material from first principles. The idea behind this method
is to calculate the nonlocal parts of the self-energy and
polarization to first order in the screened Coulomb interaction
W as in Hedin’s GW approximation,30 and to combine them
with the local part of these quantities as calculated from a
dynamical impurity model. One thus represents two physical
quantities, namely, the local Green’s function G of the solid
and the local part of the fully screened Coulomb interaction
W by a local model, defined by some effective Weiss field
G0 and the auxiliary Coulomb interaction U(ω). The latter
is constructed such that the solution of the impurity model
yields the local part of W . This is akin in spirit to other
theories in solid state physics, where a physical quantity is
represented by the self-consistent solution of an effective
auxiliary model, famous examples being density functional
theory or DMFT itself. In DFT, the physical density of a
system is represented by an auxiliary system in an effective
one-particle (Kohn-Sham) potential; in DMFT, the local lattice
Green’s function is constructed from an impurity model with
an effective Weiss field or, equivalently, a local self-energy.

The auxiliary quantities such as the Kohn-Sham potential of
DFT or the impurity self-energy acquire the role of Lagrange
multipliers fixing the density (in DFT) or the local Green’s
function (in DMFT) to their physical values. In extended
DMFT, a nonlocal interaction in the original lattice model
gives rise to a dynamical impurity model representing the
physical quantities of the model.

The question of how to solve dynamical impurity models in
an efficient and accurate way is thus a crucial one, motivated by
the dynamical nature of the effective local Coulomb interaction
due to both downfolding of higher-energy degrees of freedom
and nonlocal interactions. In the following, we will restrict
the discussion to the case of Sec. II A, in which a dynamical
lattice model is solved within a local approximation, keeping
in mind, however, the more general usefulness of the designed
approximations in the context of the GW + DMFT scheme.

III. MODELS

A. From dynamical Coulomb interactions to the
Hubbard-Holstein model

Putting the arguments of Sec. II A about the dynamical
nature of the partially screened Coulomb interactions into
mathematical language, we replace the general many-body
Hamiltonian by a low-energy effective description. This
amounts to constructing the effective action for the low-energy
degrees of freedom �:

S =
∫

dr �†(r) (∂τ − μ + H0) �(r)

+
∫

dr
∫

dr′ Wr (r,r ′,τ − τ ′)�†(r)�(r)�†(r′)�(r′),

(2)

where r = (r,τ ) is a generalized space imaginary-time coor-
dinate, μ is the chemical potential, and the “bare interaction”
of the low-energy model is now a dynamical quantity, as a
consequence of the downfolding.

Using a standard procedure for expressing the continuous
model in a basis of localized Wannier orbitals φRL(r) (with
R the atomic site and L some orbital index) leads then to the
action of a Hubbard model with dynamical interaction matrix
elements UL1,L2,L3,L4 (τ − τ ′). Such an interaction term can be
parametrized by a set of bosonic degrees of freedom. In the
following, we write out this relationship explicitly for the two
cases that we consider in this paper: the one-orbital model and
a multiorbital model with local density-density interactions.

1. Single-band model

Let us take into account the single-band Hubbard-Holstein
Hamiltonian H = Hkin + Hplasmons + Hint, defined as

Hkin =
∑
k,σ

[ε(k) − μ]d†
kσ dkσ ,

Hplasmons =
∑
i,ν

ωνb
†
iνbiν +

∑
i,ν

λν(b†iν + biν)
∑

σ

niσ ,

Hint =
∑

i

U∞ni↑ni↓,
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where d†
σ (dσ ) is a creation (annihilation) operator for an

electron with spin σ , ε(k) is the band in k space with chemical
potential μ, b†ν (bν) is a creation (annihilation) operator for a
bosonic mode ν of frequency ων , which couples locally to the
total local electronic density

∑
σ niσ ≡ ∑

σ d
†
iσ diσ on the ith

site. The Hamiltonian in Eq. (3) can be written in the action
(finite-temperature) formalism as follows:

S = −
∑
ijσ

∫ β

0
dτ

∫ β

0
dτ ′ d†

iσ (τ )G−1
ijσ (τ − τ ′)djσ (τ ′)

+
∑

i

(∫ β

0
dτ ni↑(τ )U∞ni↓(τ )

+
∫ β

0
dτ

∫ β

0
dτ ′ ni↑(τ )Uret(τ − τ ′)ni↓(τ ′)

)
, (3)

where β is the inverse temperature, i and j are lattice sites,
and Gijσ is such that G−1

σ (iω,k) = iω − ε(k) + μ. The last
interacting term is the screening part, which is always negative,
retarded (nonlocal in time), and comes from the integration
of the bosonic operators. The full time-dependent interaction

is therefore U (τ ) = U∞δ(τ ) + Uret(τ ), and the unscreened
instantaneous U∞ is reduced by the regular part. It turns out
that the retarded interaction reads as

Uret(τ ) = −
∑

ν

λ2
ν cosh[(τ − β/2)ων]/ sinh[ωνβ/2], (4)

a relation that can be obtained by using a Hubbard-
Stratonovich transformation in the bosonic fields.10,21 There-
fore, the generic screened interaction U (τ ) can be represented
by a set of local (in space) bosonic operators bν , couplings λν ,
and frequencies ων . In the case of a single mode ν = 0 with
frequency ω0 and coupling λ0, Fourier transforming Eq. (4)
will lead to the well-known Matsubara representation of U (τ )
for the single-boson (either plasmon or phonon) Hubbard-
Holstein model, namely, U (iνn) = U∞ − 2λ2

0ω0/(ν2
n + ω2

0),
with νn = 2nπ/β. We define the fully screened interaction
as the static limit of U (iν). Therefore, in the latter case, the
fully screened interaction is U0 = U∞ − 2λ2

0/ω0, while in the
most general case, it reads as

U0 = U∞ − 2
∑

ν

λ2
ν/ων. (5)

2. Three-band model

Now, let us generalize the single-band case presented above to a multiband model. Here, we take explicitly into account
a three-band model with t2g symmetry valid for SrVO3.37 The Hamiltonian is again constituted by three parts, H = Hkin +
Hplasmons + Hint, defined analogously to the one-band case as

Hkin =
∑

k,m,σ

[εm(k) − μ]d†
kmσdkmσ ,

Hplasmons =
∑
i,ν

ωνb
†
iνbiν +

∑
i,ν

λν(b†iν + biν)
∑
m,σ

nimσ , (6)

Hint = 1

2

∑
i

(
U∞

∑
m,σ

nimσ nim−σ + (U∞ − 2J )
∑

m,m′,σ
m�=m′

nimσnim′−σ + (U∞ − 3J )
∑

m,m′,σ
m�=m′

nimσnim′σ

)
,

where nmσ =d
†
mσ dmσ is the usual density operator, with m,σ denoting orbital and spin indexes, and d

†
mσ , dmσ representing the t2g

localized orbitals. In Eq. (6), we have introduced the Hund’s coupling J , which takes into account spin effects in an effective
density-density interaction, and fulfills the t2g symmetry. As in the one-band model, the bosonic modes couple to the total charge
on a site, with the orbital indexes summed over. Therefore, by going to the finte-temperature action formalism, the bosonic
degrees of freedom can be integrated out again, thanks to the same Hubbard-Stratonovich transformation used for the single-band
model. The resulting effective contribution screens the bare U∞, which is the density-density total coupling, while J , which acts
selectively on the spin and orbital character of the electrons, is left unscreened by the multiboson Holstein bath. The resulting
action for the d electrons is the following:

S = −
∑

ijmm′σ

∫ β

0
dτ

∫ β

0
dτ ′ d†

imm′σ (τ )G−1
ijmσ (τ − τ ′)djm′σ (τ ′)

+ 1

2

∑
i

∫ β

0
dτ

⎛
⎜⎜⎝−2J

∑
m,m′,σ
m�=m′

n(τ )imσ n(τ )im′−σ − 3J
∑

m,m′,σ
m�=m′

n(τ )imσ n(τ )im′σ+
∫ β

0
dτ ′ ∑

m,m′,σ,σ ′
(mσ )�=(m′σ ′)

n(τ )imσU (τ − τ ′)n(τ ′)im′σ ′

⎞
⎟⎟⎠ ,

(7)

where U (τ ) = U∞δ(τ ) + Uret(τ ), as in the one-band model, with Uret(τ ) given by Eq. (4).
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FIG. 1. (Color online) Dynamic U for a single plasmon mode
with ω0 = 15, U0 = 3.6, and U∞ = 15. This is the single plasmon
modelization of the dynamic U for SrVO3, determined ab initio by
constrained RPA (Ref. 5). The function U (z) is plotted on both the
real (z = ω) and imaginary (z = iω) frequency domains. The vertical
asymptote is shown at ω = ω0 for U (ω), where the function has a
single pole. In the most general case, there will be as many poles as
plasmon modes.

B. Dynamical Hubbard interactions: General features

Thanks to the cRPA, it has become possible to explicitly
compute the frequency-dependent effective interaction U (ω)
for specific materials.5,6,38 The resulting functions share some
common features: The unscreened U∞ value is in general
about an order of magnitude larger than the screened U0, and
U (iω) varies, e.g., from roughly 3 to 30 eV for nickel, or
from 4 to 15 eV in SrVO3. In oxides,5–7 a jump is generally
observed at a quite well-defined plasma frequency ω0, that
is, the frequency-dependent interaction is well parametrized
by a single bosonic mode coupling to the electrons. The
plasma frequency is typically much larger than the bandwidth
(ω0 is of the order of 15 eV in SrVO3 for example), thus
placing the system in the antiadiabatic regime. In transition
metals or the recentpnictide systems,a more complex fre-
quency dependenceof U (ω) requires parametrization by a
continuumof bosonic modes. Nevertheless,the energy scale
atwhich the frequency-dependent interaction finallygoes up
to the unscreened value is typicallyof the order of 20 to
30 eV.A general U (ω)can be resolved into many plasmon
contributions,whichcharacterize the screening process. More
explicitly,the coupling λω thatcouples the mode of frequency
ω to the electronicsystem can be related to the spectral
representation ofthe interaction byλω = − 1

π
ImUret(ω). This

quantity corresponds to the α2F of electron-phonon models.
In Fig. 1, we illustrate a typical form of the frequency-

dependent interaction used in this work, on both the real and
imaginary frequency axes.

C. From lattice to the impurity models: Dynamical mean field
approximation

In order to solve the Hubbard-Holstein models in Eqs. (7)
and (3), we are using the dynamical mean field theory (DMFT),
which maps the full lattice problem into a single-site Anderson

impurity problem coupled to an effective bath. The bath is
determined self-consistently by requiring that the impurity
Green’s function equals the onsite Green’s function on the
lattice.1 Therefore, computing in the most efficient way the
Green’s function of the Anderson model (AM) is of key
importance to have a feasible DMFT scheme. Here, as we
have seen in Sec. II, we have the additional complication that
the effect of screening makes the onsite Hubbard interaction
retarded.

In the action formalism, the Anderson model reads as in
Eqs. (3) and (7), except that the site dependence is replaced by
an effective local (but dynamic) hybridization term �, which
is included in G, namely,

SAM = −
∑
mm′σ

∫∫
dτ dτ ′d†

mσ (τ )G−1
mm′σ (τ − τ ′)dm′σ (τ ′)

+ 1

2

∑
m,m′,σ,σ ′

(mσ )�=(m′σ ′)

∫∫
dτdτ ′nmσ (τ )V σσ ′

mm′ (τ − τ ′)nm′σ ′(τ ′).

(8)

In the DMFT scheme, G−1
mm′σ (iω) = iω + μ − �mm′σ (iω),

where � has to be determined self-consistently. The Hamil-
tonian representation of the action in Eq. (8) with G−1

mm′σ and
V (which includes both J and dynamic U ) is nothing but
the Anderson-Holstein model, which this work is primarily
concerned with.

D. Atomic limit

The atomic limit is reached when the hybridization
�mm′σ (iω) = 0, and each single site is independent of the
rest, acting as an isolated atom. The importance of the atomic
limit is given by the fact that usually high-energy excitations
are well described in that limit. Therefore, it is a test for the
quality of local approximations in the high-energy regime. In
this section, we show that an exact solution is known for the
atomic limit with retarded interactions, as proved in Ref. 39 for
a single-orbital case. Here, we sketch that proof for a generic
multiorbital model, where a retarded interaction U (τ ) couples
to the total local charge N (τ ) = ∑

m,σ nmσ (τ ). In this case, the
action is

S =
∫ β

0
dτ

∑
mσ

d†
mσ (τ )(∂τ − μ)dmσ (τ )

+ 1

2

∫ β

0
dτ

∫ β

0
dτ ′ N (τ )U (τ − τ ′)N (τ ′), (9)

while the Green’s function is defined as Gmσ (τ ) =
〈T dmσ (τ )d†

mσ (0)〉, where the time-ordered thermal average is
weighted by the action in Eq. (9). Now, we introduce a scalar
Hubbard-Stratonovich field φ(τ ) with Fourier components
φn, which decouples the interaction term, and leads to the
following action:

S =
∫ β

0
dτ

∑
mσ

d†
mσ (τ )[∂τ − μ + iφ(τ )]dmσ (τ )

+ 1

2

∫ β

0
dτ

∫ β

0
dτ ′ φ(τ )U−1(τ − τ ′)φ(τ ′), (10)
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where we have to integrate both over the dmσ and φn

components to compute the thermal average. It is now possible
to carry out analytically both functional integrations (see
Ref. 39 for details), and the calculation yields for the Green’s
function

Gmσ (τ ) = Fmσ (τ,μ,U0) exp

⎛
⎝ 1

β

∑
n�=0

Un

ν2
n

(eiνnτ − 1)

⎞
⎠ ,

(11)

where Un = U (iνn) with νn = 2nπ/β bosonic frequencies,
and Fmσ is a complex function we can leave undetermined
here, for the sake of readability. For a static (instantaneous)
interaction, Un = Ustatic∀n and, therefore, Eq. (11) implies that

Gmσ (τ ) = Gstatic
mσ (τ,μ,Ustatic)

× exp

⎛
⎝ 1

β

∑
n�=0

Un − Ustatic

ν2
n

(eiνnτ − 1)

⎞
⎠ , (12)

where Gstatic
mσ (τ ) is the usual atomic-limit Green’s function of

static models, multiplied by an extra factor, which takes into
account the dynamic nature of the interaction. This result holds
for an arbitrary filling and number of orbitals, their dependence
being included only in Gstatic

mσ (τ ).
Equation (12) reveals an important physical outcome

reported in this paper. In the atomic limit, the exact solution
of the dynamic Anderson model is the factorization between a
static Green’s function (depending only on the instantaneous
interaction) and a bosonic factor, which is a functional of the
retarded (frequency dependent) U . The rest of the paper is
devoted to the extension of this result and its consequences to
the most general case, with � �= 0.

Equation (12) raises also the question about which in-
stantaneous part of U one has to take explicitly. There are
two possible physical choices. Indeed, either the explicit
instantaneous part is the unscreened U∞, in which case
U (τ ) = U∞δ(τ ) + Uret(τ ), as written in Sec. III A, or the
explicit instantaneous part is the fully screened U0, and
U (τ ) = U0δ(τ ) + Ū (τ ). Both choices are equivalent, in the
sense that the resulting U (τ ) must be the same. The former
is usually done in dealing with electron-phonon models, as
Uret has a natural interpretation in terms of the α2F . Here and
thereafter, we are going to take the latter convention, as in the
context of plasmon screening it is more natural to deal with the
fully screened interaction U0 [the static limit of U (iν), which
sets the low-energy behavior] as the instantaneous part, while
the dynamic part Ū (τ ) is such that

∫ β

0 dτ Ū (τ ) = 0, and links
the screened interaction to the bare U∞. Therefore, in our
conventions, Ustatic = U0 and Gstatic = G0, i.e., the Green’s
function with instantaneous interaction U0.

IV. GREEN’s FUNCTION BOSE FACTOR ANSATZ (BFA)

A. Bose factor ansatz

We are mainly interested in evaluating the Green’s function
G(τ ) = 〈T d(τ )d†(0)〉 and its spectral properties for the model
in Eq. (8). In analogy with the atomic limit of Eq. (12), we are
going to rewrite it in the form

G(τ ) = G0(τ )F (τ ), (13)

where we dropped all orbital and spin indexes to simplify
the notation. As reported in Sec. III D, G0(τ ) is the Green’s
function for the model in Eq. (8), with instantaneous onsite
repulsion, namely, U (τ ) = U0δ(τ ), with U0 the static limit of
U (iν). We highlight that the above factorization is defined in
the time domain, a feature that is borrowed from the dynamic
atomic solution of the problem, the form of which is known
analytically, as explained in Sec. V. In that limit, the Green’s
function assumes exactly the form in Eq. (13), with G0 the
instantaneous U0 atomic Green’s function. The static model is
much easier than the dynamic one since it contains only the
energy scales set by the screened U (�U∞) and the Kondo
resonance with the bath, and it can be solved by means of
various techniques,17,22,26 which are usually very robust and
efficient in this case. On the other hand, F (τ ) is a Bose
factor, which is a functional of Ū (τ ), and it is not known
a priori. However, we will present various approximations
where the function F (τ ) is derived. It contains the information
of the plasmon (or phonons) excitations and the plasmon (or
phonons) satellites.

B. Spectral properties

A great advantage of dealing with the Green’s function
ansatz in Eq. (13) is the possibility to compute very accurate
spectral functions over the whole energy range, including the
intermediate- to high-energy plasmon satellites. Indeed, since
the Bose factor F (τ ) can be estimated analytically by means of
some approximation, its numerical value is known at machine
precision, and its spectral function B(ω) can be obtained via
a Padé approximant40 in an accurate and robust way. On the
other hand, a ME approach has to be used to find the spectral
function A0(ω) of the static Green’s function G0(ω). However,
this does not pose any particular problem since there are no
high-energy features in A0(ω), and its energy range is set by
U0, where the ME is reliable in the presence of data with good
statistics.25 The spectral function A(ω) of the full Green’s
function G(τ ) expressed as a functional of B and A0 reads as

A(ω) =
∫ ∞

−∞
dε B(ε)

1 + e−βω

(1 + eβ(ε−ω))(1 − e−βε)
A0(ω − ε).

(14)

The spectral functions obtained in this way are reported for
instance in Fig. 3, which corresponds to the Green’s functions
plotted in Fig. 2. The quality of the satellite resolution is
striking, much higher than that usually obtained with ME
methods,25 particularly at energies far away from the Fermi
level.

We would like to stress that the spectral convolution in
Eq. (14) is general and can be used not only for the approxi-
mated Green’s functions we are going to derive in Secs. V and
VI. For instance, our approach to compute the spectral proper-
ties can be applied to the Green’s function obtained by means of
the algorithm in Ref. 21. Given the full Green’s function G(τ )
of the dynamic impurity problem of Eq. (8), one defines an aux-
iliary Green’s function Gaux(τ ) as G(τ )/FDALA(τ ), with FDALA

taken from the atomic limit as described in Sec. III D. This is
an effective way to exploit the separation of the low-energy
properties, kept in Gaux, from the high-frequency features
correctly reproduced by FDALA. At this point, one computes
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A0, the spectral representation of Gaux, by using ME and B,
the spectrum of FDALA, by means of the Padé approximant,
and evaluates the full spectral function in Eq. (14).

V. DYNAMIC ATOMIC-LIMIT APPROXIMATION

In order to find a way to determine F (τ ) in Eq. (13), we
invert it and get

F (τ ) = G(τ )

G0(τ )
≈

(
G(τ )

G0(τ )

)∣∣∣∣
�=0

, (15)

where the rightmost-hand side of the above equation for F (τ )
is taken in the dynamic atomic-limit approximation (DALA),
when the hybridization � is zero. As we have seen in Sec. III D,
the Green’s function in the DALA is analytically solvable
by means of a Hubbard-Stratonovich transformation,39 and
therefore G/G0 is exactly known in a close analytic form,
such that

FDALA(τ ) = exp

⎛
⎝ 1

β

∑
n�=0

U (iνn) − U0

ν2
n

(eiνnτ − 1)

⎞
⎠ , (16)

where νn = 2nπ/β are bosonic Matsubara frequencies, with
n relative integer.

Aside from the atomic limit, this approximation is exact
in the static and the noninteracting limits [in both cases
FDALA(τ ) = 1]. Notice that it retains all the nonperturbative
character of G0(τ ). To have a better idea on the quality of
this approximation, we are going to test it for the dynamic
U with a single plasmon mode ω0, which is equivalent to the

Anderson-Holstein model with U (iν) = U∞ − 2λ2ω0/(ν2 +
ω2

0) and the electron-“phonon” coupling given by
λ = √

(U∞ − U0)ω0/2. We use the CTQMC algorithm
by Rubtsov,22,23 which can handle retarded interactions and
yield the exact Green’s function in a weak-coupling regime, to
benchmark our approximation for the particle-hole symmetric
system with U0 = 2, β = 10, and few values of ω0 and U∞.
The energy units are expressed in terms of the half bandwidth
(D/2 = 1) of the semicircular DOS.

As one can see from Fig. 2, the DALA works very well
for the cases analyzed since it gives a GDALA(τ ), which
almost coincides with the numerically exact G(τ ) given by the
CTQMC algorithm. The accuracy is particularly impressive in
the case with β = 10, U0 = 2, U∞ = 6, and ω0 = 5, where the
impact of the dynamic part is reduced by the larger ω0(�U0),
and a smaller U∞, namely, when the the energy scales of
the static part set by U0 are well separated from the dynamic
contributions in U (iν). Moreover, from Fig. 2 it is apparent
that the low-energy properties of the system are strongly
renormalized by the effect of the high-energy components of
U . This is quite insightful on the importance of the dynamic
screening effects in the treatment of more realistic models
that we are going to tackle in Sec. VIII. This can be noted
also from the spectral properties reported in Fig. 3, which
correspond to the Green’s functions GDALA(τ ) plotted in Fig. 2.
A spectral weight transfer from the low-frequency spectrum
to the high-energy satellites is clearly visible in that figure.

Since the DALA is obtained in the � = 0 limit, it works
well in the intermediate- to strong-coupling regime, with U0

and the dynamic part large, as we have seen in the cases
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FIG. 2. (Color online) Green’s functions for a half-filled Anderson model with dynamically screened U and a semicircular density of states
at β = 10. The GDALA obtained by the method proposed in Sec. V is plotted (green long-dashed line) and compared to the exact Rubtsov’s
CTQMC numerical result (blue dotted line). Also, the dynamic atomic limit (red solid line) and the static one (pink dotted-dashed line) are
reported. The system is computed at a quite large temperature such that an accurate benchmark against the numerically exact CTQMC is still
possible, even for quite large values of U .
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FIG. 3. (Color online) Spectral function of the GDALA Green’s
functions reported in Fig. 2.

analyzed in Fig. 2, where U0 was quite close to the critical Uc2

(≈2.6, see Ref. 41) for the Mott transition of the static Hubbard
model. However, it deteriorates as U0 is getting smaller and
the hybridization � becomes important to set the low-energy
properties of the system. To show this, let us take into account
the Anderson-Holstein model with U0 = 2, ω0 = 5, and U∞ =
6 at β = 10, for which the DALA gives a result very close to the
exact one. Now, let us keep ω0 and U∞ − U0 fixed, such that the
DALA Bose factor [Eq. (16)] is unchanged, while we vary U0

from strongly to more weakly correlated values. The resulting
Green’s functions are plotted in Fig. 4. It is apparent that the
DALA accuracy reduces as U0 decreases, and the resulting
bias is more pronounced in the low-energy part of the Green’s
function. Indeed, the discrepancy is larger around β/2 in G(τ )
[Fig. 4(a)], which corresponds to a larger difference at small
Matsubara frequencies in G(iωn) [Fig. 4(b)]. On the other
hand, the high-energy tails of G(τ ) are very well reproduced
by the DALA, as it is confirmed also by the inspection of
G(iω) at large ωn(>4).

The correct high-energy asymptotics of the DALA is a non-
trivial property of this approximation, which is borrowed from
the atomic limit exactly built in. In order to further analyze
this important feature, we take into account the temperature
dependence of the DALA in the symmetric Anderson model
with a dynamic interaction given by U0 = 1.25, ω0 = 2, and
U∞ = 2.5. In this not-so-correlated case, the model can be
solved exactly down to low temperatures (β = 160), even
by the CTQMC algorithm, to benchmark the temperature
dependence of our approximation. Results are plotted in
Fig. 5. As we already found in the previous analysis, at large
Matsubara frequencies, the dependence of the Green’s function
is correctly given by the DALA, which in this case becomes
almost indistinguishable from the exact CTQMC result for
ωn > 7. We note that the DALA is capable to reproduce the
decay of the imaginary part of G(iω) well beyond the 1/iω

term, as it is apparent from Fig. 5(b). It is also worth noting that
the relative accuracy of the approximation increases with the
temperature, as it is shown in Fig. 5(d). Indeed, the exact Bose
factor F (τ ) is getting closer to FDALA(τ ) as the temperature
increases. At low temperatures, it is the F (β/2) value that is
poorly reproduced by the DALA. Again, this is related to the
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FIG. 4. (Color online) Half-filled Anderson impurity model with
retarded screened interaction: ω0 = 5, U∞ − U0 = 5, β = 10, for
various values of U0. (a) Numerically exact Rubtsov’s CTQMC and
DALA G(τ ); (b) CTQMC and DALA imaginary part of G(iωn).

roughness of the approximation at low frequency, which does
not describe accurately the low-energy excitations around and
below the coherent temperature. Indeed, the Friedel sum rule,
fulfilled by Fermi liquids with local self-energies, is clearly
violated, as one can see in Fig. 5(a), where the condition
G

′′
(i0+) = −4/D valid at half-filling and pinned by the value

of the density of states at the Fermi level is not met by the
DALA.

Therefore, going beyond the DALA is needed to capture the
low-energy low-temperature features of the spectral function,
while its high-energy properties, as the plasmon satellites,
can be successfully taken into account at this level of
approximation.

VI. BEYOND THE DYNAMIC ATOMIC LIMIT

A. DALA Lang-Firsov approximation

A way to improve the dynamic atomic limit approximation
in both the intermediate- and low-energy regimes is provided
by the Lang-Firsov (LF) approach. This approximation has
been widely used in the literature to tackle electron-phonon
models in the antiadiabatic limit, when the electron-phonon
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FIG. 5. (Color online) Symmetric Anderson model with retarded screened interaction: U0 = 1.25,ω0 = 2,U∞ = 2.5, at different β.
(a) Imaginary part of the numerically exact Rubtsov’s CTQMC and DALA Green’s functions for small Matsubara frequencies ωn;
(b) −ωnIm[G(iωn)] in the intermediate frequency range. The arrow indicates the frequency when the DALA and the CTQMC Green’s
functions become practically indistinguishable. The DALA reproduces correctly the intermediate- to high-energy behavior of the Green’s
function well beyond the “trivial” 1/iω term; (c) G(τ ); (d) the CTQMC and DALA Bose factor F (τ ). The thicker lines are for the DALA.
The discrepancy between the DALA and the exact factors is getting smaller as the temperature increases. The wiggles are due to the stochastic
noise of the data.

coupling is λ � ω0, with ω0 the phonon frequency. The
same applies to models where the interaction is retarded by
screening plasmons. In the latter case, the antiadiabatic regime
is met more often since the plasmon frequencies are larger
than the phonon ones, usually by an order of magnitude.
However, it should be noted that in the realistic retarded
Hubbard U , also the electron-plasmon coupling is stronger,
as λ = √

(U∞ − U0)ω0/2, and U∞ is an order of magnitude
larger than U0. In any case, if U∞ − U0 < ω0, the Lang-Firsov
approach describes well the low-energy properties of the
system. Here, we use the Lang-Firsov approximation as a
low-frequency correction to the dynamic factor of our Green’s
function ansatz.

The factorization in the τ space implies a convolution in
the ωn space

G(iωn) = 1

β

∑
m

G0(iωm)F (iωn − iωm), (17)

where F (iνn) are the Matsubara components of the Bose
factor. A way to improve upon the DALA is to choose the
F factor such that the Lang-Firsov behavior is obtained at low
frequency. This can be done by introducing an enhanced F

defined as

FDALA+LF(iνn) =
{

a if νn = 0,[
1 − b exp(− νn

c
)
]
FDALA(iνn) elsewhere,

(18)

where a, b, and c are parameters determined by the following
conditions: F (0) = F (β) = 1, which keeps the correct number
of particles provided by Gstatic; G(iωl) = GLF(iωl) for l = 0
(the first Matsubara frequency), which gives the correct Friedel
sum rule fulfilled by the Lang-Firsov approximation (and
broken by the DALA); c is the crossover frequency between
the LF behavior at low energy and the atomic DALA behavior
at high frequency, and its optimal value is ≈ω0/10, with ω0

the lowest Holstein frequency.
The LF Green’s function is given by the usual expression

GLF(iω) =
exp

(
− λ2

ω2
0

)
iω+μ−λ2/ω0−exp

(
− λ2

ω2
0

)
�(iω)−�[U0](iω)

, (19)

which clearly implies that an Anderson model with static
Hubbard U0 must be solved, hybridized via a renormalized
bath exp(−λ2/ω2

0)�(iω). Therefore, to get the DALA + LF
Green’s function, one has to solve two static models (with
regular and renormalized bath) and mix them together by using
our definition in Eq. (18).

One should note that the Lang-Firsov Green’s function in
Eq. (19) has been written for a single plasmon (or phonon)
Anderson-Holstein model, which gives a rough representation
of the dynamically screened U (iν) present in ab initio models.
For instance, the cRPA approximation for U (iν) leads in some
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FIG. 6. (Color online) Symmetric Anderson model with retarded screened interaction as in Fig. 5: U0 = 1.25,ω0 = 2,U∞ = 2.5. (a)
Imaginary part of the numerically exact Rubtsov’s CTQMC and DALA + LF Green’s functions for small Matsubara frequencies ωn at different
β. (b) The CTQMC, DALA, and DALA + LF Bose factor F (τ ) at β = 160. The improvement of the F (τ ) provided by the Lang-Firsov
correction is apparent. The wiggles are due to the interpolation of noisy QMC data. (c) Spectral representation of the DALA + LF Green’s
function in (a).

cases to a quite broad spectrum of screening plasmons, which
is difficult or impossible to fit accurately by a single frequency
model, as stated in Sec. III B. However, a generalization of
Eq. (19) can be easily done by following the same lines as
in Ref. 21. If the LF renormalization factor exp(−λ2/ω2

0) is
replaced by

exp

(∑
ν

1

π

ImŪ (ων)

ω2
ν

)
, (20)

where Ū (ω) = U (ω) − U0, and ων are real frequencies, all
the screening plasmons ν are treated on the same footing.
Although the LF approximation is accurate only for large ω,
Eq. (20) is a good approximation if ImŪ (ω)/ω2 goes rapidly
to zero for small ω. For the Holstein single-mode interaction,
ImŪ (ω) = −πλ2[δ(ω − ω0) − δ(ω + ω0)], and one recovers
the standard LF renormalization factor.

The improvement of the DALA + LF correction with
respect to the simpler DALA factor is apparent in Fig. 6(a), to
be compared with Fig. 5(a). In particular, at low frequency, the
LF is capable to recover the pinning condition [G

′′
(i0+) = −2

for the semicircular density of states at half-filling], violated
by the DALA at low temperatures. This is reflected in the

behavior of the Bose factor FDALA+LF drawn in Fig. 6(b),
the value at β/2 of which goes correctly to 1 for β → ∞, in
contrast to the FDALA, which does not change with temperature.
Indeed, the exact F factor shows a quite strong temperature
dependence, as reported in Fig. 5(d). In Fig. 6(c), we plot the
spectral representation of the DALA + LF Green’s function
at β = 160 obtained by the DALA factor assisted analytic
continuation described in Sec. IV B.

B. Diagrammatic first-order expansion: Gaussian
cumulants (GC)

Another way to improve upon the DALA is to rely on the
cumulant expansion of the interaction. This can be done in
various ways. Here, we took two routes: making a cumulant
Green’s function expansion in the full U (iν) and its “alter-
nating” part Ū (iν) = U (iν) − U0. In the former approach,
dubbed “Gaussian cumulants” (GC), the perturbation theory
is built on the Gaussian action containing the hybridized G0 as
the bare Green’s function. In the latter method, named “instan-
taneous bold cumulants” (IBC), the perturbation expansion
requires the calculation of density-density correlators within

035115-10



DYNAMICAL SCREENING EFFECTS IN CORRELATED . . . PHYSICAL REVIEW B 85, 035115 (2012)

the static U0 model by means of the CTQMC algorithm (or
other algorithms suitable for static interacting models).1

Let us first consider how a perturbation δU affects the
Green’s function in general. Taylor expansion in perturbation
up to the first order gives

G(τ ) = G0(τ ) + 〈δUdτd
†
0〉0 − 〈δU 〉0G0(τ ), (21)

where G0 is a Green’s function of the unperturbed system,
and 〈· · · 〉0 is an average over this system. Note that so far the
unperturbed system is not supposed to be Gaussian, and Wick’s
theorem is not employed to obtain the averages in Eq. (21).

In the spirit of the DALA, we would like to draw an
expression of the type G(τ ) = G0(τ ) exp[F(τ ; [δU ])]. The
advantage of using an exponential form for F(τ ; [δU ]) (or in
other words a cumulant expansion) is that the exact dynamic
atomic limit can be obtained by just the first two Taylor terms.
Rewriting Eq. (21) as an exponent, one obtains (again, up to
the first order)

G(τ ) = G0(τ ) exp(〈δUdτd
†
0〉0G

−1
0 (τ ) − 〈δU 〉0). (22)

Now, let us turn into the specific case of retarded density-
density interactions. An explicit form δU = 1

2

∫∫
U (τ −

τ ′)N (τ )N (τ ′)dτ dτ ′, with N (t) = ∑
σ nσ (t) being the spin

(and orbital) integrated density, leads to the expression

G(τ ) = G0(τ ) exp

(
−1

2

∫ ∫ β

0
dt dt ′χ (t,t ′,τ )U (t − t ′)

)
,

(23)

where

χ (t,t ′,τ ) = 〈T dτd
†
0N (t)N (t ′)〉0

G0(τ )
− 〈T N (t)N (t ′)〉. (24)

We note that the second term in Eq. (24) is τ independent and
so contributes to an overall prefactor in Eq. (23), which can
be determined from the normalization condition, as both the
perturbed G and unperturbed G0 are normalized. Therefore,
the second term in Eq. (24) does not need to be calculated
explicitly.

If the perturbation theory is built with respect to the full
U (τ ) (GC approximation), the unperturbed system is noninter-
acting, and so G−1

0 (iω) = G−1
0 (iω) = iω − μ − �(iω). This

implies that Wick’s theorem is valid for calculating 〈. . .〉0, and
one can check that only connected parts enter in the first term
of Eq. (24). Therefore, by reminding that F ≡ GU (τ )/GU0 (τ ),
the resulting expression for the Bose factor F in the GC
approximation is

FGC(τ ) = F0 exp

(
−1

2

∫∫ β

0
dt dt ′χGC(t,t ′,τ )Ū (t − t ′)

)
,(25)

with Ū (t) = U (t) − U0δ(t), F0 the normalization factor, and
χGC given by the following equation:

χGC(t,t ′,τ ) = G0(t)G0(t ′ − t)G0(τ − t) + {t ↔ t ′}
G0(τ )

. (26)

The right-hand side of the above equation is conveniently
computed in the frequency domain, where the singularities
in G0 are properly taken into account. Since we integrate over
t and t ′ in (23) and U (t) is an even function, the two terms in
the nominator give identical contributions. The normalization

factor F0 is obtained from the condition FGC(0) = FGC(β) =
1.

The expression in Eq. (25) for the dynamic factor has
the advantage to be very accurate at both small U since
the interaction is treated perturbatively, and strong coupling,
as the density-density correlator, will factor up by giving
the exact dynamic atomic limit (see the Appendix). As
already highlighted in the derivation, this is the reason why
the cumulant expansion is more effective than the regular
perturbation theory for this case.

C. Diagrammatic first-order expansion: Instantaneous bold
cumulants (IBC)

One can go beyond the approximation for F in Eq. (25) and
compute the density-density correlator χ by using the inter-
acting instantaneous U0 Green’s function G0(τ ) as propagator
instead of the hybridized Green’s function G0(τ ). This requires
a correlated method, as the corresponding action is no longer
Gaussian and the Wick theorem can not be applied. The QMC
methods can compute χ directly in the interacting systems.1

This development represents a consistent diagrammatic first-
order expansion in Ū (iν) where the reference theory is the
static U0 model. The main difference with respect to the
previous method reported in Sec. VI B stems from the fact
that not only hybridization effects, but also the impact of the
instantaneous U0δ(t − t ′) interaction, are included in χ .

This approximation gives the following Bose factor F :

FIBC(τ ) = F0 exp

(
−1

2

∫ ∫ β

0
dt dt ′χIBC(t,t ′,τ )Ū (t − t ′)

)
,

(27)

where F0 is the normalization constant, and χIBC is given by

χIBC(t,t ′,τ ) = 〈T dτd
†
0N (t)N (t ′)〉0

G0(τ )
. (28)

In the following, we report a comparison on the perfor-
mance of the different approaches proposed in this work.
As a common benchmark, we chose to compute the Green’s
function of the Anderson-Holstein impurity problem both in
the particle-hole symmetric and asymmetric cases, and check
the BFA solutions against the numerically exact one provided
by Rubtsov’s CTQMC algorithm.

VII. OVERVIEW ON THE PERFORMANCE OF THE
PROPOSED FACTORIZATION APPROXIMATIONS

The factorization introduced in Eq. (13) is an extremely
useful Green’s function ansatz to compute thermal and spectral
properties coming from a generic retarded interaction in the
multiband Anderson model and also the Hubbard model at the
DMFT level. The product in the time domain between a Bose
factor F embedding the dynamic properties of the interaction
and an auxiliary Green’s function G0 including instantaneous
interactions and low-energy features leads to a deconvolution
of the spectrum into low- and high-frequency contributions. Its
low-frequency part, depending on G0, can be easily obtained
by available and well-developed ME methods, while the
high-energy features, as the plasmon satellites, difficult or
impossible to obtain by standard analytical continuation, are
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directly given by the analytically known Bose factor F , which
can be inverted in an accurate way by the Padé approximants.

The Green’s function Bose factor is a very general ansatz.
However, the factor F is not exactly known in the generic
case and needs some approximations. The most practical
and physically insightful one is borrowed from the dynamic
atomic limit, where the factorization is exactly given by a G0,
depending only on the instantaneous U0 times a factor that
depends only on the retarded part Ū (iν). The DALA proposed
in Sec. V consists of keeping the atomic dynamic factor F

and taking the G0 from the exact numerical solution of the
instantaneous U0 model. As reported in Figs. 2 and 7(b),
the DALA performs well in the antiadiabatic regime when
ω0 > U∞ − U0, and in the strong-coupling regime with a large
U0. The quality of the low-energy part of the DALA Green’s
function worsens as the interaction becomes weaker and ω0

gets smaller, while its high-energy tails are well reproduced
even in the intermediate coupling. The major failure of the
DALA is the breaking of the Friedel sum rule, which is
apparent at low temperature (below β = 40) or away from the
antiadiabatic regime. That is not surprising since the DALA is
built upon the atomic limit. In general, the DALA works when
the high-energy (unscreened) part of the retarded interaction is
well separated (in frequency) from the low-energy (screened)
part, which is the most common situation in the case of realistic
Hamiltonians, with U (iν) determined ab initio by the cRPA
approach.4

An improvement upon the DALA is represented by the
Lang-Firsov approximation, which fulfills the Friedel sum rule
and cures the low-energy low-temperature behavior. The way
to incorporate the LF into the DALA factor, described in Sec.
VI A, clearly improves the low-energy features of the DALA
Green’s function, as one can see in Figs. 7 and 8, where the
value of G(β/2) yielded by the DALA + LF approach is
closer to the exact numerical result in both the half-filling
and quarter-filling Anderson-Holstein impurity models. The
DALA + LF factor provides an overall better agreement
with the numerically exact Green’s function computed by
the CTQMC method. The LF correction turns out to be
important particularly in the weak and intermediate couplings
and at low temperature, while in other cases, the simple
DALA approximation is already good enough. For instance,
in Fig. 7(b), when U0 is strong and the temperature not so
low (β = 10), the DALA Green’s function coincides with the
DALA + LF one, and both are on the top of the exact numerical
solution. A common limitation of the DALA and DALA
+ LF approximations is that they become inaccurate when
ω0 < U∞ − U0, while they work very well in the antiadiabatic
regime.

A different route to determine F is built on diagrammatic
expansion techniques. We have proven that the cumulant
expansion of the Green’s function up to the first order in
the interaction provides the exact connection to the dynamic
atomic limit (see Appendix). Indeed, the F factor computed
in this way [see Eq. (23)] has the exact atomic behavior in
the zero hybridization limit. We propose two flavors for the
cumulant expansion. In both cases, one has to evaluate the
density-density correlator 〈T cτ c

†
0N (t)N (t ′)〉0. In the first one

(the Gaussian cumulants or “GC”), the thermal average is
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FIG. 7. (Color online) Symmetric Anderson model with retarded
screened interaction as in Fig. 4: ω0 = 5, U∞ − U0 = 5, β = 10, for
β = 20 and two values of U0. (a) U0 = 1; (b) U0 = 2. The numerically
exact Rubtsov’s CTQMC, DALA, DALA + LF, GC, and IBC Green’s
functions are reported.

computed with a Gaussian action based on the hybridized
noninteracting Green’s function, while in the other one (the
instantaneous bold cumulants or “IBC”), the brackets are
computed with the instantaneous U0 Green’s function. The GC
works well in the weak interacting regime (small U0) and it
worsens as U0 is getting larger, as shown in Fig. 7, as expected
for a perturbative expansion. Away from half-filling, the GC
Green’s function is reliable in the “empty” part of the spectrum
(for τ < β/2) and where the dynamic part is more relevant in
setting the tails of the Green’s function. On the other hand,
the IBC performs well everywhere in all cases when ω0 is
large, as seen in Figs. 7 and 8, and it is supposed to work quite
well even away from the antiadiabatic regime since it retains
the feedback of the instantaneous interaction on the dynamic
part via the χ correlator. The price to pay in the latter case
is the statistical uncertainty of FIBC, as χ must be evaluated
by means of Monte Carlo techniques, in contrast to the GC
approach where χ is known up to machine precision thanks
to Wick’s theorem. This could lead to some inaccuracy in the
analytical continuation of the IBC Bose factor.

If the goal is to compute the spectral representation of a
Green’s function with retarded interactions, we found that

035115-12



DYNAMICAL SCREENING EFFECTS IN CORRELATED . . . PHYSICAL REVIEW B 85, 035115 (2012)

(a)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  2  4  6  8  10

G
( τ

)

τ

U0=1, ω0=5, U∞=5, Nσ=0.24

DALA
DALA+LF

CTQMC
IBC
GC

(b)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  2  4  6  8  10

G
(τ

)

τ

U0=1, ω0=5, U∞=9, Nσ=0.22

DALA
DALA+LF

CTQMC
IBC
GC

FIG. 8. (Color online) Asymmetric spin unpolarized Anderson
model with retarded screened interaction as in Fig. 7: ω0 = 5, U∞ −
U0 = 5, for β = 20 and two values of U0. (a) U0 = 1; (b) U0 = 2.
In this case, the number of particles Nσ was set to be around the
quarter-filling. The numerically exact Rubtsov’s CTQMC, DALA,
DALA + LF, GC, and IBC Green’s functions are reported.

the most effective way is to use the Bose factor taken from
the dynamic atomic limit. As already reported in Sec. IV,
one has to define an auxiliary Green’s function Gaux(τ )
as G(τ )/FDALA(τ ), and then use Eq. (14) to compute the
spectrum. The DALA factor is the simplest to invert, and
its bosonic spectral representation is directly related to the
“physical” density of plasmonic (or phononic) modes, whereas
the other factors beyond the DALA include also some low-
energy contributions. Therefore, the DALA factor is the most
recommended in the assisted analytical continuation.

VIII. APPLICATION TO THE SINGLE-BAND
HUBBARD-HOLSTEIN MODEL

In the following, we are going to present applications
where our BFA approach is used as solver of the Anderson
impurity problem resulting from the DMFT self-consistency
conditions. Therefore, in contrast to what has been shown
in the methodological sections, the following results are the
converged solutions of the DMFT equations for the full lattice
Hamiltonian, which incorporates the retarded U (iν) as the
onsite interaction.

TABLE I. Upper and lower critical U∞ values obtained at β =
40 by different BFA methods for the Mott transition in the single-
band Hubbard-Holstein model on the Bethe lattice at half-filling,
once U0(=2) and ω0(=10) are fixed. The values are expressed in
the half-bandwidth units. By our BFA, we always get a first-order
phase transition, with a hysteresis effect, in agreement with what was
reported in literature (Ref. 16).

Method U c1
∞ U c2

∞

GC 12.3 12.5
DALA 8.2 8.4
DALA + LF 4.9 5.2

The first application is on the single-band half-filled
Hubbard-Holstein model solved by the DMFT on the Bethe
lattice. To study the impact of the retarded screened interaction
on the Mott transition, we analyze the half-filled model at
β = 40 with different U0, U∞, and ω0 parameters. We choose
to work always with U∞ > U0, a “physical” condition that
states that the unscreened U is larger than the screened one.
The screening frequency is taken such that we are in the
antiadiabatic regime, and we use our various Bose factor
approximations to predict the critical value of U∞ for the
Mott transition, once the other parameters are fixed, such
that ω0 = 10 and U0 = 2. As reported in literature,15,16 the
metal-Mott insulator transition in the Hubbard-Holstein model
is first order. In Table I, we present our lower and upper critical
values obtained for β = 40 by means of the BFA at various
levels of approximation. As one can see, the actual values at
criticality depend quite strongly on the approximation used,
with the DALA + LF giving the results aligned with the
numerically exact CTQMC method by Werner and Millis21

(see Fig. 9). In order to have a close comparison to the data
published in Ref. 21, we carried out some calculations also for
β = 100. The agreement between the DALA + LF and the
Monte Carlo predictions is quite remarkable. This highlights
again the importance of the LF correction at low energy in
order to accurately predict the physical properties.

Figure 9 summarizes the results for the upper critical line
for different sets of ω0 and U0, the values of which are taken not
so far from the critical Uc2 ≈ 2.6 of the static model computed
at β = 40.41,42 It is clear that the fully retarded model with
U∞ > U0 is more correlated than the static one with the same
instantaneous U0. The Mott transition happens at values of
screened U0 lower than the critical static Uc2 for any finite ω0.
The dependence of the critical parameters on ω0 is also clear.
At fixed screened U0, a smaller ω0 corresponds to a smaller
unscreened U∞ at which the Mott transition is reached. Indeed,
if the frequency of the screening plasmon is closer to the Fermi
level, it is easier for the unscreened part to induce the Mott
transition at low energy. The same conclusions were reached
by Werner and Millis by means of their numerically exact
CTQMC algorithm. This shows the impact of the dynamic
screening features on the low-energy properties of the model.
In order to get the same effective low-energy parameters, the
“effective” instantaneous U0 can be up to 20%–25% larger
than the true screened value even for plasmon frequencies
ω0(�U0,�D) in the antiadiabatic regime.
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FIG. 9. (Color online) Critical Uc2 line of the Mott transition
calculated at β = 40 and half-filling on a Bethe lattice for the screened
instantaneous interaction U0 as a function of U∞/U0 and ω0 = 10,20
(green diamonds and red circles, respectively). The critical values are
obtained from the Green’s function computed by the DALA + LF
ansatz. The behavior of the critical screened U is in agreement with
the one computed by Werner and Millis with their CTQMC algorithm
at ω0 = 10 and β = 100 (black upper triangles). Indeed, the critical
line calculated by means of our DALA + LF approach (blue lower
triangles) is on top of their CTQMC points (Ref. 21). This highlights
the accuracy of our approximated DALA + LF method if compared
to the exact numerical result. Note the quite strong temperature
dependence of the critical Uc2 in going from β = 40 to 100. This
is a quite interesting effect, which deserves further analysis.

In Fig. 10, we report the spectral representation of a
half-filled Holstein-Hubbard model with ω0 = 10, U0 = 2,
U∞ = 6.5, and temperature β = 100, quite close to the Mott
transition. The spectral function has been obtained with the
help of the DALA factor by the method in Sec. IV B. It
describes with high accuracy not only the low-energy features,
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FIG. 10. Spectral representation of the Green’s function for a
Holstein-Hubbard model with ω0 = 10, U0 = 2, U∞ = 6.5, and
β = 100, close to the blue Mott transition line of Fig. 9. The analytic
continuation has been assisted by the DALA Bose factor, which
allows one to describe accurately the plasmon satellites centered
around frequencies multiple of ω0.

but also the plasmon satellites in the antiadiabatic regime,
typical of realistic materials.

IX. REALISTIC APPLICATION TO SrVO3

Our second application is on a realistic Hamiltonian for
SrVO3, a very well-studied material, which represents a bench-
mark for theories describing strongly correlated compounds.
SrVO3 is the prototype of a correlated metal where the many-
body treatment of correlation in the d manifold is important
to explain the spectral properties.2 Therefore, it has been
the subject of intensive studies7,43–47 applying DMFT in the
context of realistic strongly correlated Hamiltonians. Indeed,
its band structure is relatively simple due to its undistorted per-
ovskite geometry, resulting in the occupation of one electron
in three degenerate t2g bands crossing the Fermi level. The
p oxygen ligands are quite well separated from the d levels,
such that the definition of a low-energy t2g Hamiltonian is
unambiguous. Thus, SrVO3 has been the testing case for many
new DFT-DMFT implementations.7,48–51 On the other hand,
SrVO3 has been the subject of intensive experimental activity,
with magnetic, electrical, and optical measurements,52–54 and
by means of photoemission spectroscopy55–58 (PES) and
angled resolved PES (ARPES).59–63

Here, we consider a model where only the t2g electron is
retained, and all the others contribute to screen the local lattice
interaction. The DFT band structure has been calculated with
the linear muffin-tin orbital (LMTO) framework in the atomic
sphere approximation (ASA), which allows one to work with
a native d projected and localized orbital representation. The
realistic retarded U for this compound has been computed in
Ref. 5 based on the cRPA construction.

The low-energy Hamiltonian we are going to work with
consists of the LDA t2g Hamiltonian introduced in Eq. (6). For
the t2g orbitals of SrVO3, the screened value of the interaction
U0 = 3.6 eV, and the Hund’s coupling J = 0.68 eV. The
additional retarded interaction, which is included in our model,
couples to the total charge of the system, as described by
Eq. (7). There is no need for an explicit double-counting term
since such a correction is absorbed into the effective chemical
potential fixing the particle number to one.

To study the impact of Uret on the low-energy properties
of the model, we took into account different Holstein single-
plasmon U (iν)’s and compared them with the corresponding
static model. We used our BFA approach in its simplest
DALA formulation, and computed the spectrum at β = 10 and
20 eV−1. Indeed, it turns out that at those temperatures, the LF
correction is irrelevant, and so the DALA performs here at best
even in terms of efficiency. In Fig. 11, we report the spectra
computed with the instantaneous static U0(=3.6 eV) interac-
tion, and two retarded interactions with the same unscreened
U∞(=7 eV), but different screening ω0’s (one at 5 eV, the
other at 15 eV). The static model has a quasiparticle peak
at the Fermi level, typical of strongly correlated compounds,
with a lower and upper shoulder reminiscent of the lower and
upper Hubbard bands. In the dynamic model, the effect of the
15-eV plasmon is to renormalize the quasiparticle spectral
weight, transferred at higher energies, while the shape of
the low-energy spectrum is almost unchanged. The effect of
the 5-eV plasmon, closer to the low-energy sector, is more
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FIG. 11. (Color online) Spectral function of one electron in 3
t2g bands for the SrVO3 obtained by the DFT in the local density
approximation. The DMFT calculations are done at β = 10 eV−1

with the DALA Bose factor solver for the retarded U and the Hirsch-
Fye QMC solver for the instantaneous interaction. Three types of
interactions are reported: the purely static one, with U0 = 3.6 eV,
a dynamic Holstein one with the same instantaneous interaction but
with the unscreened U∞ = 7 eV, and a plasmon frequency ω0 = 5 eV,
another Holstein interaction with the same U0 and U∞ but different
ω0(=15 eV). Note the displacement of the upper Hubbard shoulder
shifted at lower energy by the presence of the plasmon at ω0 = 5 eV.

remarkable. Aside from a stronger spectral weight reduction,
there is a shift of the upper Hubbard shoulder to lower energies
than in the corresponding static model. This effect is certainly
due to the interplay between the plasmon satellite at 5 eV,
visible in Fig. 11, and the low-energy features of the spectrum.

The realistic retarded U (iν) is characterized by two main
screening frequencies at 5 and 15 eV,5,6 while the unscreened
value of U is 16 eV, much larger than the one in the models
considered so far. By applying our Bose factor ansatz to this
problem, we found the spectral function in Fig. 12, reported
together with the instantaneous interaction with the same
screened U0(= 3.6eV). Also, here we note the quasiparticle
weight reduction, and the shift of the upper Hubbard shoulder
to lower frequencies, as in the model U analyzed before,
while the lower Hubbard band is almost unchanged with
respect of the static model. Its maximum corresponds to the
position found in PES measurements, and well documented
in previous DMFT studies on SrVO3. The weight reduction
of the quasiparticle peak coincides with a smaller value of
Z = 1/(1 − ∂�

′′
(iω)/∂ω|ω=0), namely, a larger value of the

effective mass m∗. In particular, for the realistic dynamic
model, we found a Z ≈ 0.5, which gives an effective mass
renormalized by 2 with respect to the DFT band structure,
while for the corresponding static model, we obtained a
value of Z ≈ 0.7. Recent ARPES data yielded an effective
mass m∗ ≈ 2m0,59,61,63 which is in a good agreement with
our findings for the realistic retarded interaction. On the
other hand, the static model with the same screened U0

underestimates the correlation by a factor of 1.4, and so
the value of m∗. In the literature, a static model with a
larger instantaneous U0(≈5 eV) has been used to find the
experimental mass renormalization.44–47 Such a larger value
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FIG. 12. (Color online) Spectral function at β = 10 eV−1 of one
electron in 3 t2g bands for the SrVO3 obtained by the DFT in the
local density approximation. The DMFT calculations are carried
out with the DALA Bose factor solver for the retarded U and
the Hirsch-Fye QMC solver for the instantaneous interaction. The
result of the realistic Green’s function is reported, showing a more
correlated behavior than the corresponding static model with the same
instantaneous U0(=3.6 eV). The quasiparticle peak is smaller than
the corresponding static model, with a spectral weight transfer at
higher energies.

of U could be justified by the constrained LDA method64,65

used to determine a priori the onsite interaction, but known to
overestimate its strength. The difficulty here is to reproduce
by the same model both the effective mass and the position
of the lower Hubbard band, which turns out to be shifted at
lower energies (≈−2 eV) by a stronger U0. This is the reason
why in Ref. 49 the authors made the choice to work with
U0 = 4 eV, a slightly weaker effective static interaction, which
gives the lower Hubbard band correctly peaked at −1.5 eV.
Some cluster calculations give the same position for the lower
Hubbard band, with the interpretation that its peak depends
on the hybridization and screening properties provided by
the ligands.66,67 With our dynamically screened model, we
describe correctly both the mass renormalization (2m0) and the
lower Hubbard band position peaked at −1.5 eV, as apparent
in Fig. 12. This analysis highlights the importance of including
the proper retarded interaction to have a reliable and fully ab
initio description of the correlation in these materials.

We note, however, that the present description includes only
the t2g orbitals, so that the above conclusions are valid in an
energy range where no other orbital contributions are present.

X. CONCLUSIONS

We introduced a factorized form G = G0F for the Green’s
function of the Anderson model with generic retarded (dy-
namic) interaction, dubbed “Bose factor ansatz.” We proposed
various approximations for the Green’s function Bose factor
F , the most practical and effective one borrowed directly
from the dynamic atomic limit (DALA), the form of which
is analytically known. The DALA provides an accurate way
to compute the Green’s function in the antiadiabatic limit and
evaluate the spectral properties in the full frequency range
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by means of an improved analytical continuation method. In
practice, the inversion from the imaginary to the real frequency
domain is assisted by the factor F , which retains the main
information on the position and strength of the plasmon satel-
lites, and enters in the analytical continuation as a convolution
with the instantaneous part G0. We carefully analyzed the
pros and cons of the DALA, and found various ways to
improve F by either using the Lang-Firsov approximation
at low frequency or resorting to diagrammatic techniques.
Finally, we applied our approach to lattice problems in the
context of the DMFT formalism. We took into account the
Hubbard-Holstein Hamiltonian at half-filling and on the Bethe
lattice, and we studied the Mott transition in the spirit of
looking at the retarded interaction as resulting from “realistic
screening” of the bare U by a single plasmon. The second
application has been for the realistic SrVO3 Hamiltonian,
where the t2g electrons interact via a retarded onsite U

previously determined ab initio at the cRPA level.4 In both
cases, it turns out that it is important to retain the retarded
features of the local interaction resulting from the dynamic
screening in order to have a reliable ab initio description of
correlated materials. Also, our approach could be useful to
determine whether some spectral signatures at intermediate
energy (≈10 eV) seen in a broad class of correlated materials68

come from a bulk dynamic screening. In perspective, more
work has to be done theoretically to rationalize the effects of
the screening on both the ground- and excited-state properties
of correlated compounds. Moreover, by means of the same
formalism, one can study Jahn-Teller models to describe the
impact of the electron-phonon coupling to the spectral function
of the distorted compound. Other electron-phonon coupling
models in strongly correlated systems69 could be solved by
our ansatz, if they are in the antiadiabatic regime. Last but not
least, dealing with a frequency dependent U is an essential step
toward the implementation of the GW + DMFT framework,36

where the screening resulting from the GW polarization has
to be included consistently in the low-energy correlated model
solved at the DMFT level. Therefore, behind this work, there
are important experimental, theoretical, and methodological
implications that one can now start to take into account.
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APPENDIX: FROM THE FIRST-ORDER CUMULANT
EXPANSION TO THE DYNAMIC ATOMIC LIMIT

In this Appendix, we prove that the Bose factor F reported
in Eq. (25) fulfills the exact atomic limit, i.e., it equals the one in
Eq. (16) for � = 0. This is a nontrivial property, which guaran-
tees the GC approximation to provide a reasonable description
of the insulating phase (and the metal-to-insulator transition) in
the DMFT framework, where the hybridization function of the
Anderson impurity assumes a crucial frequency dependence

in order to represent the coupling with the self-consistent bath.
In the strong-coupling case, the hybridization �(iωn) goes to
zero for small ωn. Thus, in the DMFT language, this phase is
mapped into an Anderson impurity problem close to the atomic
limit, and its accurate solution is required around � = 0.

We start by noting that the density-density correlator χ

factorizes in the atomic limit as

χ (t,t ′,τ ) =
�=0

χ1(t,τ )χ1(t ′,τ ), (A1)

where χ1(t,τ ) = 〈T dτd
†
0N (t)〉0/G0(τ ). In the most general

case, χ can be resolved into its spin and orbital components
by defining χσσ ′(t,t ′,τ ) = 〈T dτd

†
0Nσ (t)Nσ ′(t ′)〉0/G0(τ ), with

Nσ (t) = nσ (t) − 1/2. The factorization in Eq. (A1) holds also
for the spin-resolved quantities: χσσ ′ = χ1

σχ1
σ ′ . Once the Wick

theorem is applied and the former correlators are written
in terms of the G0(τ )’s, it is straightforward to prove the
spin-resolved identity and Eq. (A1) by using the atomic-limit
expression for G0(τ ). For instance, in the atomic limit and for
a generic μ, the connected part of χ1 reads as

χ1(t,τ ) =
{−e−μβ/

(
1 + e−μβ

)
for τ < t < β,

1/
(
1 + e−μβ

)
for 0 � t � τ.

(A2)

Now, we use a Hubbard-Stratonovich (HS) transformation
to rewrite the FGC factor in a form that includes χ1 in linear
terms only. We obtain the following identity:

exp

(
−1

2

∫ ∫ β

0
dt dt ′ χ1(t,τ )Ū (t − t ′)χ1(t ′,τ )

)

=
∫

Dφ exp

(
−i

∫ β

0
dt χ1(t,τ )φ(t)

−1

2

∫ ∫ β

0
dt dt ′ φ(t)Ū−1(t − t ′)φ(t ′)

)
, (A3)

where
∫
Dφ is the functional integral over the complex HS

field φ(t). By exploiting the atomic-limit expression of χ1 in
Eq. (A2), one can compute the integral involving the product
of φ and χ1, which gives the result∫ β

0
dt χ1(t,τ )φ(t) =

(
τ

β
− e−μβ

1 + e−μβ

)
φ0

+ i

β

∑
n�=0

φn

νn

(e−iνnτ − 1), (A4)

with φn = ∫ β

0 dt φ(t)eiνnt the Fourier components of the HS
field. By integrating the functional integral in Eq. (A3) in the
Fourier space, one gets the final expression for the exponent
of the GC factor:

−1

2

∫ ∫ β

0
dt dt ′ χ (t,t ′,τ )Ū (t − t ′)

=
�=0

− 1

2
βŪ (iν0)

(
e−μβ

1 + e−μβ
− τ

β

)2

+ 1

β

∑
n�=0

Ū (iνn)

ν2
n

(eiνnτ − 1). (A5)

We note here that Ū (iν0) = 0, as Ū (iνn) = U (iνn) − U0.
Therefore, the first term in the right-hand side of the above
equation vanishes, and we are left with the last term in Eq. (A5),
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which is exactly equal to the exponent of the DALA factor.
Thus, we have proven that

FGC(τ ) =
�=0

FDALA(τ ) (A6)

for an arbitrary μ and Ū .

To conclude, the fact that the first-order cumulant expansion
fulfills the exact dynamic atomic limit justifies the use of
cumulants instead of the standard first-order developments,
and validates also the cumulant of the instantaneous bold factor
in Eq. (27).
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